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Aim of Talk

In this talk, we formulate an optimal-control problem to determine what is in
some sense the ‘best’ way to control the outbreak of COVID-19 in Ireland:

@ Formulate a basic ODE model, fit it to data from the ‘first wave’
(March-May 2020)

@ Formulate an optimal-control problem, including state constraints
@ Solve the optimal-control problem numerically.

The numerical solutions show that elimination is the cheapest way to deal with
the COVID-19 outbreak.
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Structure of talk

@ Crash course in Compartmental Models of Mathematical Epidemiology (SIR)
o Compartmental Model for COVID-19
@ Optimal Control Theory

COVID-19 Elimination 30th September 2020 3 /48



Caveats

A lot of discussion / speculation about COVID-19 by ill-informed people.
| don't want to add to it.

| will speak about mathematical models only.

Its applicability can be debated by real experts...
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but here is what an elimination strategy looks like
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SIR model

Part 1: A brief review of compartmental models, starting with the simplest SIR
model.

Key assumption: homogeneous population.

Other assumptions: no natural births/deaths on the timescale of the epidemic.
The model is then just ‘conservation of people"
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SIR — Equations

With these assumptions, the model equations read:

ds

P _aST

& aST,
dr

— = I—~I
dt aS ,y b
dR

— = ~I

at 7

The equations conserve the total number of people, S + 1 + R = N = Const..

The initial condition for an outbreak is:
S(0) = So, I(0) = N — S, R(0) =0.

With Sp = N — 1 and I(0) = 1 we have the idea of ‘patient zero'.
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SIR — Equations

The constant « is a rate (1/time). We write « = 3/N so that § is also a genuine

rate:
ds 153
T
dr B
E = NSI — ’)/I,
dR
w - h

These equations can be reduced down to a single ODE:

ldu 8 BN __,
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SIR — Equations

The model ODE can again be rescaled to give:
du N 1
= —y—eU = t/N.
dr So Rou ¢ ’ T BSO /

This is an autonomous ODE, du/dr = f(u; So/N, Ry). Notice, So/N < 1. A
fixed-point analysis yields two scenarios:
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Basic Reproductive Number — Formula
The parameter Ry is the dreaded basic reproduction number:
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Basic Reproductive Number — Intuitive understanding

The familiar meaning of Ry as ‘the number of individuals that an infected
person will go on to infect subsequently’ can by obtained integrating the
I-compartment across a time interval At:

I(t + At) — I(t) = At [fsj(vt) - 1} I(t).

In the early stages of the outbreak, when the susceptible population is not
depleted, S(t) ~ Sp, hence

I(t+ At) — I(t) = yAt [ffvo - 1] I(t).

An infections person remains infectious for time ~~1

I(t+ At — (1) ~ [fi‘; _ 1} I(t) = (Ro — 1)I(1),

. Hence, take vAt =1 to get

hence I(t + At) = RoI(t). This gives the required interpretation of Ry: I(t)
individuals infect RoI(t) further individuals.

COVID-19 Elimination 30th September 2020 11 / 48



Early-stage Exponential Growth, Late-stage burn-out

From the previous slide, in the early stage of the outbreak when S(t) = Sy, we
have

I(t,) = REI(0),  to = nAL

In the late stages of the outbreak, there are not very many people left to infect,
and the epidemic burns out. Not everybody catches the disease:
Soo/N =1— (R /N), where

Roo o Uy So

‘N Ry N’
and where u, is the fixed point of du/dr = f(u;So/N, Ry).

The fact that not everybody catches the disease can be thought of as ‘burn-out’.
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Late-stage burn-out, continued
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Vaccination Strategy

Suppose a vaccine for the disease exists. To control a future outbreak, we reduce
the number of susceptible individuals from Sy = N — 1 to

So=N—- 1 - fN

Patient Zero  Fraction of population vaccinated
Here, 0 < f < 1. Starting-value for Ry is:

_ B _fN-1

R, =
°"yN 4 N

~ B/
After mass vaccination, the new value is:

Resy = g(l - ).

To control the disease, we require a threshold value R.sy = 1 (ideally Refr < 1).
Therefore, the fraction of the population that needs to be vaccinated is
f=1-=(1/Ry). When this number of people has been vaccinated we say herd
immunity has been reached.

