## Understanding turbulence with mathematical models: from 2x2 matrices to 1,000 CPU simulations

#### Lennon Ó Náraigh

School of Mathematics and Statistics and CASL, University College Dublin

7th April 2016

## What is turbulence?

Turbulence in a fluid is characterized by chaotic motion on many lengthscales.



Mathematically and computationally, a very tough problem:

• No analytical solutions

## What is turbulence?

Turbulence in a fluid is characterized by chaotic motion on many lengthscales.



Mathematically and computationally, a very tough problem:

- No analytical solutions
- Numerics require resolution of a vast array of timescales and lengthscales

## What is turbulence?

Turbulence in a fluid is characterized by chaotic motion on many lengthscales.



Mathematically and computationally, a very tough problem:

- No analytical solutions
- Numerics require resolution of a vast array of timescales and lengthscales
- Dimentionality is important

## How can it be characterized?



Turbulence depends on the dimension -2D turbulence very different from 3D turbulence. Take 3D turbulence as a paradigm. The fundamental element is the **eddy** – a coherent patch of fluid motion on a particular scale.

## How can it be characterized?



Turbulence depends on the dimension -2D turbulence very different from 3D turbulence. Take 3D turbulence as a paradigm. The fundamental element is the **eddy** – a coherent patch of fluid motion on a particular scale.

Typically, the turbulence is forced at the large scales. The eddies interact and transfer energy to smaller eddies, and so on.

## How can it be characterized?



Turbulence depends on the dimension -2D turbulence very different from 3D turbulence. Take 3D turbulence as a paradigm. The fundamental element is the **eddy** – a coherent patch of fluid motion on a particular scale.

Typically, the turbulence is forced at the large scales. The eddies interact and transfer energy to smaller eddies, and so on.

#### Best summarized in poetry:

Big whorls have little whorls Which feed on their velocity, And little whorls have lesser whorls And so on to viscosity.

(L.F. Richardson)

• Turbulence can be characterized by statistical quantities, e.g. an average velocity field

 $\boldsymbol{U}(\boldsymbol{x},t) = \langle \boldsymbol{u}(\boldsymbol{x},t) \rangle,$ 

averaged over an ensemble of experiments.

• Turbulence can be characterized by statistical quantities, e.g. an average velocity field

 $\boldsymbol{U}(\boldsymbol{x},t) = \langle \boldsymbol{u}(\boldsymbol{x},t) \rangle,$ 

averaged over an ensemble of experiments.

• Then, introduce fluctuating velocity fields,

$$\boldsymbol{u}'(\boldsymbol{x},t) = \langle \boldsymbol{u}(\boldsymbol{x},t) \rangle - \boldsymbol{u}(\boldsymbol{x},t)$$

• Turbulence can be characterized by statistical quantities, e.g. an average velocity field

 $\boldsymbol{U}(\boldsymbol{x},t) = \langle \boldsymbol{u}(\boldsymbol{x},t) \rangle,$ 

averaged over an ensemble of experiments.

• Then, introduce fluctuating velocity fields,

$$\boldsymbol{u}'(\boldsymbol{x},t) = \langle \boldsymbol{u}(\boldsymbol{x},t) \rangle - \boldsymbol{u}(\boldsymbol{x},t)$$

• ... and two-point correlations  $\langle u'_i u'_j \rangle$ .

• Turbulence can be characterized by statistical quantities, e.g. an average velocity field

 $\boldsymbol{U}(\boldsymbol{x},t) = \langle \boldsymbol{u}(\boldsymbol{x},t) \rangle,$ 

averaged over an ensemble of experiments.

• Then, introduce fluctuating velocity fields,

$$\boldsymbol{u}'(\boldsymbol{x},t) = \langle \boldsymbol{u}(\boldsymbol{x},t) \rangle - \boldsymbol{u}(\boldsymbol{x},t)$$

• ... and two-point correlations  $\langle u'_i u'_j \rangle$ .

