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Introduction

Industrial Driers are a key part of the food processing industry:

A product is heated and the moisture is evaporated.

Heating the product is expensive. Large amounts of energy are required to
overcome the latent heat of the water and to produce evaporation – energy
intensive.

The dried product has to meet certain constraints on the moisture content
and temperature for quality control.

The drying must therefore be controlled to minimize energy consumption
while at the same time maximizing product quality.

This could be a problem for Optimal Control Theory
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Disc Drier
Although we will work with abstract models, the machine we have in mind is the
Disc Drier.

Drum diameter ∼ 1 m, length ∼ 7 m.

Moist product in one end, dry product out the other.

Product heated by contact with heated discs (indirect contact, steam),
product pumped along length of drier.

Rotating discs have ‘stirrers’ to agitate product (mixing).

Evaporation of moisture into gas stream and there to a collector.
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Strategy of Project / Plan of Talk

1 Develop very simple toy model of industrial heating, hence:
I Numerical solutions,
I Analytical solutions,
I Analytical Optimal Control Theory
I Numerical Optimal Control Theory
I Functional Analysis Context

2 Develop a more detailed model of industrial drier... still probably not yet
usable, but with:

I More Physics (‘three-equation model’),
I Evaporation,
I Numerical Solutions, Optimal Control Theory

3 Optimal Control establishes a ‘target’; final part of project is to investigate
more practical control algorithms, and determine how close they are to
optimal.
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Simple Mathematical Model
We start by looking at a simple mathematical model (SMM) of industrial heating,
which is a kind of ‘Newton’s Law of cooling with advection’, with T as product
temperature:

∂T

∂t
+ u0

∂T

∂x
= k [q(t)− T ] , x ∈ (0, `], t > 0.

A model of an industrial process with an inlet:

T (x = 0, t) = Tinlet(t)

a treatment q(t), and an outlet, the outlet is computed from T (x = `, t). There
is also an initial condition, T (x, t = 0) = Tinit(x).

Crucially, u0 > 0 is the advection velocity as the product is moved through the
heater.

The goal will be to choose a treatment q(t) to maintain the outlet
temperature T (x = `, t) at a target state – hence, Optimal Control Theory.
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Analytical and Numerical Solutions

We first try to understand the model by looking at solutions.

Analytic solution via Laplace Transforms / Method of Characteristics:

T (x, t) =

{
Tinit(x− u0t)e−kt + I(t), u0t < x,[
Tinlet

(
t− x

u0

)
− I

(
t− x

u0

)]
e−kx/u0 + I(t), u0t > x,

with particular integral:

I(t) = e−kt
∫ t

0

ekt
′
[k q(t′)] dt′.

Numerical solution via second-order upwind scheme:

Tn+1
i − Ti

∆t
+ u0

(
3Tni − 4Tni−1 + Tni−2

2∆x

)
= k [q(tn)− Tni ] .
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Sample Results

Sample forcing term:

q(t) = [50 + 5 sin(2πt)] ◦C.

Sample inlet condition:

Tinlet(t) = [100 + 10 sin(2πt)] ◦C.

Inlet condition: Tinit(x) = 100◦C.

Parameters:
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Analytical Optimal Control
Set T (`, t) = T∗ in the analytical solution. For t < `/u0:

T∗ +
u0
k
T ′init(`− u0t)e−kt + q(0)e−kt = q(t), t < `/u0.

For t > `/u0:

T∗−Tinlet(t−`/u0)e−k`/u0− 1

k
T ′inlet(t−`/u0)e−k`/u0 +q(t− `/u0)e−k`/u0 = q(t).

Unknown quantity q(0).

If Tinit = T0 = T∗, then q(0) can be taken as zero. Then, first equation has
has a closed-form solution, and second equation can be solved recursively.

A possible jump discontinuity at the first residence time t0 = `/u0:

q(t−0 ) = T∗ +
u0
k
T ′init(0)e−kt0 ,

q(t+0 ) = T∗ − Tinlet(0)e−kt0 − 1

k
T ′inlet(0)e−kt0 .
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Numerical Optimal Control I

Introduce penalty function:

J(T, q) = 1
2

∫ τ

0

[T (`, t)− T∗]2 dt.

Adjoin to the penalty function the constraint:

L(T, q, ψ) = 1
2

∫ τ

0

[T (`, t)− T∗]2 dt+

∫ τ

0

dt

∫ `

0

dx

[
∂T

∂t
+ u0

∂T

∂x
− k (q(t)− T )

]
ψ.

