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Gaelic names...

Gaelic names are clan-based, so prefix O’ (anglicized) or O means ‘descendant

of". Clans were localized to precise areas (and still are today). Some names have

Irish and English versions because of the anglicization of society that happened

especially in the 19th Century after the Great Famine.
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Irish Surname Maps

NEARY in 1901

There were 1,570 with this surname in Ireland in 1901. The surname is
ranked 548th in Ireland in the same year, MURPHY is ranked 1st since it
is the most common Irish surname.

Religion: Catholic: 1,544 (98.34%), Anglican: 18 (1.15%), Other / Not
Given: 4 (0.25%), Presbyterian: 4 (0.25%)

Neary in 1901

Contact-line moti
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ROBINSON in 1901

There were 8,490 with this surname in Ireland in 1901. The surname is
ranked 69th in Ireland in the same year, MURPHY is ranked 1st since it is
the most common Irish surname.

Religion: Anglican: 3,121 (36.76%), Presbyterian: 2,932 (34.53%),
Catholic: 1,689 (19.89%), Methodist: 379 (446%), Other / Not Given: 141
(1.66%), Congregationalist: 80 (0.94%), Jewish: 45 (0.53%), Baptist: 17
(0.20%), Quaker: 17 (0.20%), Plymouth Brethren: 16 (0.19%), Salvation
Army: 16 (0.19%), Independent: 15 (0.18%), Protestant: 7 (0.08%),
Christian: 6 (0.07%), Church of Christ: 6 (0.07%), Moravian: 3 (0.04%)

Robinson in 1901
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Introduction

@ In multiphase flows, contact-line motion refers to the motion of the triple
point, which represents the intersection of the interface with a solid wall.
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Introduction

@ In multiphase flows, contact-line motion refers to the motion of the triple
point, which represents the intersection of the interface with a solid wall.

@ This appears as a boundary condition in the equations of motion.

@ Because the boundary condition is to be applied at the interface, it is difficult
to model contact-line motion.

@ This can be thought of as the computational scientist’s formulation of the
contact-line singularity problem.
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Aim of Talk

Liquid droplets on a
horizontal surface. Im-
age by KEP.

Contact line

The aim of this talk is to provide an overview of the contact-line singularity
problem:

@ Present the overview from different perspectives;

@ Present a novel regularization of the problem.
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Motivation

Being able to simulate contact-line motion accurately is important for modelling a
wide range of problems in nature and industry.

Droplet Impact Physics
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Contact-line motion...



Plan of talk

@ High-level introduction to contact-line modelling in VOF and DIM
@ The same, in the context of thin-film flows.

@ Introduce novel regularization in the context of thin-film flows.
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VOF — Review

The volume-of-fluid method for incompressible flows is a classic one-fluid
formulation of the two-phase flow problem?!. Instead of working with an indicator
function,

1, if ¢ isin phase 1,

€r) =
X@) =30 ifais in phase 2.

one works with a locally-averaged volume fraction:

where V is a small test volume. Correspondingly,

p(x) = pra(x) + pa(1 — a(z)),

and the same for the viscosity p(x). Here, p; and po are the constant densities of
the individual phases.

1Brackbill, J.U., Kothe, D.B. and Zemach, C., 1992. A continuum method for modeling
surface tension. Journal of Computational Physics, 100(2), pp.335-354.
Sy 20 T



VOF — Review

As the volume-averaging effectively smooths the interface between the phases, a
continuous one-fluid equation of motion can be written down:

p(x) (881; +u- Vu) =-Vp+ V- [u@) (Vu+ Vu")] — p(x)gk + Fsr.

Conservation of mass (incl. incompressibility) require:

Ooa

E—i—u-Va:O, V-u=0.
Here, Fgr is the surface-tension force. In the sharp-interface formulation, this
would be:

Fsr = onkd(x — xg),

where o is the surface tension, n is the unit normal to the interface, k is the mean
curvature, and x; is the instantaneous interface location.
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VOF — Review

The delta function is zero everywhere except at the interface location @ = x;.
This can be re-written as §(z — 1) = |[Va|d(a — (1/2)). Similarly,

ne < Va >
[Val a:1/2'

As the curvature is given by kK = —V - n, this gives:
Fsp = —o[Va(V- n)]a:l/Q'