Crucial information about the spatial structure is then supplied by the following correlation function:

$$R_{ij}(\boldsymbol{x},t) = \langle u_i'(\boldsymbol{x}+\boldsymbol{y},t)u_j'(\boldsymbol{y},t)\rangle,$$

and its Fourier transform  $E_{ij}(\mathbf{k})$ .

## Turbulence is generic

Kolmogorov similarity hypotheses:

- On a sufficiently small scale, all turbulence is homogeneous and isotropic
- and can be characterized by universal functional forms...

meaning that

 $E_{ij}({m k}) = f(\eta |{m k}|)$  for all i,j

where  $\eta$  is a generic lengthscale called the Kolmogorov scale.

## Turbulence is generic

Kolmogorov similarity hypotheses:

- On a sufficiently small scale, all turbulence is homogeneous and isotropic
- and can be characterized by universal functional forms...

meaning that

$$E_{ij}(\boldsymbol{k}) = f(\eta | \boldsymbol{k} |)$$
 for all  $i, j$ 

where  $\eta$  is a generic lengthscale called the Kolmogorov scale.



## How do we develop an understanding of turbulence?

We aim to answer two key questions:

- Where does turbulence come from?
- Once turbulence is established, can we provide evidence for the turbulence phenomenology using numerical simulations?

How do we develop an understanding of turbulence?

We aim to answer two key questions:

- Where does turbulence come from?
- Once turbulence is established, can we provide evidence for the turbulence phenomenology using numerical simulations?

To answer these questions, we need a key assumption:

All relevant fluid motions – including turbulence – can be completely characterized by the Navier–Stokes equations:

$$\rho\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u}\right) = -\nabla p + \mu \nabla^2 \boldsymbol{u} + \boldsymbol{f}, \qquad \nabla \cdot \boldsymbol{u} = 0,$$

where f includes the effects of large-scale forcing.

## Where does turbulence come from?





We look at the passage to turbulence via linear instability.

### Where does turbulence come from?

We will look at the specific example of **channel flow**.



We look at the passage to turbulence via linear instability.

For unidirectional steady flow with constant forcing (pressure drop) the Navier–Stokes equations have an analytical solution:

$$u(z) = \frac{H^2}{2\mu} \left| \frac{dP}{dL} \right| \left[ \frac{z}{H} - \left( \frac{z}{H} \right)^2 \right]$$

## Where does turbulence come from?

We will look at the specific example of **channel flow**.



We look at the passage to turbulence via linear instability.

For unidirectional steady flow with constant forcing (pressure drop) the Navier–Stokes equations have an analytical solution:

$$u(z) = \frac{H^2}{2\mu} \left| \frac{dP}{dL} \right| \left[ \frac{z}{H} - \left( \frac{z}{H} \right)^2 \right]$$

This suggests a nondimesionalization based on the friction velocity  $V = \sqrt{(H/2\rho)|dP/dL|}$ , with

$$\tilde{u}(\tilde{z}) = Re_*\tilde{z}(1-\tilde{z}),$$
  
$$Re_* = \frac{\rho V H}{\mu}.$$

## Linear stability analysis I

- Introduce a tiny sinusoidal perturbation (wavenumber  $\alpha$ ) around the base flow.
- Produces pressure and velocity fluctuations that satisfy linearized equations of motion.
- Linearized equations of motion solved via eigenvalue analysis for complex eigenvalue  $\lambda = -i\omega$  (Orr–Sommerfeld equation)

## Linear stability analysis I

- Introduce a tiny sinusoidal perturbation (wavenumber  $\alpha$ ) around the base flow.
- Produces pressure and velocity fluctuations that satisfy linearized equations of motion.
- Linearized equations of motion solved via eigenvalue analysis for complex eigenvalue  $\lambda = -i\omega$  (Orr–Sommerfeld equation)



## Linear stability analysis I

- Introduce a tiny sinusoidal perturbation (wavenumber  $\alpha$ ) around the base flow.
- Produces pressure and velocity fluctuations that satisfy linearized equations of motion.
- Linearized equations of motion solved via eigenvalue analysis for complex eigenvalue  $\lambda = -i\omega$  (Orr–Sommerfeld equation)





## Linear stability analysis II

- Theory shows base flow is unstable beyond  $Re_* = Re_{*c} \approx 214.9$ .
- Passage to turbulence is clear crank up the Reynolds number, wait for the flow to go unstable, hope that the instabilities generate a complicated chaotic motion on all scales.