Here, ψ has the interpretation of the Lagrange multiplier.
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Numerical Optimal Control II

Make small variations in temperature T and control q:

δL =

∫ τ

0

[T (`, t)− T∗] δT (`, t)dt−
∫ τ

0

dt

∫ `

0

kψδq dx

+

∫ τ

0

∫ `

0

[
−∂ψ
∂t
− u0

∂ψ

∂x
+ kψ

]
δT dx+

∫ `

0

[ψδT ]t=τ dx+

∫ τ

0

[u0ψδT ]x=` dt.

Identify the adjoint problem:

−∂ψ
∂t
− u0

∂ψ

∂x
+ kψ = 0, x ∈ [0, `),

with outlet condition

ψ(`, t) = −(1/u0)[T (`, t)− T∗],

and terminal condition ψ(x, τ) = 0.
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Numerical Optimal Control III

Thus,

δL = −
∫ T

0

dt δq

∫ `

0

kψ(x, t)dx.

Indeed,
δL

δq
(t) = −

∫ `

0

kψ(x, t)dx.

Suggestive of algorithm:

Algorithm 1 Steepest-Descent Algorithm for the SMM

1: Initialize the control using some initial guess q(t) = q0(t).
2: Solve SMM to the final time τ , compute T (`, t) for each t ∈ [0, τ ].
3: Solve the adjoint problem.

4: Update the control q(t) ← q(t) + λ
∫ `
0

(kψ) dx, where λ is a small positive
parameter.

5: Repeat steps 2–4 until L is sufficiently small.
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Numerical Optimal Control – Results

Excellent agreement, apart from at jump
discontinuity (numerical diffusion).

Plot showing the value of the cost func-
tion J(T, q) at each iteration using the
Barzelai–Borwein method.
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Mathematical Setting I
We let T (x, t) ∈ Y and q(t) ∈ U . We let e(T, q) = ∂tT + u0∂xT − k(q − T ) ∈ Z.
As e is linear in T and q, this can also be identified with a linear problem,

e(T, q) = AT +Bq, A ∈ L(Y, Z).

Here, Y and Z are appropriate Banach spaces, L(Y, Z) is the space of linear
operators from X to Y , and U is an appropriate Hilbert space.

Hence, the weak form of the SMM:

e(T, q) = 0 in Z,

where e : Y × U → Z is defined with respect to its action on test functions:

〈ψ, e(T, q)〉Z∗,Z =

∫ τ

0

dx

∫ `

0

(−T∂tψ) dx+

∫ τ

0

dx

∫ `

0

u0(−T∂xψ) dx

−
∫ τ

0

dx

∫ `

0

k(T − q)ψ dx+

∫ τ

0

u0 [T (`, t)ψ(`, t)− T (0, t)ψ(0, t)] dt

+

∫ `

0

[T (x, τ)ψ(x, τ)− T (x, 0)ψ(x, 0)] dx,

for all test functions ψ ∈ Z∗.
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Mathematical Setting II

Lagrangian: L : Y × U × Z∗ → R, where

L(T, q, ψ) = J(T, q) + 〈ψ, e(T, q)〉Z∗Z

(same as before!). The first-order optimality conditions in the direction
(δT, δψ, δq) are:

〈JT (T, q), δT 〉Y ∗,Y + 〈ψ, eT (T, q)δT 〉Z∗,Z = 0 Adjoint Problem

〈δψ, eT (T, q)δT 〉Z∗,Z = 0 Constraint

〈Jq(T, q), δq〉U∗,U + 〈ψ, eq(T, q)δq〉Z∗,Z = 0 Optimality Condition,

δJ/δq = 0
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Mathematical Setting III
If, instead, we view the solution T as a function of the forcing q, T (q), we obtain
the reduced cost function

Ĵ(q) = J(T (q), q) = J(T (q), q) + 〈ψ, e(T (q), q)〉Z∗,Z = L(T (q), q, ψ).

We can differentiate w.r.t. q to obtain:

〈Ĵ ′(q), δq〉U∗,U = 〈Lq(T (q), q, ψ(q)), δq〉U∗,U ,
= 〈Jq(T (q), q), δq〉U∗,U + 〈ψ(q), eq(T (q), q), δq〉U∗,U ,
= 〈Jq(T (q), q), δq〉U∗,U + 〈eq(T (q), q)∗ψ(q), δq〉U∗,U ,

which is true for all admissible perturbations δq ∈ U .