COVID-19 Elimination 30th September 2020 14 / 48



No Vaccine

In the absence of a vaccine, and with Sy = N — 1, the way to control the spread
of the epdiemic is to reduce Ry =~ (/7.

The parameter 7 is fixed by biology, so we can only hope to control 5.

Recall, dS/dt = —(8/N)SI. Hence, for a contagious disease 8 can be
decomposed as

B = ¢ x p = (Number of contacts of an individual per unit time)
x (Probability that a contact leads to infection)

Thus, the epidemic can be controlled by:
@ Reducing contacts (¢ \),
e Making contacts safer (p )
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Extended Model for COVID-19

Part 2: We introduce an extended compartmental model for SARS-CoV-2 (virus)
/ COVID-19 (disease). The virus has multiple timescales, which means the basic

SIR model needs more compartments:
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Diagnostic Compartments
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Equations
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Set-up

‘Patient zero' introduced at t = —t,f fget:

S(t = —tofpset) = N —1=(4.9x 10° — 1) — 1, Ip(t = ~toffset) = 1.
Then, t = 0 is the day of the first recorded case of COVID-19 in Ireland (Feb
20th).

@ Model fitted to the ‘first wave': from February 29th 2020 (¢; = 0) and
ending on May 17th 2020 (¢; = 76)
@ Transmission probabilities re-scaled: 8y = cqp, ia = qa/qp, is = qs/qp-

o Effective value of 3 (=/;) introduced to take account of public
health-interventions:

/BOa .7<13
B; =4 B1, 13<j<28,
Ba, j > 28.

COVID-19 Elimination 30th September 2020
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Optimization

Ponathy dugnchion:

n 2 n
A= 0 [Crroer(t)] - W [Coanalt)] } + 3 m(
i=0 =0

deodel ) (dCdata )
-In
dt t dt t

2
o . dD, dD,
+ Z In [Dinoder(t;)] —In[Daaca(t;)] } + E ln( model ): - ln( data) .

J=ip1 J=ip2 dt i dt

Ophmatehion Ut pava welens~

Ao =min [A (tofsset, Bos 81,82, [, 9. TETIP,T1,TD, 1A, i5)]

* Bounds on the search space are obtained from medical literature on COVID-19
*  Optimization performed using MATLAB's simulated annealing method:

o

o oo

o

Initial guess
New draws; each draw involves solving the ODE system for selected parameters

Anew draw is accepted if it lowers Delta,

A new draw is accepted with a certain probability if it increases Delta, this is to stop the
algorithm getting stuck in local minima

Standard convergence criteria, these are checked for robustness
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Results
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Confidence Intervals

Confidence intervals on the results are generated by bootstrapping. Significant
spread in values, especially for fraction asymptomatic.

Table A.3: Optimal parameter values corresponding to the optimization problem (6). The reported confidence intervals use

Mootstrap = 1000.

toffset Bo b1 B2 f g TE
(days) | (days)™ | (days)™ | (days)™* (days)
Lower Bound | 7.9057 | 1.4679 0.9524 0.3205 0.0500 | 3.6257
Best Estimate | 9.9831 1.4695 1.1009 0.3576 0.0599 | 3.7486
Upper Bound | 9.9936 1.6961 1.2201 0.3908 0.0614 | 3.7976

Tip TI ™D T ia is

Lower Bound | 1.1394 | 1.9160 | 14.9812 | 3.3146 | 0.3303 | 0.2741

Best Estimate | 1.2938 | 2.1738 | 15.2210 | 3.8911 | 0.4096 | 0.3405

Upper Bound | 1.3841 | 2.4337 | 16.5007 | 5.2055 | 0.4758 | 0.4367
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Ry for a multi-compartment model

Ry can be computed for a multi-compartment model, in analogy with a simple
SIR model. But now it is more difficult:

s Sx= J &x
at T
a rovad Xo_ (N: O/ 0/ )
€
1 s§e SSI MV"\LQ—
—_— SI\ = K
2\ : oo fi . 95 _ss T
ST,,\ - d ‘ar 7
8.1,\ 2
Q" V) J:r,
l:\
Qd: m ux Spec (FV‘)
For the model, the matrices F and V are given by:
0 Bo foia fois s 0 0
0 0o 0 0 0 -(-Hrp ot

hence

2
Ro(Bo.is) = Bo (m»wm +f(1—f)zsl).
TP
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Ry for a multi-compartment model — Results
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Confidence Intervals