## Linear stability analysis II

- Theory shows base flow is unstable beyond  $Re_* = Re_{*c} \approx 214.9$ .
- Passage to turbulence is clear crank up the Reynolds number, wait for the flow to go unstable, hope that the instabilities generate a complicated chaotic motion on all scales.
- Seems like the end of the story, but there is a problem Transition to turbulence is observed below  $Re_{*c}$  subcritical transition to turbulence.

## Linear stability analysis II

- Theory shows base flow is unstable beyond  $Re_* = Re_{*c} \approx 214.9$ .
- Passage to turbulence is clear crank up the Reynolds number, wait for the flow to go unstable, hope that the instabilities generate a complicated chaotic motion on all scales.
- Seems like the end of the story, but there is a problem Transition to turbulence is observed below  $Re_{*c}$  subcritical transition to turbulence.
- Subcritical transition in channel flow can be understood using two theoretical tools transient growth and coherent states. We can understand these using  $2 \times 2$  matrices.

#### Back to ACM 10060

Consider simple two-dimensional autonomous dynamical system:

 $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}).$ 

- $\bullet$  Fixed points  $\mathbf{x_0}$  satisfy  $\mathbf{F}(\mathbf{x_0})=\mathbf{0}$  (base state!)
- Fixed points are classified by their stability: form Jacobian matrix

$$J = \begin{pmatrix} \frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} \\ \frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} \end{pmatrix}_{\mathbf{x_0}}$$

and compute eigenvalues  $\lambda = \operatorname{spec}(J)$ .

 If ℜ(λ) > 0 for some eigenvalue, then system is unstable, otherwise it is stable or neutral.

## Forcing

• Forcing can be introduced by looking at

$$\dot{\mathbf{x}} = \mu \mathbb{I} \mathbf{x} + \mathbf{F}(\mathbf{x}), \qquad \mu \in \mathbb{R}^+.$$

• Fixed-point analysis as before, compute eigenvalues of Jacobian.

## Forcing

• Forcing can be introduced by looking at

$$\dot{\mathbf{x}} = \mu \mathbb{I}\mathbf{x} + \mathbf{F}(\mathbf{x}), \qquad \mu \in \mathbb{R}^+.$$

- Fixed-point analysis as before, compute eigenvalues of Jacobian.
- Generally,  $\Re(\lambda) < 0$  for  $\mu < \mu_c$  and  $\Re(\lambda) > 0$  for  $\mu > \mu_c$  indicating a transition from stability to instability at the critical value  $\mu_c$ .

## Forcing

• Forcing can be introduced by looking at

$$\dot{\mathbf{x}} = \mu \mathbb{I}\mathbf{x} + \mathbf{F}(\mathbf{x}), \qquad \mu \in \mathbb{R}^+.$$

- Fixed-point analysis as before, compute eigenvalues of Jacobian.
- Generally,  $\Re(\lambda) < 0$  for  $\mu < \mu_c$  and  $\Re(\lambda) > 0$  for  $\mu > \mu_c$  indicating a transition from stability to instability at the critical value  $\mu_c$ .
- But this is not the end of the story!

