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Context

Two-phase stratified flow is ubiquitous in nature.

(a) Kelvin-Helmholtz
instability

(b) Stratified flow in
pipelines

(c) Slug flow (d) Falling-film reac-
tors

Mathematically, and computationally, a tough problem – turbulence, extreme
nonlinearity, topological change in interfaces, a range of instabilities that
need to be captured.

Even the laminar regime is tough - current focus of the research.
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Context: The numerical challenge
Flows involving many length- and time-scales

Flows with sharp changes in interfacial topologies

Transient three-dimensional simulations required over long periods of time,
requiring scalable codes run at very high resolutions.
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Context: Existing methodologies

Existing interface-capturing methods: Levelset, Volume of Fluid, Particles,
Diffuse Interface Method

Existing implementations: Open-source (e.g. Gerris, etc.), Commercial (CFX,
etc.), in-house solvers.

Some drawbacks (not respectively): Black-box approach, validation uncertain,
artificial diffusion. Key drawbacks: resolution constraints, scalability.

Our in-house code TPLS addresses these issues, in particular resolution and
scalability.

Not a silver bullet – levelset methods – tradeoff between capturing interfacial
topology with great fidelity, and mass loss. But mass loss minimized at high
resolution.
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TPLS: Equations of motion

Numerical solution of two-phase Navier–Stokes equations with interface capturing:

ρ(φ)

(
∂u

∂t
+ u · ∇u

)
= −∇p+ 1

Re
∇ ·
[
µ(φ)

(
∇u+∇uT

)]
+ fst(φ)− ρ(φ)Gẑ,

where ∇ · u = 0 and φ is the interface-capturing field:

Levelset method:

∂φ

∂t
+ u · ∇φ = 0, fst = δε(φ)

1

We
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(I also use S = 1/We, for historical reasons!)
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TPLS: Problem geometry and configuration
Simple channel geometry: periodic boundary conditions at x = 0, x = Lx; walls (no
slip) at z = 0, z = Lz.
Constant pressure drop drives flow in streamwise direction (forcing).
Basic version involves hydrodynamics only. TPLS with physics under development,
for applications including contact-line dynamics, and mass transfer.
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TPLS: Numerical discretization schemes

Marker-and-cell discretization: pressures, densities, viscosities, and φ at cell
centres, velocities at cell faces.

Finite-volumes, with flux-conservative differencing for the momentum
equation.

Momentum step: centred differences for the convective derivative,
Crank–Nicholson treatment for the diffusion, third-order Adams–Bashforth
for the time evolution.

Projection method: Momenta are updated first, followed by a correction step
involving a pressure update, thereby enforcing incompressibility.

The levelset function φ(x, y, z, t) is carried with the flow (3rd-order WENO)
but is corrected at each timestep (‘redistancing’).
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TPLS: Parallel computing

Typical runs involve up to 10 million gridpoints, meaning that large-scale
parallel simulation is unavoidable (larger runs (up to 100 million gridpoints)
are also performed).

Code is parallelized using hybrid MPI technology; parallelization scheme takes
account of problem geometry (2D domain decomposition)

Data is outputted to files periodically using parallel I/O – NetCDF data
storage.

Current version of code with density contrast uses simple hand-coded
algorithms for linear algebra steps (e.g. presusre step). Work is ongoing to
replace these with GMRES by repeated calls to the PETSc library.

Parallel efficiency with 2000 MPI processes is only 0.6 – there is a tradeoff
between robustness/simplicity and performance. Underscores the need to
replace hand-coded linear-algebra solvers with libraries.
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Strict benchmarks for code’s accuracy

Introduce a tiny sinusoidal perturbation at the interface.

Produces pressure and velocity fluctuations that satisfy linear equations of
motion.

Linearized equations of motion solved via eigenvalue analysis (independent,
quasi-analytical).

Gives growth rate and wave speed of wave-like fluctuations.

Focus on finding agreement between OS analysis and wave growth in the code.
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Orr–Sommerfeld analysis – Results
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Application of TPLS: where do 3D waves in parallel flows
come from?
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Brief review for liquid-liquid flows
We know the answer for liquid-liquid flows (r = 1) – it is weakly nonlinear analysis.

Periodic boundary conditions, (Re,m, r,S) = (300, 30, 1, 0.3).
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New study required for gas-liquid flows

For gas-liquid flows, linear theory predicts a direct route.

Overall trend: increasing r means that more modes become unstable (both stream-
wise and spanwise), but with a smaller growth rate.
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Theoretical Prediction confirmed by DNS
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2D-DNS used to construct a flow-pattern map
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Carefully-chosen 3D simulations show the results carry over
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The case r = 10
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The case r = 100
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Conclusions

TPLS has been introduced as a computational methodology for two-phase
simulations in an idealized channel geometry.

Using TPLS, we answer the question, where do 3D waves in parallel flows
come from?

For liquid-liquid flows an indirect (weakly nonlinear) mechanism prevails.

Using theory and DNS, our current work shows a different scenario at work in
gas-liquid flows:

I The interfacial waves in gas-liquid ows grow much more slowly than those in
corresponding liquid-liquid flows.

I However, a wider range of wavenumbers (both streamwise and spanwise) are
unstable for the gas-liquid case.

Therefore, three-dimensional waves form in gas-liquid ows via a direct
route: by waiting long enough, streamwise and spanwise modes form as
a result of small-amplitude perturbations.

Beyond this early-stage wave growth, a zoo of dierent phenomena is possible,
depending on the particular ow parameters involved.
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