
An elimination strategy for COVID-19 is the cheapest
option
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Aim of Talk

In this talk, we formulate an optimal-control problem to determine what is in
some sense the ‘best’ way to control the outbreak of COVID-19 in Ireland:

Formulate a basic ODE model, fit it to data from the ‘first wave’
(March-May 2020)

Formulate an optimal-control problem, including state constraints

Solve the optimal-control problem numerically.

The numerical solutions show that elimination is the cheapest way to deal with
the COVID-19 outbreak.
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Structure of talk

Crash course in Compartmental Models of Mathematical Epidemiology (SIR)

Compartmental Model for COVID-19

Optimal Control Theory
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Caveats

A lot of discussion / speculation about COVID-19 by ill-informed people.

I don’t want to add to it.

I will speak about mathematical models only.

Its applicability can be debated by real experts...
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... but here is what an elimination strategy looks like
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SIR model
Part 1: A brief review of compartmental models, starting with the simplest SIR
model.

Key assumption: homogeneous population.

Other assumptions: no natural births/deaths on the timescale of the epidemic.
The model is then just ‘conservation of people’:
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SIR – Equations

With these assumptions, the model equations read:

dS

dt
= −αSI,

dI

dt
= αSI − γI,

dR

dt
= γI.

The equations conserve the total number of people, S + I +R = N = Const..
The initial condition for an outbreak is:

S(0) = S0, I(0) = N − S0, R(0) = 0.

With S0 = N − 1 and I(0) = 1 we have the idea of ‘patient zero’.
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SIR – Equations

The constant γ is a rate (1/time). We write α = β/N so that β is also a genuine
rate:

dS

dt
= − β

N
SI,

dI

dt
=

β

N
SI − γI,

dR

dt
= γI.

These equations can be reduced down to a single ODE:

1

γ

du

dt
=
β

γ
− β

γ

N

S0
e−u − u, u =

β

γ

R

N
.
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SIR – Equations
The model ODE can again be rescaled to give:

du

dτ
=
N

S0
− 1

R0
u− e−u, τ = βS0t/N.

This is an autonomous ODE, du/dτ = f(u;S0/N,R0). Notice, S0/N < 1. A
fixed-point analysis yields two scenarios:
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Basic Reproductive Number – Formula
The parameter R0 is the dreaded basic reproduction number:

R0 =
βS0

γN
.
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Basic Reproductive Number – Intuitive understanding
The familiar meaning of R0 as ‘the number of individuals that an infected
person will go on to infect subsequently’ can by obtained integrating the
I-compartment across a time interval ∆t:

I(t+ ∆t)− I(t) = γ∆t

[
β

γ

S(t)

N
− 1

]
I(t).

In the early stages of the outbreak, when the susceptible population is not
depleted, S(t) ≈ S0, hence

I(t+ ∆t)− I(t) = γ∆t

[
β

γ

S0

N
− 1

]
I(t).

An infections person remains infectious for time γ−1. Hence, take γ∆t = 1 to get

I(t+ ∆t)− I(t) ≈
[
β

γ

S0

N
− 1

]
I(t) = (R0 − 1)I(t),

hence I(t+ ∆t) = R0I(t). This gives the required interpretation of R0: I(t)
individuals infect R0I(t) further individuals.
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Early-stage Exponential Growth, Late-stage burn-out

From the previous slide, in the early stage of the outbreak when S(t) ≈ S0, we
have

I(tn) = Rn
0 I(0), tn = n∆t.

In the late stages of the outbreak, there are not very many people left to infect,
and the epidemic burns out. Not everybody catches the disease:
S∞/N = 1− (R∞/N), where

R∞
N

=
u∗
R0

S0

N
,

and where u∗ is the fixed point of du/dτ = f(u;S0/N,R0).

The fact that not everybody catches the disease can be thought of as ‘burn-out’.
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Late-stage burn-out, continued
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Vaccination Strategy

Suppose a vaccine for the disease exists. To control a future outbreak, we reduce
the number of susceptible individuals from S0 = N − 1 to

S0 = N − 1︸︷︷︸
Patient Zero

− fN︸︷︷︸
Fraction of population vaccinated

Here, 0 < f < 1. Starting-value for R0 is:

R0 =
β

γ

S0

N
=
β

γ

N − 1

N
≈ β/γ.

After mass vaccination, the new value is:

Reff =
β

γ
(1− f).

To control the disease, we require a threshold value Reff = 1 (ideally Reff < 1).
Therefore, the fraction of the population that needs to be vaccinated is
f = 1− (1/R0). When this number of people has been vaccinated we say herd
immunity has been reached.
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No Vaccine

In the absence of a vaccine, and with S0 = N − 1, the way to control the spread
of the epdiemic is to reduce R0 ≈ β/γ.

The parameter γ is fixed by biology, so we can only hope to control β.