## Transient growth

• Transient growth can occur in linear systems where the Jacobian is non-normal:

$$JJ^{\dagger} - J^{\dagger}J \neq 0.$$

• There are situations where all eigenvalues are linearly stable but solutions of  $\dot{\mathbf{u}} = J\mathbf{u}$  grow rapidly before the eigenvalue theory eventually kicks and and forces

$$\|\mathbf{u}\| \to 0 \text{ as } t \to \infty.$$

• Growth is measured by amplification factor

$$G(t) = \sup_{\substack{\mathbf{u}_0\\\|\mathbf{u}_0\|=1}} \|\mathbf{e}^{Jt}\mathbf{u}_0\|$$

## Transient growth

• Transient growth can occur in linear systems where the Jacobian is **non-normal**:

$$JJ^{\dagger} - J^{\dagger}J \neq 0.$$

• There are situations where all eigenvalues are linearly stable but solutions of  $\dot{\mathbf{u}} = J\mathbf{u}$  grow rapidly before the eigenvalue theory eventually kicks and and forces

$$\|\mathbf{u}\| \to 0 \text{ as } t \to \infty.$$

• Growth is measured by amplification factor

$$G(t) = \sup_{\substack{\mathbf{u}_0\\\|\mathbf{u}_0\|=1}} \|\mathbf{e}^{Jt}\mathbf{u}_0\|$$

We look at a simple concrete example (motivated by physics) that will make this much less mysterious.

#### Two-level system – linear theory I

Two-level system:

$$i\frac{\partial u}{\partial t} = \mathcal{H}u + i(\mu_0 \mathbb{I} + \mathcal{G})u, \qquad u \in \mathbb{C}^2,$$

where

$$\mathcal{H} = \begin{pmatrix} E_0 & A \\ A & E_0 \end{pmatrix}, \qquad \mathcal{G} = \operatorname{diag}(-g_1, -g_2).$$

Note that  $[\mathcal{H}, \mathcal{G}] \neq 0$  implies that the operator

$$\mathcal{L} = \mathcal{H} + \mathrm{i} \left( \mu_0 \mathbb{I} + \mathcal{G} \right)$$

is non-normal, with  $\left[\mathcal{L}, \mathcal{L}^{\dagger}\right] \propto g_2 - g_1.$ 

#### Two-level system – linear theory II

Eigenvalues: let  $u(t) = u_0 e^{-i\omega t}$ , to give

$$\Omega_{\rm r} = E_0, \qquad \Omega_{\rm i} = \mu_0 - \frac{1}{2}(g_1 + g_2) \pm \sqrt{(g_1 - g_2)^2 - 4A^2}, \qquad {\sf Case \ 2}.$$

We work in **Case 2** (crossover is called the diabolic point).

#### Two-level system – linear theory II

Eigenvalues: let  $u(t) = u_0 e^{-i\omega t}$ , to give

$$\Omega_{\rm r} = E_0, \qquad \Omega_{\rm i} = \mu_0 - \frac{1}{2}(g_1 + g_2) \pm \sqrt{(g_1 - g_2)^2 - 4A^2}, \qquad {\sf Case \ 2}.$$

We work in **Case 2** (crossover is called the diabolic point).

We use

$$\frac{1}{2}\frac{d}{dt}\|u\|_2^2 \le \left[\mu_0 - \min(g_1, g_2)\right]\|u\|_2^2$$

to identify subcritical parameter values for the forcing  $\mu_0$  where transient growth is possible:

$$\min(g_1, g_2) < \mu_0 < \frac{1}{2}(g_1 + g_2) - \sqrt{(g_1 - g_2)^2 - 4A^2}.$$

- Transient growth by itself won't induce a subcritical transition because eventually the disturbance will die out.
- The idea is that the transient growth will excite a nonlinear solution:
  - Transient growth excites nonlinear solution,
  - Nonlinear solution has a tendency to decay over time (damping) but this is counteracted by further transient growth.
  - Nonlinear solution is therefore a quasi-steady structure (coherent state)
  - Nonlinear solution can itself be unstable to secondary instability leading to a cascade whereby more and more nonlinear solutions of increasing complexity are excited.

We therefore look to add some nonlinear terms to the two-level system to see what might happen...