The point of departure for the volume-of-fluid method is to distribute this force
over the entire volume:
Fsr ~ —oc[Va(V - -n)],

This is a good approximation, because o ~ Const = 1 or 0 away from the
interface. Of course, the approximation does lead to the notorious spurious
currents.
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Boundary Conditions

If the contact line does not intersect the boundaries (= 92) — the boundary
condition on « is conservative: ngg - Va = 0 on 9. Otherwise:

D. B Wall Adh

dary Conditi

The effects of wall adhesion at fluid interfaces in contact
with rigid boundaries in equilibrium can be estimated easily
within the framework of the CSF model in terms of 0., the
equilibrium contact angle between the fluid and wall. The
angle 0, is called the static contact angle because it is
experimentally measured when the fluid is at rest. The equi-
librium contact angle is not simply a material property of
the fluid. It depends also on the smoothness and geometry
of the wall [23].

The normal to the interface at points x,, on the wall is

A= Ry €08 Boq + 7 8in 0y, (53)

where 4, lies in the wall and is normal to the contact line

Contact-line mof .

between the intetface and the wall at x,, and A, is the unit
wall normal directed into the wall. The unit normal #, is
computed using (36) with the fluid color ¢ reflected at the
wall.

Wall adhesion boundary conditions are more complex
when the contact line is in motion, 1.e., when the fluid in

contact with the wall is moving relative to the wall [23].
The equilibrium wall adhesion boundary condition in (53)
may have to bc generalized by replacing 6., with a dynamic
contact angle, #,, that depends on local tlmid and wall
conditions.

September 2024
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Implementations

@ Numerical implementations of the VoF method are based on Brackbill’s
ideas. To move the contact line along, a slip velocity is required.

@ A new boundary condition u = A(Ou/0z) at z = 0. Navier slip length A.
@ Physically, the slip length is O(nm).

@ Practically, it is not possible to implement this. So numerical studies® use
either A\ =10 or A < A, where A is the grid spacing.

@ A further contact-line model is required:

o(t) = £(6.,U,...).

@ Here, U is the contact-line velocity — sometimes taken to be the tangential
velocity in the cell nearest to the contact line (MAC grid).

o Intrinsic grid dependence

2Legendre, D. and Maglio, M., 2015. Comparison between numerical models for the
simulation of moving contact lines. Computers & Fluids, 113, pp.2-13.
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Implementations

2.1.2. Kistler's dynamic contact angle model

The empirical dynamic contact angle model developed by Kistler(1993) is based on
Hoffman’s empirical function (Hoffman, 1975). In this correlation the dynamic contact
angle is dependent on the static contact angle and the contact line velocity through the
Ca number. The model is valid for advancing contact lines and is given in the form

= . . . Op = fu (Ca+ f,' (02)), ®8)

This is the basic idea e.g. in the In-

where fy(x) is Hoffman's empirical function and ;' (z) is ts inverse. Hoffman's

terFoam contact-angle model, where empnclfuncton s defned 1
H(t) = 96 + (0(1 — 07«) tanh(U/Ug) fa (z) = cos ‘(172L;mh(5.16<m)0m)), C)]
i s stan d a rd . K |5t | e r’ S contact-an g | e and the inverse of Hoffman's empirical function is closely approximated by the Hoffman-

Voinov-Tanner law, Eq.(5), and has the form

model is more accurate.

it (05) = £, (10

If experimental data of the contact angle hysteresis are available, the static contact angle,
65,in equations (8) and (10) is replaced by 6, if the contact line is advancing. The final
form of the model used for the advancing contact lines s

0 = fu (Cat fy' (04))- an

E.g. Ref3

3Gahl, J., Mark, A., Sasic, S. and Edelvik, F., 2018. An immersed boundary based dynamic
contact angle framework for handling complex surfaces of mixed wettabilities. International
Journal of Multiphase Flow, 109, pp.164-177.
Sertee 3004 SPYLE



Results — Droplet Impact

Droplet impact study. Left: high-speed
camera. Right: OpenFOAM simulations.
Parameters: Re = 1700 and We = 20.
Image by Conor Quigley.