Recall, dS/dt = −(β/N)SI. Hence, for a contagious disease β can be
decomposed as

β = c× p = (Number of contacts of an individual per unit time)

× (Probability that a contact leads to infection)

Thus, the epidemic can be controlled by:

Reducing contacts (c↘),

Making contacts safer (p↘)
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Extended Model for COVID-19
Part 2: We introduce an extended compartmental model for SARS-CoV-2 (virus)
/ COVID-19 (disease). The virus has multiple timescales, which means the basic
SIR model needs more compartments:
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Diagnostic Compartments
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Equations
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Set-up

‘Patient zero’ introduced at t = −toffset:

S(t = −toffset) = N − 1 = (4.9× 106 − 1)− 1, IP (t = −toffset) = 1.

Then, t = 0 is the day of the first recorded case of COVID-19 in Ireland (Feb
29th).

Model fitted to the ‘first wave’: from February 29th 2020 (tj = 0) and
ending on May 17th 2020 (tj = 76)

Transmission probabilities re-scaled: β0 = cqp, iA = qA/qP , iS = qS/qP .

Effective value of β (=βj) introduced to take account of public
health-interventions:

βj =


β0, j < 13

β1, 13 ≤ j < 28,

β2, j ≥ 28.
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Optimization
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Results
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Confidence Intervals

Confidence intervals on the results are generated by bootstrapping. Significant
spread in values, especially for fraction asymptomatic.
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R0 for a multi-compartment model
R0 can be computed for a multi-compartment model, in analogy with a simple
SIR model. But now it is more difficult:
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R0 for a multi-compartment model – Results
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Confidence Intervals
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Optimal Control Theory

Part 3: We look out Optimal Control Theory. Given that NPIs start on Day 13,
we ask, what would have been the optimal sequence of NPIs (‘counterfactual
scenarios’).
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Setup I

We solve the model with the estimated parameters. But now we take:

β(t) =

{
β0, t ∈ (−toffset, t0],

β0[1− u(t)], t ∈ (t0, T ].

u(t) is the effect of introducing non-pharmaceutical interventions to
control the epidemic.

For example, u(t) = 0.5 corresponds to a 50% reduction in daily contacts at
a population level.

This can be expected to carry a commensurate economic cost.
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Setup II

We are going to specialize to piecewise-constant functions u(t):

The time T is taken to be a fixed time horizon of one year. Justification:
expected development time for a vaccine.
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Cost Function

We quantify the cost to the economy of implementing a sequence
{u1, · · · , un} of controls by the cost function

J =

n∑
i=1

ui(ts,i − ts,i−1),

with the convention that ts,0 = t0 and ts,n = T . As such, J is a function of
the real variables {u1, · · · , un, ts1, · · · , ts,n−1}.

Idea:

Non-pharmaceutical interventions (NPIs) reduce daily contacts

Assume that economic activity is proportional to these contacts.

Hence, a linear relationship between the level of the NPIs and the cost to the
economy

Intense NPIs may carry a disproportionate cost to the economy, linearity may
break down as ui → 1. So we will look at a quadratic cost function as well.
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State Constraints
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Optimal Control Problem

Under the epidemic modelled by the SEIR model, over a fixed time horizon T ,
compute the minimizer of

min
n≥1

{
min

u1,··· ,un,
ts1,··· ,ts,n−1

[
n∑

i=1

ui(ts,i − ts,i−1)

]}
,

subject to the given state constraints.

Theory:

Optimal Control problems are usually solved with the Pontryagain Maximum
Principle (PMP).

Difficult to apply with state constraints.

Solution with state constraints typically involves ‘bounardy arcs’, where the
control u(t) guides the solution along the boundary of the state constraint.

Unimaginable in a public-health context.

So the piecewise constraint function u(t) is preferred, combined with a
numerical optimization approach.
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Methodology

We solve the SEIR model for an arbitrary sequence of controls
{u1, · · · , un, ts1, · · · , ts,n−1}.
In Matlab / Octave programming we execute the following command:

penalty=ode solve seir(u);

Here, ode solve seir is a Matlab / Octave ODE45 solver which takes in
the input u = {u1, · · · , un, ts1, · · · , ts,n−1}, solves the SEIR model out to
the final time t = T , and returns the penalty function J .

The state constraints are taken into account by adjoining to the penalty
function an additional term[

tanh

(
0.016 max(IS)− 300

0.1

)
+ 1

]
[0.016 max(IS)− 300]

2

+

[
tanh

(
(dIS/dt)t=T

0.1

)
+ 1

]
[(dIS/dt)t=T ]

2
. (1)
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Methodology – Hierarchy of function calls

We next call built-in optimization algorithms in Matlab / Octave which
optimize the penalty function penalty=ode solve seir(u); over the set of
all feasible controls {u1, · · · , un, ts1, · · · , ts,n−1}.
We use meta-heuristic algorithms for finding global optima: simulated
annealing and particle-swarm optimization.

Each has independent stopping criteria – we vary these to check for
robustness.

Convergence to the global optimum is guaranteed theoretically but we can’t
guarantee that the numerical method has reached the global optimum – but
we have done our best!