• Nonlinear two-level system:

$$\mathbf{i}\frac{\partial u}{\partial t} = \mathcal{L}u + a \begin{pmatrix} |u_1|^2 & 0\\ 0 & |u_2|^2 \end{pmatrix} u.$$

• Nonlinear two-level system:

$$\mathrm{i}\frac{\partial u}{\partial t} = \mathcal{L}u + a \begin{pmatrix} |u_1|^2 & 0\\ 0 & |u_2|^2 \end{pmatrix} u.$$

• We search for a self-sustained oscillatory solution:

$$u = R e^{i\Omega t} u_0, \qquad \|u_0\|_2^2 = 1, \qquad \Omega \in \mathbb{R}.$$

• Nonlinear two-level system:

$$\mathrm{i}\frac{\partial u}{\partial t} = \mathcal{L}u + a \left( \begin{array}{cc} |u_1|^2 & 0\\ 0 & |u_2|^2 \end{array} \right) u.$$

• We search for a self-sustained oscillatory solution:

$$u = R e^{i\Omega t} u_0, \qquad \|u_0\|_2^2 = 1, \qquad \Omega \in \mathbb{R}.$$

• Such a solution can be found for  $g_2 < \mu_0 < g_2$ : we have  $\Omega = E_0 + aR^2$ , where R has the special value

$$R^{2} = \frac{g_{1} - g_{2}}{a} \sqrt{\frac{1}{X^{2}} - 1}, \qquad X^{2} = -\frac{(\mu_{0} - g_{1})(\mu_{0} - g_{2})}{A^{2}}.$$

• Nonlinear two-level system:

$$\mathrm{i}\frac{\partial u}{\partial t} = \mathcal{L}u + a \begin{pmatrix} |u_1|^2 & 0\\ 0 & |u_2|^2 \end{pmatrix} u.$$

• We search for a self-sustained oscillatory solution:

$$u = R e^{i\Omega t} u_0, \qquad \|u_0\|_2^2 = 1, \qquad \Omega \in \mathbb{R}.$$

• Such a solution can be found for  $g_2 < \mu_0 < g_2$ : we have  $\Omega = E_0 + aR^2$ , where R has the special value

$$R^{2} = \frac{g_{1} - g_{2}}{a} \sqrt{\frac{1}{X^{2}} - 1}, \qquad X^{2} = -\frac{(\mu_{0} - g_{1})(\mu_{0} - g_{2})}{A^{2}}.$$

 Recall, the linearized problem was non-normal for g<sub>1</sub> ≠ g<sub>2</sub>. The same condition implies the existence of the non-trivial nonlinear solution!

• Nonlinear two-level system:

$$\mathrm{i}\frac{\partial u}{\partial t} = \mathcal{L}u + a \left( \begin{array}{cc} |u_1|^2 & 0\\ 0 & |u_2|^2 \end{array} \right) u.$$

• We search for a self-sustained oscillatory solution:

$$u = R e^{i\Omega t} u_0, \qquad \|u_0\|_2^2 = 1, \qquad \Omega \in \mathbb{R}.$$

• Such a solution can be found for  $g_2 < \mu_0 < g_2$ : we have  $\Omega = E_0 + aR^2$ , where R has the special value

$$R^{2} = \frac{g_{1} - g_{2}}{a} \sqrt{\frac{1}{X^{2}} - 1}, \qquad X^{2} = -\frac{(\mu_{0} - g_{1})(\mu_{0} - g_{2})}{A^{2}}.$$

- Recall, the linearized problem was non-normal for  $g_1 \neq g_2$ . The same condition implies the existence of the non-trivial nonlinear solution!
- Floquet analysis reveals that the nonlinear oscillation is always unstable to a secondary instability (exact result).

### Numerical solution

Numerical simulation with 8th-order accurate Runge-Kutta scheme, with initial condition  $u(t=0)=(A_0/\sqrt{2})({\rm i},1)^T$ .