Siioay 20

“ Version Maximum Spreading [m]
Experiment 0.0180
o Constant 6 0.0115
Dynamic 6 0.0140
TABLE [: Maximum spreading values.
e ——-
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DIM — Review

A phase-field function C(x,t) tracks which phase is occupied at position .
Conventionally, C' =1 for liquid and C' = 0 for gas, with C' = 0.5 representing the
interface.

The energy associated with interfaces is given by:

F[C) = g/ [fo(C) + 2€2|VC?] dPx.

where:
e fo(C) penalizes mixing (promotes creation of separate phases);
e (1/2)€?|VC|? penalizes sharp gradients (diffuse interface);
@ 0 related to the surface tension.

@ ¢ is a small lengthscale (interface thickness).

e Ty



DIM — Review

A ‘gradient-energy formulation’ gives:

%Jru-vczv.[M(C)V@],

where M (C) > 0 is the mobility and ® = 6F/0C.

Again, we have a one-fluid formulation, so u is the velocity of the mixture, and
p(x) = p1C + p2(1 — C), and similarly for the viscosity.

The ‘Gradient-energy formulation’ ensures that the energy is dissipated:

% [%/qud?’:c-i-F[C]} <0.

R T



DIM — Momentum Equation

The one-fluid momentum equation can be written as:

p(x) (%—1; e V“) = —Vp+ V- [u(@) (Vu+ Vu')] - pla)gk + Fyr.

In the DIM context, the surface-tension force has the form:
Fsr = oV,

The sharp-interface formulation can be recovered in the limit as & — 0.4

4Jacgmin, D., 1999. Calculation of two-phase Navier-Stokes flows using phase-field
modeling. Journal of computational physics, 155(1), pp.96-127.
SerterBer a0 TYLE



Boundary Conditions

@ No-slip boundary conditions on velocity.
@ Conservation of mass requires ngg - V® = 0 on 0f).

@ The contact line moves through interfacial diffusion (diffuse-interface
method).

@ Since C-equation is 4th order, another BC is required.

Energy Formulation:

_ § 1¢2 2
= ¢ /Q [fo(C) + 17 |VC] ]dQ+/me(C)ds,

where F,(C) (7 cosf.4)C. Energy dissipation (bulk only) then requires:

¢ (ngn - VO) = —F,(C).

e e



Geometric Boundary Condition

An alternative formulation of the BC is
the geometric one:

ngo - VC = —tan (%7‘(‘ — Geq)
x |VC — (ngg - VC) napgq| .

Here, 64 is the equilibrium ('microscale’)
CA.

Implementation on 2D MAC grid:

Cio=0Cipo

+ tan (%77 — .

9eq) |Cix11—Cic1a

Subtle difference between the two ap-

PHYSICAL REVIEW E 75, 046708 (2007)
HANG DING AND PETER D. M. SPELT

@7

while the surface-energy formulation of the wetting condi-
tion results in

Energy method: n - VC = —cos 6|t - VC|/sin 6,

(28)

by substituting [VC|=t-VC/sin 6, into Eq. (26). We can see
that the microscale contact angle can be reproduced from the
local distribution of C after the implementation of Eq. (27).
However, this is not the case when using Eq. (28). In fact,
the boundary condition (28) is comparable to imposing an
effective contact angle 6, where min(6,,60,)=8
=max(6, 6,), instead of the microscale contact angle. Trac-
ing back the difference between the two conditions, the cause
is seen to be the fact that in Eq. (25) only the tangential
component of VC appears on the right-hand side, whereas all
components of VC are present on the right-hand side of Eq.
(26). The application of either boundary condition will in
fact change the normal component n-VC, which will there-
fore affect the right-hand side of the latter, but not the
former.

Geometric method:M * V€= cos G|t - VC/sin 6,

proaches

September 2024
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Results

Realistic parameter values for mm scale droplet:

Water (L)

Alr (G)

Dynamic Viscosity (p)
Density (p)

8.0 x 10~*Pas | 1.837 x 107" Pas
1000 kgm—3 1.225kgm—3

Droplet Radius (Ry)
Surface Tension (o)

3mm
0.072Nm™!

Ref.?

50 Ndraigh L. and Mairal, J., 2023. Analysis of the spreading radius in droplet impact: The
two-dimensional case. Physics of Fluids, 35(10).

Contact-line motion...