Table A.4: Estimates of the basic reproduction number and the effective reproduction number under various NPIs, with lower

and upper bounds generated from the intervals in Table A.3.
Tntervention ] is Ro(B,is) Ro(B,is) Ro(B.is)
(Best Fit) | (Best Fit) | (Lower Bound) | (Best Fit) | (Upper Bound)
No interventions, 1.4695 1 2.7664 T 34295 § 1.0079 n~

basic reproduction number

Case isolation, 1.4695 0.3405 2.0798 2.6945 3.7549 Eﬁrmcj

no other interventions
Case isolation, 1.1009 0.3405 1.2880 2.0187 2.7204

schools and universities are closed,
mass gatherings are banned
Case isolation, 0.3576 0.3405 T 04847 | 06557 | | 08324 |
all non-essential services
and industries closed,
travel restrictions

\/a ccinabion 5— :
WM-ccr} .
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Optimal Control Theory

Part 3: We look out Optimal Control Theory. Given that NPIs start on Day 13,
we ask, what would have been the optimal sequence of NPIs (‘counterfactual
scenarios’).
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Setup |

We solve the model with the estimated parameters. But now we take:

o ﬂO: te (7toffset>t0]a
o= {50[1 —ul)], L€ (t0,T).

@ u(t) is the effect of introducing non-pharmaceutical interventions to
control the epidemic.

o For example, u(t) = 0.5 corresponds to a 50% reduction in daily contacts at
a population level.

@ This can be expected to carry a commensurate economic cost.
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Setup |l

We are going to specialize to piecewise-constant functions u(t):

The piecewise-constant function u(t) is characterized as follows:

uy, tg<t<ts,
ug, ts1 <t<tgn,
u(t) = l2, s1 52

Up, tsp-1<t<T.

Here, n is an integer (one or greater), uj,---, u, are real numbers between zero and one, and ts1,-, {5 -1
are switching times (real numbers between to T, such that tg < -te o1 <T).

The time T is taken to be a fixed time horizon of one year. Justification:
expected development time for a vaccine.
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Cost Function

We quantify the cost to the economy of implementing a sequence
{u1,- -+ ,un} of controls by the cost function

with the convention that 5o = t9 and t,,, = T". As such, J is a function of
the real variables {uy, - ,un,ts1, -+ s tsn—1}

Idea:
@ Non-pharmaceutical interventions (NPIs) reduce daily contacts
@ Assume that economic activity is proportional to these contacts.
@ Hence, a linear relationship between the level of the NPIs and the cost to the
economy

@ Intense NPIs may carry a disproportionate cost to the economy, linearity may
break down as u; — 1. So we will look at a quadratic cost function as well.
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State Constraints

We furthermore insist on an optimal control problem where human life is put on a very high footing. As
such, we propose the following additional constraints on the optimal control problem:

kls(t) < B, te (—tofsset, T)

In this context, the positive constant & may be thought of as the percentage of symptomatic cases who
require a hospital bed (or a bed in ICU) at time ¢, and the positive constant B represents a corresponding
capacity limit (number of hospital beds, number of ICU beds, etc.). Finally, we impose the additional

constraint dl

d—ts <0, t=T,
which is true if and only if TI_FI,(I - PIp- TI—IIS <0 at ¢=T. This rules out any ‘optimal’ strategy in
which a large epidemic peak would occur just beyond the horizon at t = T. The exclusion of such strategies
is desirable for public-health reasons.
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Optimal Control Problem

Under the epidemic modelled by the SEIR model, over a fixed time horizon T,
compute the minimizer of

n
min min E Ui(tg; — s iz
nZl{ Uy, [ i(bsg = tai 1)] }’

sly“'yts,nfl i=1

subject to the given state constraints.