FIG. 2. Solutions of (a) the non-Hermitian linear Schrödinger equation; (b) the non-Hermitian *nonlinear* Schrödinger equation. The initial data are the parameters are the same in (a) and (b).

## Transient growth is found in Orr-Sommerfeld equation



Figure 6.2: Validation of our code for the maximum transient growth rate compared to known benchmark case in the literature (data from Reference [SH01]). The small discrepancies between the two datasets are due to errors in scanning and digitizing the data from the reference text.

# Transient growth is much more important for 3D modes than for 2D modes



Figure 6.3: Time evolution of the optimal transient growth rate as a function of the wavenumbers  $\alpha$  (streamwise) and  $\beta$  (spanwise). Between t = 0.1 and t = 10 the optimal disturbance moves from being spanwise-dominated to streamwise-dominated.

## Transient growth is found in Orr-Sommerfeld equation



Figure 6.2: Validation of our code for the maximum transient growth rate compared to known benchmark case in the literature (data from Reference [SH01]). The small discrepancies between the two datasets are due to errors in scanning and digitizing the data from the reference text.

# Coherent structures are found in channel flows as unstable travelling waves

Exact coherent structures in channel flow



FIGURE 5. Lower branch at Re = 415 ( $R_e \approx 58$ ). Level curves of streamwise velocity *u* at y = 0overlayed with isosurfaces of streamwise vorticity (Left:  $\pm 60\%$  max[ $\omega_x(x,y,z)$ ]), right:  $\pm 40\%$  max[ $\omega_x(x,y,z)$ ]).

[Waleffe, JFM, 2001]

## The second question

Once turbulence is established, can we provide evidence for the turbulence phenomenology using numerical simulations?

## The second question

Once turbulence is established, can we provide evidence for the turbulence phenomenology using numerical simulations?

Answer is yes, but **direct numerical simulation** is extremely costly:

- All energy-containing scales down to the Kolmogorov microscale  $\eta$  need to be resolved.
- Back-of-the envelope scaling calculations indicate that

$$\eta \sim Re^{-3/4}$$

where  $Re \ {\rm is} \ {\rm the} \ {\rm Reynolds} \ {\rm number} \ {\rm based} \ {\rm on} \ {\rm the} \ {\rm large-scale} \ {\rm forcing} \ {\rm and} \ {\rm domain} \ {\rm size}.$ 

• Hence,  $\Delta x \sim Re^{-3/4}$  in a numerical simulation, requiring  $N_T$  gridpoints, where

$$N_T \sim \Delta x^{-3} \sim R e^{9/4}$$

## The second question

Once turbulence is established, can we provide evidence for the turbulence phenomenology using numerical simulations?

Answer is yes, but **direct numerical simulation** is extremely costly:

- All energy-containing scales down to the Kolmogorov microscale  $\eta$  need to be resolved.
- Back-of-the envelope scaling calculations indicate that

$$\eta \sim Re^{-3/4}$$

where Re is the Reynolds number based on the large-scale forcing and domain size.

• Hence,  $\Delta x \sim Re^{-3/4}$  in a numerical simulation, requiring  $N_T$  gridpoints, where

$$N_T \sim \Delta x^{-3} \sim R e^{9/4}.$$

 $\bullet\,$  For flow around an aeroplane, we might have  $Re=2\times 10^7,$  leading to a requirement of

$$N_T \sim 10^{17}$$
 gridpoints.

## Turbulence modelling

- DNS are restricted to low-to-intermediate Reynolds numbers.
- Also, for doing parameter studies, running hundreds of DNS may be infeasible even at the low-Reynolds number end.
- Requirement for turbulence models more sophisticated than two-level systems (!) but less computationally intensive than high-res DNS.
- The best tradeoff so far (used commonly by engineers, scientists, and designers) is **large-eddy simulation**.