September 2024
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Results

Realistic parameter values for mm scale droplet:

Water (L) Air (G)
Dynamic Viscosity (p) | 8.9 x 10~?Pas | 1.837 x 10 ° Pas
Density (p) 1000 kgm—3 1.225kgm—3

3mm

Droplet Radius (Ry)
0.072Nm~!

Surface Tension (o)

Bond Number scaling: timescale Ty = Ry/Uy,
Uy = VgRy, hence strength of surface tension is

1/Bo:
2
Bo = P90 _ 4 996,
g
Also,
Re = PLfolo _ pog o,
Hnr
Ref.5

50 Ndraigh L. and Mairal, J., 2023. Analysis of the spreading radius in droplet impact: The
two-dimensional case. Physics of Fluids, 35(10).
o Y



Results

Realistic parameter values for mm scale droplet:

Water (L) Air (G)

Dynamic Viscosity (p) | 8.9 x 10~?Pas | 1.837 x 10 ° Pas
Density (p) 1000 kgm—3 1.225kgm—3

3mm

Droplet Radius (Ry)
0.072Nm~!

Surface Tension (o)

Bond Number scaling: timescale Ty = Ry/Uy,
Uy = v/ gRg, hence strength of surface tension is
1/Bo:

2
Bo — PLITN0 _ 1 99
g
Also,
_ priolo
Hnr

Re = 578.0.

Ref.?

Droplet released from a height:

6

50 Ndraigh L. and Mairal, J., 2023. Analysis of the spreading radius in droplet impact: The

two-dimensional case. Physics of Fluids, 35(10).
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Results

Energy budget:

Einit = Efinal + AE?
AFE = Energy loss due to dissipation

6

" max

a

2
40 60 80 oo 120 140 160

%

Dependence of fmaz on the static contact angle for
fixed Bo and Re. Squares: Simulations. Solid line:
correlation
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Small parameters

7 T T
@ Small parameters £ and M
(constant mobility).
o Take Cn, M x A.
o Establish grid convergence. , e
o Movement of CL via diffuse | 10
. 0 1 2 3 4 5 6 7 8 9 10
interface. i
N | At A Cn M Label
161] 1071 [ 0.0375 (4/3)A2] Az | Coarse
321 10 | 0.01875 Standard
641 1[)’4/‘_7 0.009375 Tine
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Novel regularization

@ Methods so far — CL slip on grid scale.

@ Methods depend explicitly on grid scale but final results do not.

@ Would like to introduce a more satisfactory method.

@ Address the topic analytically first, in the context of thin-film flows.

R o



Thil-Film Flows: Context
Thin film / Stokes Flow for h(z,t):

oh _ 9 (,.0°h
ot Ox ox3

) , T € (—00,00).
Initial condition:
h(z,t = 0) = ho(z), ho(z) > 0.

Boundary conditions: chosen for |z| —
oo such that equation conserves mass:

~ A dM e

\ The value n = 3 is physical — droplet
spreading on a hydrophilic surface,
r=0 e

no equilibrium contact angle.

e o



Spreading Solution
Similarity solution:

1

h(z,t) =t f(x/t*), =7

Substitute into hy = 9, (---), obtain ordinary differential equation

n e nf
U Cn+44

@ Smooth solutions with compact support for n < 3.

@ Point where solution touches down smoothly to zero is microscopic contact
line.

e Microscopic contact x, behaves as ¢ ~ t1/(?4)

Description breaks down at physically relevant value of n = 3. The analyst’s
view on the contact-line singularity problem.

e oy



Thin-Film Flows: Classical Regularizations

@ Navier Slip model — regularizes free-surface profile but not higher derivatives
— hence, stress singularity remains.

@ Precursor Film model — requires ultra-thin precursor film; spreading droplets
sits on top of this precursor layer. Ultra-thin precursor film has to extend
indefinitely beyond the radius of the spreading droplet.

Contact-line motion...
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Novel Regularization

A novel regularization of the thin-film equation in the spirit of the diffuse-interface
method has been introduced.®. We work with h(z,t) and also, a ‘fuzzy’
free-surface height,

Aoty = [ G-yl iy = K <h,

where K (s; ) is a smoothing kernel.

@ New method has continuous pressure profile (compare with Navier Slip
model).

@ New method effectively has a precursor film which decays exponentially fast
away from droplet core (decay rate «).