Riesz Representation Theorem for U , we identify the vector Ĵ ′(q) ∈ U∗ = U :

Ĵ ′(q) = Jq(T (q), q) + eq(T (q), q)∗ψ(q),

which is precisely (δJ/δq)(t) = k
∫ `
0
kψ(x, t)dx.
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〈Ĵ ′(q), δq〉U∗,U = 〈Lq(T (q), q, ψ(q)), δq〉U∗,U ,
= 〈Jq(T (q), q), δq〉U∗,U + 〈ψ(q), eq(T (q), q), δq〉U∗,U ,
= 〈Jq(T (q), q), δq〉U∗,U + 〈eq(T (q), q)∗ψ(q), δq〉U∗,U ,

which is true for all admissible perturbations δq ∈ U .

Riesz Representation Theorem for U , we identify the vector Ĵ ′(q) ∈ U∗ = U :
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General Result

Theory for a more general cost functiond due to Hinze et al.1, for:

min
(T,q)∈Y×U

J(T, q)+ 1
2α‖q‖

2
U , subject to AT+Bq = 0, q ∈ Uad ⊂ U, T ∈ Yad ⊂ Y,

(1)
The following result holds:

Theorem (Hinze et al.)

Suppose the following statements are true:

1 α ≥ 0, Uad ⊂ U is convex, and in the case of α = 0, bounded;

2 Yad ⊂ Y is convex and closed, such that AT +Bq = 0 for at least one set of
functions T ∈ Yad and q ∈ Uad;

3 A ∈ L(Y,Z) has a bounded inverse.

Then, the problem (1) has an optimal solution (Topt, qopt). If α > 0, then the
solution is unique.

1Optimization with PDE Constraints, Hinze, Pinnau, Ulbrich, and Ulbrich (Springer, 2009)
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A more detailed model of an industrial drier

We now look at a more detailed model of an industrial drier, based on the
following concept:
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Mass Balance
We look at the solid stream only, introduce

εs = ρsXs, εl = ρlXl,

where Xs and Xl are volume fractions, with Xs +Xl +Xmoist gas = 1.
Conservation of mass then yields, simply:

∂εs
∂t

+
∂

∂x
(u0εs) = 0,

∂εw
∂t

+
∂

∂x
(u0εw) = −ṁ,

where ṁ is the drying rate, with dimensions of kg/(m3 · s−1), and is a general
function of εs, εl, and temperature. We take u0 to be a constant velocity.

Also useful: ρ = εs + εl, with

∂ρ

∂t
+

∂

∂x
(u0ρ) = −ṁ.

Hence, mass fractions xl = εl/ρ and xs = εs/ρ.
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Energy Balance

Internal energy per unit mass (symbol!):

e =

∑
i=s,l

cp,i(εi/ρ)

 (T − Tref) ,

where

cp,i is the specific heat per unit mass of the ith component,

εi/ρ is a mass fraction,

T is temperature, Tref is a reference temperature.

Energy conservation:
∂ρe

∂t
+

∂

∂x
(u0ρe) = q̇ − ṁhl.

where

q̇ is the power per unit volume in (heating),

ṁhl is the power loss per unit volume (evaporation), hl is the specific latent
heat.
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Three-Equation Model (TEM)

Re-write energy equation as an advection equation, and summarize
three-equation model:

∂εs
∂t

+
∂

∂x
(u0εs) = 0,

∂εw
∂t

+
∂

∂x
(u0εw) = −ṁ,

∂T

∂t
+ u0

∂T

∂x
=

q̇ − ṁ [hl − cp,w(T − Tref)]∑
i=s,l cp,iεi

.
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Drying Rate – Constant Drying Rate

Two regimes. Initial regime – constant drying rate – limited by conditions on
moist gas phase:

ṁ = (m0kc)aV (Y∗(T )− Yair) ,

where

m0kc are constants, aV is the surface area exposed per unit volume,

Y is the absolute humidity of the air (dry gas basis), e.g.
Yair = Mwater vapour/Mdry air,

Y∗(T ) is the a.h. of the air at saturation, at the temperature T .

Y∗(T ) is computed in terms of pressures:

Y∗(T ) = 0.62198

(
pws

pa − pws

)
,

Here, pa is the pressure of the moist gas and pws is the saturation pressure of
water, obtainable from Clausius–Clapheron relations or similar, e.g. Antoin’s
Equation:

pws = 10A−B/(C+T ).
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Drying Rate – Falling Drying Rate

After surface moisture is evaporated, remaining moisture must be drawn from
inside product to surface – diffusion-limited – falling drying rate – Lewis
Equation:

ṁ = kf εs (X −X∗) OR ṁ = kf (εl −X∗εw) .

X∗ is the equilibrium moisture level.

Summarizing,

ṁ =

{
(m0kc)aV (Y∗(T )− Yair) , X > Xc,

kf (εl −X∗εw) , X ≤ Xc.

where kc and kf are rate coefficients and Xc is the changeover moisture level.