Program structure where functions can be called hierarchically is very
powerful and makes coding easy. Repository:

https://github.com/ainebyrne/ONaraighByrne COVID19 optimal

control.
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Presentation of Results

Presentation of results: systematically look at n = 2 controls (one switch),
n = 3 controls (two switches), ...

n = 2 is revealing because optimization algorithms can be compared to a
brute-force approach (small parameter space).

Key parameter of interest is umax, 0 ≤ u(t) ≤ umax ≤ 1 – we impose a
cutoff u(t) ≤ umax and see how the optimal strategy depends on that cutoff.

This parametrizes the maximum intensity of NPIs that are socially acceptable.
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Another cutoff

In passing – we impose another cutoff, namely F ← 0 if Ij < 1. This bridges the
gap between the continuum SEIR model and the discrete nature of the population.

This introduces a jump discontinuity in the model, which might be important.
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Results: n = 2
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Crossover
The crossover occurs as the optimal strategy switches from elimination to
mitigation.

Elimination is almost 4 times cheaper than mitigation.

COVID-19 Elimination 30th September 2020 37 / 48



Discussion

For umax ? 0.7 the optimal control is ‘bang-bang’ – on at the max and then
off. This is common in optimal control problems with a linear cost
function.

For umax > 0.7 the optimal trajectory reaches the boundary of the state
constraint – similar to a ‘boundary arc’ in the theoretical approach.

The bang-bang control with umax ? 0.7 is considerably cheaper.
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Validation via brute-force approach
Fix ts1 but otherwise vary u1 and u2 to produce

Φ(u1, u2) = penalty([u1, u2, ts1 = fixed]).

Plot Φ(u1, u2), marking in the state constraints:

Location of minima agrees with numerical simulated annealing.
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Multiple Switches
With multiple switches, the cheapest option is still elimination, but the crossover
occurs at much higher values of umax, meaning both options become comparable:
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Quadratic Penalty Function

With a quadratic penalty function, elimination is still the cheaper option, but the
crossover moves to even higher values of umax:
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Mitigation Strategies revisited
The mitigation strategies are prone to ‘overshoot’: a small deviation in the
controls leads to large departures from the state constraints.
Due to the exponential growth away from the I = 0 unstable fixed point in
the model R0 > 1.
Concerning from a public-health perspective.
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Comparison between counterfactual optimal strategy and
reality

In Ireland, NPIs ramped up in mid-march, starting on March 13th with school
closures and culminating on March 29th with ‘stay-at-home orders’.

In reality, it would have been better to implement the maximum-intensity
NPIs from the very beginning (feasibility?).
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Continuation

Reality: On day t− t0 = 65 there were 1547 deaths.

Elimination strategy: On the same day there would have been 57 deaths.

The difference is the intensity of the NPIs at the beginning of the outbreak.

Notice also, the reality is a very strange mixture of mitigation and elimination
– understandable, as public-health doctors were only learning about the
disease at the start of the year.
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A very simple lesson

From the data: Maximum-intensity NPIs at the start of an epidemic saves
lives and is a cheaper option.

Reason is exponential growth – early-stage NPIs for COVID-19 in Ireland in
March 2020 still had Reff > 1, hence exponential growth in cases and
deaths.
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A more subtle lesson
Suppose I eliminate the disease (R0 → Reff ) as soon as I hear about patient zero
(I = 1). Suppression in an SIR model: the time taken to drive I from I = 1 to
I = 1/2 is

t1 =
ln 2

γ(1−Reff )
, Reff < 1.

If instead I wait until there are n active cases before introducing NPIs, elimination
time is:

tn =
ln(2n)

γ(1−Reff )
, Reff < 1.

If I wait until n = 1000 acrive cases, then the difference is tn/t1 = 10.97, i.e. 11
times longer.

The commensurate cost to the economy is 11 times greater.

And, going back to lives and not money, as the number of deaths is proportional
to the number of infections,

The number of deaths is (at least) 1000 times greater..
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Summary

In the absence of therapies or vaccines, a population-level reduction in daily
contacts is one of only a very limited number of available measures to control
the outbreak of a contagious disease.

Reduction in contacts costs money.

We have used optimal-control theory to minimize this cost, while controlling
the spread of the epidemic such that ICU demand never exceeds capacity.

Model calibrated for COVID-19 epidemic in Ireland (‘first wave’: March-May
2020).

Results of counterfactual scenarios: elimination of the virus is the
cheapest option, i.e. cheaper than mitigation.

Result makes intuitive sense – suppress exponential growth before the
numbers get out of control. Easiest at the very beginning of the outbreak
when case numbers are low.

COVID-19 Elimination 30th September 2020 47 / 48



Take-home message

Elimination is best but it may be infeasible (??). Instead, I would prefer the
following take-home message:

Exponential growth is difficult to intuit!

But from the simple argument and the SIR model, postponing a ‘lockdown’ is
costly in terms of blood and treasure.

I The cost in treasure scales logarithmically with the number of active cases at
lockdown.

I The cost in blood scales linearly.
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