## Large-eddy simulation (LES)

Filter the velocity field:

$$\implies \boldsymbol{u}(\boldsymbol{x},t) = \overline{\boldsymbol{u}}(\boldsymbol{x},t) + \boldsymbol{u}'(\boldsymbol{x},t)$$

$$\overline{\boldsymbol{u}}(\boldsymbol{x},t) = \int_{\Omega} G(\boldsymbol{r}) \, \boldsymbol{u}(\boldsymbol{x}-\boldsymbol{r},t) \, d\boldsymbol{r}$$

Apply the filtering process to the Navier-Stokes equations:



$$\frac{\partial \overline{u_i}}{\partial t} + \overline{u_j} \frac{\partial \overline{u_i}}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \overline{\rho}}{\partial x_i} + \frac{1}{\rho} \frac{\partial}{\partial x_j} \left( \mu \left( \frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i} \right) \right) - \frac{\partial \overline{\tau_{ij}}}{\partial x_j}, \quad \frac{\partial \overline{u_i}}{\partial x_i} = 0$$

Large-eddy simulation (LES)

Filter the velocity field:

$$\implies \boldsymbol{u}(\boldsymbol{x},t) = \overline{\boldsymbol{u}}(\boldsymbol{x},t) + \boldsymbol{u}'(\boldsymbol{x},t)$$

$$\overline{\boldsymbol{u}}(\boldsymbol{x},t) = \int_{\Omega} G(\boldsymbol{r}) \, \boldsymbol{u}(\boldsymbol{x}-\boldsymbol{r},t) \, d\boldsymbol{r}$$

Apply the filtering process to the Navier-Stokes equations:



$$\frac{\partial \overline{u_i}}{\partial t} + \overline{u_j} \frac{\partial \overline{u_i}}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \overline{\rho}}{\partial x_i} + \frac{1}{\rho} \frac{\partial}{\partial x_j} \left( \mu \left( \frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i} \right) \right) - \frac{\partial \overline{\tau_{ij}}}{\partial x_j}, \quad \frac{\partial \overline{u_i}}{\partial x_i} = 0$$

**Closure problem** – additional stresses  $\overline{\tau_{ij}}$  to be modelled

## Closure problem – Smagorinsky model

Smagorinsky (1963) proposed:

$$\begin{aligned} \overline{\tau_{ij}} &= -\nu_t \left( \frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i} \right) = -2\nu_t \overline{\mathbf{s}_{ij}} \\ \implies \frac{\partial \overline{u_i}}{\partial t} + \overline{u_j} \frac{\partial \overline{u_i}}{\partial x_j} = -\frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} + \frac{1}{\rho} \frac{\partial}{\partial x_j} \left( (\mu + \nu_t) \left( \frac{\partial \overline{u_i}}{\partial x_j} + \frac{\partial \overline{u_j}}{\partial x_i} \right) \right) \\ \rightarrow \nu_t = (C_S \Delta \phi_w (\mathbf{z}))^2 |\overline{\mathbf{s}}|, \quad |\overline{\mathbf{s}}| = \sqrt{2 (\overline{\mathbf{s}_{ij}}) (\overline{\mathbf{s}_{ij}})} \end{aligned}$$

 $\implies$  Implement eddy viscosity, initialise system and run the simulation!

Even a large eddy-simulation can be challenging to implement numerically – In-house implementation uses TPLS computational framework developed by yours truly:

Even a large eddy-simulation can be challenging to implement numerically – In-house implementation uses TPLS computational framework developed by yours truly:

- Finite-volume projection method to solve single-phase and two-phase incompressible Navier–Stokes equations.
- Fully MPI-parallelized code runs on 10s–1000s of CPU cores.

Even a large eddy-simulation can be challenging to implement numerically – In-house implementation uses TPLS computational framework developed by yours truly:

- Finite-volume projection method to solve single-phase and two-phase incompressible Navier–Stokes equations.
- Fully MPI-parallelized code runs on 10s–1000s of CPU cores.
- Research-level version deployed to solve problems in two-phase flows where interface is captured using levelset formulation.