5Holm, D.D., o Néraigh, L. and Tronci, C., 2020. A geometric diffuse-interface method for
droplet spreading. Proceedings of the Royal Society A, 476(2233), p.20190222.
o VS



Small length scales

Table: Summary of the various small length scales used in the different regularization
methods

| Method | Lengthscale
Navier Slip Model Slip length
Attractive / Repulsive Potential Precursor-film thickness
Diffuse-Interface Method Diffuse-interface thickness
New Method Length scale of smoothing kernel
— uncertainty — cf. LES

R o



Novel Regularization — the idea |

If we define -
o %/ 0uh2de,  6E/5h = —Ouh (1)
then the basic thin-film equation can be written as

oh 9 [h . aaE}

el Lot TR ()

By multiplying both sides of Equation (2) by §E/dh and integrating , one obtains

dE / hit(h)|Dash|2dz < 0. 3)

R I



Novel Regularization — the idea Il

If instead we define

E—1 / (0. (0uh)dx, (4)

— 00

where £ is the fuzzy free-surface height, then

E = _aacmhv

so that the evolution equation which minimizes the energy becomes
Oh = — 0y [hpi(h, h)0,0ush] (5)

where we have defined 7i(h, k) so that the mobility depends in general on both &
and h — in practice we will take i = 7

We then use K = (1 — a?0,,) 2.

R o



Results |

0.3 5 =)
. X
04|75 015

el
025 < :>__<‘: Macroscopic contract line
02 0o 01 J:S wm(t) =
o5 e
01 g 0.05
0.05 %0

0 P >
¢ o 7 _
X X
(a) (®)

(a) Spacetime diagram showing the evolution of the diffuse surface height Tl(r,t). (b) Snapshot of the free-
surface height J_l(a'j) at t = 50. The snapshot also shows the location of the macroscopic contract line y,.
Model parameter: o = 0.0%. Numerical parameters: L = 27, N = 500 gridpoints, At= 1072,

Ref.”

"Holm, D.D., o Néraigh, L. and Tronci, C., 2020. A geometric diffuse-interface method for
droplet spreading. Proceedings of the Royal Society A, 476(2233), p.20190222.
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Results ||

50 -
40
30
B 20
10

2 R 0

K/T.‘Iﬁ
]

< similarity variables.

The scaled height R
reaches an equlibrium form in

=—Numerics
1f [P

0.8F zm(t)~ ¢,

| p=0.135.
06} . Tanner's Law,
b R xm~tN1/7} is
',r' satisfied.
.ﬂ
102 10" 102
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Results I

Outer Solution Inner solution with exponential
decay in tails
[ o) = R0, 100
0.3
10
0.2
=)
LI? 10-10
01 =
!-o—E 0 10-15
0 —h,_ (xt=50)
-2 2 v glen Yo -
10—20
= Numerical solution of regularized problem -2 0 2

in similarity variables —
Y Plot of h(z, t = 50) showing the spatial structure of the
Solution of unregularized problem f2 " =y f/7. solution in the tail, for |z| > zm.

showing blowup at contact line.

—o—

Inner and outer solutions ... hence, Tanner's Law is
match: VT )Ty, zecam(t), recovered.

A(te” TmEm O ) sy (1),

()~ {

R = e R s



Particle Solutions

An intriguing aspect of the regularized set of equations is that it allows for weak
solutions, which we call particle solutions:

N

:Zwid(x—m?), h(z,t) :Z(S(x—xi(t)),

i=1

where the wis are positive weights, and the x;'s are ‘particle trajectories’,
satisfying:
dxi
dt
and where the velocities V; are obtained from the regularized PDE:

=V, t>0, 2;(0) = ¥

7

///
Vi= .’l:z, E w]K _'1;]) )

and finally,
Zw] T — ;).

e T



Convergence of Particle Solutions

h is the exact solution.