We view ṁ as a ‘module’, we work with the falling drying-rate only for
definiteness / mathematical simplicity, other modules can be ‘slotted in’ as
required.
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Power / Typical Parameters

Drier power:

P = A×

∫ `

0

q̇dx,

where A× is ×-sectional area.

With q̇ constant, this gives

q̇ =
P

A×`
.

Typical parameters:
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Sample Results

We solve the TEM in equilibrium with ∂/∂t→ 0. (Numerics: ODE45)

X drops to equilibrium
level over length of drier –
good choice of
parameters.

T dips near inlet
(evaporation / cooling)
and then rises to a
maximum at outlet
(heating).

Observed behaviour in
industrial driers.
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Optimal Control Theory
We know from the SMM how the Optimal Control theory works – apply it now to
the Three-Equation Model (TEM).

1 Initial guess for q(t). Solve the Forward Equations.

2 Solve the adjoint equation system:

− ∂

∂t

 ψs
ψl
ψT

− u0 ∂
∂x

 ψs
ψl
ψT

− JT
 ψs

ψl
ψT

 = 0,

where J is the Jacobian of the TEM at x and t (computationally intensive).

3 Terminal / outlet conditions:

ψs(`, t) = 0, ψl(`, t) = 0, ψT (`, t) = −(1/u0)[T (`, t)− T∗].

4 Update q̇ from step n to step n+ 1:

[q̇(t)]n+1 = [q̇(t)]n + λn
∫ `

0

ψnT (x, t)ηn(x, t)dx,

where η(x, t) = [cp,lεl(x, t) + cp,sεs(x, t)]
−1.
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The inlet conditions are known for all time

The inlet conditions are known over the time horizon of the simulation (= τ), and
the optimal control is scheduled:

εs(x = 0, t) = εs,0,

εl(x = 0, t) = εl,eq(x = 0) [1 + δα sin(ωF t)] ,

T (x = 0, t) = Teq(x = 0) [1 + δα sin(ωF t)] ,

‘eq’ refers to the equilbrium solution (depends only on x),

δα is a perturbation from equilbrium

Monochromatic perturbation – ωF = 2π/(8.5 mins).
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Beat Pattern

Broad power spectrum because of
‘ramp up’ in forcing term
(hyperbolic system).

Secondary peak close to the
primary peak at ωF .

Two neighbouring peaks in Fourier
space – beat.
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Nonlinear Case

Large δα(= 0.4).

Possibility of
q̇ < 0.

Constrain
optimization by
taking
q̇ = (1/2)θ(t)2.

Optimize over
θ(t).

Results
qualitatively
similar to before.
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Complex inlet forcing

εs(x = 0, t) = εs,0,

εs(x = 0, t) = εl,0 [1 + δαRl(t)] ,

T (x = 0, t) = T0 [1 + δαRT (t)] ,

where

Rj(t) =
1

Nmodes

Nmodes∑
k=1

cos

(
2π

kt

Tmax
+ χj,k

)
, j ∈ {l, T},
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Adiabatic Control Algorithm

Algorithm 2 Algorithm for Adiabatic Control

1: if t < `/u0 then
2: Keep q(t) at the initial value q(0);
3: else
4: if If Tupdate seconds have elapsed: then

5: Compute rolling averages εl(x = 0, t) and T (x = 0, t) over preceding
Tavg seconds;

6: Rolling averages used as inlet conditions for the equilibrium model;
7: Compute q̇∗ = Const. such that T (`) = T∗ in the eqm model;
8: Update q̇(t) with q̇∗.
9: end if

10: Repeat Steps 5–8 every Tupdate seconds.
11: end if

Optimal Control Theory allows us to quantify how effective the Adiabatic
Control Algorithm is.
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Adiabatic Control is poor for rapid inlet variations

Skill ∝ J(T, q):

Skill

=

∫ τ

0

[T (`, t)−T∗]2dt.

Low Skill score indicates
good control.

Skill depends on Tavg
and Tupdate.

Expect results to depend
strongly on residence
time TR = `/u0.
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Adiabatic Control is good for slow inlet variations
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Conclusions

Formulated a set of models of industrial drying – simple model → detailed
model.

Applied Matheamtics approach combines elements of different disciplines:
I Functional Analysis
I Control Theory
I Physics (Drying Rate)

Optimal Control of outlet temperature achieved via PDE-constrained Optimal
Control Theory / Gradient Descent Method.

Optimal Control is a ‘best case’ to aim for, other simplified controls can be
introduced and performance quantified with respect to the best case.

Adiabatic control is one such promising approach, others (e.g. Kalman Filter)
can be investigated using our modelling framework.
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