Theory:

@ Optimal Control problems are usually solved with the Pontryagain Maximum
Principle (PMP).
Difficult to apply with state constraints.
Solution with state constraints typically involves ‘bounardy arcs', where the
control u(t) guides the solution along the boundary of the state constraint.
Unimaginable in a public-health context.
So the piecewise constraint function u(t) is preferred, combined with a
numerical optimization approach.
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Methodology

@ We solve the SEIR model for an arbitrary sequence of controls
{u17 e ,Un,tsl, e 7ts,nfl}-

@ In Matlab / Octave programming we execute the following command:
penalty=ode_solve_seir(u);

Here, ode_solve_seir is a Matlab / Octave ODE45 solver which takes in
the input w = {u1, - ,Un,ts1, - ,ts,n—1}, solves the SEIR model out to
the final time ¢ = T, and returns the penalty function J.

@ The state constraints are taken into account by adjoining to the penalty
function an additional term

[tanh (0.016 max(Ig) — 300

0.1 ) + 1} [0.016 max(Is) — 300]°

- [tanh (W) + 1] [(dIs/dt)—7]*. (1)
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Methodology — Hierarchy of function calls

@ We next call built-in optimization algorithms in Matlab / Octave which
optimize the penalty function penalty=ode_solve_seir(u) ; over the set of
all feasible controls {w1,- -+, up, te1, - ,tsn-1}

@ We use meta-heuristic algorithms for finding global optima: simulated
annealing and particle-swarm optimization.

@ Each has independent stopping criteria — we vary these to check for
robustness.

@ Convergence to the global optimum is guaranteed theoretically but we can't
guarantee that the numerical method has reached the global optimum — but
we have done our best!

@ Program structure where functions can be called hierarchically is very
powerful and makes coding easy. Repository:

https://github.com/ainebyrne/0NaraighByrne COVID19_ optimal_
control.
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Presentation of Results

Presentation of results: systematically look at n = 2 controls (one switch),
n = 3 controls (two switches), ...

@ n = 2 is revealing because optimization algorithms can be compared to a
brute-force approach (small parameter space).

o Key parameter of interest is Umaz, 0 < u(t) < Umaz < 1 — we impose a
cutoff u(t) < Uma. and see how the optimal strategy depends on that cutoff.

@ This parametrizes the maximum intensity of NPIs that are socially acceptable.
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Another cutoff

In passing — we impose another cutoff, namely F' < 0 if I; < 1. This bridges the
gap between the continuum SEIR model and the discrete nature of the population.

This introduces a jump discontinuity in the model, which might be important.
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Results: n = 2
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Plot of J,,,;n, as a function of umaz, with n = 2. The plot range is umaz € [0.61,0.8].
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Crossover

The crossover occurs as the optimal

strategy switches from elimination to

mitigation.
MIT\C A6 N /
Miving wite g cire ELimivAToN
CosT s Twanz 204 Cid ¢ Tmin= SLlk @ Unneyz 09
2 Cro%w @ 2
250 1V Capeciy Unoy 0. F W, > W
200 (> 15 Usz ©
= 150 o Bung-bang contet®
100 u\ = 0.0 =
K= 0.01b Uy =0-408
50 Swikle: &- &, =256 daugd 05
0 uw=08
100 200 300 0
wt 0 100 200 300
0 t-t
TThy = \2 Jo-—)A 0

Elimination is almost 4 times cheaper than mitigation.
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Discussion

@ For Umqs = 0.7 the optimal control is ‘bang-bang’ — on at the max and then
off. This is common in optimal control problems with a linear cost
function.

@ For Upmq, < 0.7 the optimal trajectory reaches the boundary of the state

~

constraint — similar to a ‘boundary arc’ in the theoretical approach.
@ The bang-bang control with w4, = 0.7 is considerably cheaper.
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Validation via brute-force approach
Fix ts1 but otherwise vary u; and usy to produce

D (uy,us) = penalty([ug, us,ts; = fixed]).