(] 2
107* z
@ ha, is the numerical solution. o
o Az is the grid size (FD) or
N = 2L/Ax (particles). 5 °
A L o
@ Assume: T :
|h—haz||p = CAZP +O(AxPTY).
Newton
— — 10-6 Particle]
o Let ¢(Ax) = |[hiag — ToawyallLr- = =
@ Triangle inequality: Az
Convergence plot of the
finite-difference method and the
vy ¥4 particle method for the partial
E(AIL') S CA:E (1 - 1/2 ) wetting case. Both lines have a
slope of 2.0 on the log-log plot
+O0(AxPTY).
Ref .8

8Pang, K.E. and 0] Naraigh, L., 2022. A mathematical model and mesh-free numerical
method for contact-line motion in lubrication theory. Environmental Fluid Mechanics, 22(2),

pp.301-336.

Siioay 20
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The prefactor is not great but the Particle Method

@ While FD method and PM are both
O(Az?), the pre-factor for the FD
method is smaller.

@ Prefactor Crp and Cp,y, with
(:&7[) < (713A1~

@ However, the execution time of the
PM is much faster.

@ Crucially, the particles move around
and concentrate in region of
high-curvature.

@ Gives a mesh-free method which
nevertheless mimics AMR.

Evolution of the particle
trajectories x;(¢) (logarithmic
scales on both axes). The colors
indicate the weight correspond-
ing to each particle w;. The line
#1/7is imposed to show that the
trajectories follow a power law at
late time

R = e Siioay 20

%107

—

is Faster
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Partial Wetting

Partial wetting — spreading goes on until equilibrium configuration is attained.

L . Young's Equation
Force balance at equilibrium gives:

v =1v"+vy"cosH

Vsv — Vsl

cos g = 5
v

Energy in thin-film formulation becomes:

T
E = %’Ylv / hidx—|—2rfylv (1 — Ccos 06(1 0is the contact angle
T

sl
’Y\ is the solid/liquid interfacial free energy

+ Constant. Y'W is the solid surface free energy
‘yl\‘ is the liquid surface free energy
Droplet footprint (2D) is 2r. rame-hart ntrument co.

R s



Regularized Equation

As before, we regularize the contact-line motion. We take the surface energy term

to be -
%"Ylv / Em hxd’l},

—0o0
where h vanishes rapidly as |z| — oc.

We approximate the droplet footprint as

0 -
2r « —— Const. isc,

(h.h)’
where Ag = [ hdz = [7_hda.

Regularized TFE becomes:

Oh 0
Justification: If Fn + o (Uh) =0,

h = max{0,3An/(4r)[1 — (z/r)?]}, U=-h"——

then

2
<;1%> = %(27") + 0(a?).

R s




Results

Exact analytical solution at equilibrium:

|| <,
|z| > r

_ By cos(éx) + Bo,
B —
Che~lzl/a 4 Cylzle—lel/a,

Parameter:

2¢(1 — cos0cq)

ST 5

Matching conditions at |z| = 7. Continuity of h,

By, hyy. Also, [hdz =1.

Contact-line motion...

Good transient results as
well showing close agree-
ment with the Cox—Voinov
model:

oh\*
(52) L= ¢

| —
~[6()]°]

S g (),

+c 1

where ¢ and d are fitting
constants.

Reduces to Tanner's Law
T (t) ~ tY7 when 6., =
0.

September 2024
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Results and Discussion

10!

101]

Contact-line motion...

—TPE
---- Newton

\ —------Particle

Plot of [#(1)]? (solid line)

and 1 + ci,; log(x,,/d) (dashed
and dot-dashed) as a function

of time showing the agreement
between GDIM and the Cox—
Voinov theory for droplet spread-
ing in the case of partial wetting.

o Still not sure about this
approach:

» Functional form for
droplet-footprint size looks
strange.

» Equilibrium solution is
complicated (‘parabolic
cap'?)

@ Hence, while the regularization
in case of complete wetting is
hereby solved in a satisfactory
way, the partial-wetting case

remains something of a puzzle.

September 2024
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Conclusions

@ Summarized modelling approach to CL problem in VOF and DIM.
@ Parameters are explicitly dependent on grid size but final results are not.

@ A little unsatisfactory, so alternative approaches are welcome.
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Final words

@ Introduced novel CL regularization in context of thin-film flows.

o Model uses ‘fuzzy’ h representing uncertainty in CL location, on a lengthscale
a.

@ Describes droplet spreading in the complete-wetting case.

@ Still a little unsatisfactory in case of partial wetting.

@ Also, would like to extend concept beyond thin-film flows.

@ Discussion welcome.
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