Plot ®(u1,us), marking in the state constraints:

1 350
300
0.8
250
0.6 200
:N
0.4 150
100
0.2
50
0 0
0 02 04 0.6 0.8 )
% (fm%{‘;. (a) te1 —to ~0.198 x 365 Days g
(b) ts1 —to ~0.702 x 365 Days
—_——
OpA mal sikcling Fune for Ophamal Sbu)/tl.,/y Hre
Umax behean 0.6/ and 0. F Sfov Vi = 6. 3

Location of minima agrees with numerical simulated annealing.
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Multiple Switches

With multiple switches, the cheapest option is still elimination, but the crossover
occurs at much higher values of u;,4,, meaning both options become comparable:

Crossonder v edw i
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Figure 8: Plot of Jy,n as a function of @maz, with n > 2.
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Quadratic Penalty Function

With a quadratic penalty function, elimination is still the cheaper option, but the
crossover moves to even higher values of u,q::

0.8

140
120 o-o'e.
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Figure 11: Plot of Jy:n as a function of u,
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Mitigation Strategies revisited

@ The mitigation strategies are prone to ‘overshoot’: a small deviation in the
controls leads to large departures from the state constraints.
@ Due to the exponential growth away from the I = 0 unstable fixed point in

the model Ry > 1.

@ Concerning from a public-health perspective.
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Comparison between counterfactual optimal strategy and

reality
@ In Ireland, NPIs ramped up in mid-march, starting on March 13th with school
closures and culminating on March 29th with ‘stay-at-home orders’.
@ In reality, it would have been better to implement the maximum-intensity
NPIs from the very beginning (feasibility?).
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g ) Upax=07 . ) oy 5 n /
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8 10 o
0
2
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10°
0 100 200 300 0 100 200 300

t—to tty

(a) Confirmed Cases (b) Deaths

Figure 6: Time evolution of the outbreak for three scenarios: disease outbreak with controls umar = 0.7 and
Umaz = 0.8 and also, disease outbreak with no controls. The —o curves show the actual course of the outbreak

over the time interval for which the model is fitted to the data.
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Continuation

Reality: On day t — ¢ty = 65 there were 1547 deaths.
Elimination strategy: On the same day there would have been 57 deaths.

The difference is the intensity of the NPIs at the beginning of the outbreak.

Notice also, the reality is a very strange mixture of mitigation and elimination
— understandable, as public-health doctors were only learning about the
disease at the start of the year.
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A very simple lesson

@ From the data: Maximum-intensity NPIs at the start of an epidemic saves
lives and is a cheaper option.

@ Reason is exponential growth — early-stage NPIs for COVID-19 in Ireland in
March 2020 still had Rcyy > 1, hence exponential growth in cases and
deaths.
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A more subtle lesson

Suppose | eliminate the disease (Ry — Rcsy) as soon as | hear about patient zero
(I =1). Suppression in an SIR model: the time taken to drive I from I =1 to
I=1/2is

In2
tH=——— R.rp < 1.
V(1 = Regy)’ <
If instead | wait until there are n active cases before introducing NPIs, elimination
time is: In(2n)
n(2n
t, = ———F— R.rp < 1.
" (1= Reypy)’ </

If | wait until n = 1000 acrive cases, then the difference is t,,/t; = 10.97, i.e. 11
times longer.

The commensurate cost to the economy is 11 times greater.

And, going back to lives and not money, as the number of deaths is proportional
to the number of infections,

The number of deaths is (at least) 1000 times greater..
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Summary

@ In the absence of therapies or vaccines, a population-level reduction in daily
contacts is one of only a very limited number of available measures to control
the outbreak of a contagious disease.

@ Reduction in contacts costs money.

@ We have used optimal-control theory to minimize this cost, while controlling
the spread of the epidemic such that ICU demand never exceeds capacity.

@ Model calibrated for COVID-19 epidemic in Ireland (‘first wave': March-May
2020).

@ Results of counterfactual scenarios: elimination of the virus is the
cheapest option, i.e. cheaper than mitigation.

@ Result makes intuitive sense — suppress exponential growth before the
numbers get out of control. Easiest at the very beginning of the outbreak
when case numbers are low.
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Take-home message

Elimination is best but it may be infeasible (??). Instead, | would prefer the
following take-home message:

@ Exponential growth is difficult to intuit!

@ But from the simple argument and the SIR model, postponing a ‘lockdown’ is
costly in terms of blood and treasure.
> The cost in treasure scales logarithmically with the number of active cases at
lockdown.
> The cost in blood scales linearly.
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