Even a large eddy-simulation can be challenging to implement numerically – In-house implementation uses TPLS computational framework developed by yours truly:

- Finite-volume projection method to solve single-phase and two-phase incompressible Navier–Stokes equations.
- Fully MPI-parallelized code runs on 10s–1000s of CPU cores.
- Research-level version deployed to solve problems in two-phase flows where interface is captured using levelset formulation.



Single-phase version available for demonstration purposes, and incorporates the Smagorinsky-LES model.



Aside - why write your own code?

#### https://www.youtube.com/watch?v=gzSMkKef9nQ

### LES Results - instantaneous snapshots I



#### LES Results – instantaneous snapshots II



Top – streamwise Middle – spanwise Bottom – wall-normal All taken in a particular xz plane

## LES Results - turbulent statistics I

 Spacetime average of physical quantities is steady – forcing and dissipation in balance on average.



Prediction (S-E):  $U_{\rm C} \approx 19.56$ LES:  $U_{\rm C} \approx 19.54$ 

## LES Results - turbulent statistics I

- Spacetime average of physical quantities is steady forcing and dissipation in balance on average.
- Introduce spacetime average variables (Reynolds averaging), in particular average streamwise velocity U<sub>0</sub>(z), averaged over space, time, and symmetry plane.



Prediction (S-E):  $U_{\rm C} \approx 19.56$ LES:  $U_{\rm C} \approx 19.54$ 

## LES Results - turbulent statistics I

- Spacetime average of physical quantities is steady forcing and dissipation in balance on average.
- Introduce spacetime average variables (**Reynolds averaging**), in particular average streamwise velocity  $U_0(z)$ , averaged over space, time, and symmetry plane.



## LES Results - law of the wall

• Reynolds averaging also gives a balanace equation for the mean velocity:

$$\frac{\mathrm{d}}{\mathrm{d}z}\left(\tau_R + \mu \frac{\mathrm{d}U_0}{\mathrm{d}z}\right) - \frac{\mathrm{d}P}{\mathrm{d}L} = 0.$$

- $\tau_R$  is the **Reynolds stress** similar to the residual stress of the LES technique.
- Not known a priori needs to be modelled (closure problem again!!)

## LES Results - law of the wall

• Reynolds averaging also gives a balanace equation for the mean velocity:

$$\frac{\mathrm{d}}{\mathrm{d}z}\left(\tau_R + \mu \frac{\mathrm{d}U_0}{\mathrm{d}z}\right) - \frac{\mathrm{d}P}{\mathrm{d}L} = 0.$$

- $\tau_R$  is the **Reynolds stress** similar to the residual stress of the LES technique.
- Not known a priori needs to be modelled (closure problem again!!)
- Eddy viscosity:

$$\tau_R = \mu_T \frac{\mathrm{d}U_0}{\mathrm{d}z}$$

## LES Results - law of the wall

• Reynolds averaging also gives a balanace equation for the mean velocity:

$$\frac{\mathrm{d}}{\mathrm{d}z}\left(\tau_R + \mu \frac{\mathrm{d}U_0}{\mathrm{d}z}\right) - \frac{\mathrm{d}P}{\mathrm{d}L} = 0.$$

- $\tau_R$  is the **Reynolds stress** similar to the residual stress of the LES technique.
- Not known a priori needs to be modelled (closure problem again!!)
- Eddy viscosity:

$$\tau_R = \mu_T \frac{\mathrm{d}U_0}{\mathrm{d}z}$$

Somewhere between the wall and the centreline,

$$\mu_T \sim \kappa z^2 \left| \frac{\mathrm{d}U_0}{\mathrm{d}z} \right|$$

leading to law of the wall

$$\frac{U_0}{u_*} = \frac{1}{\kappa} \log z + \text{Const.}$$

## LES Results – law of the wall

• Reynolds averaging also gives a balanace equation for the mean velocity:

$$\frac{\mathrm{d}}{\mathrm{d}z}\left(\tau_R + \mu \frac{\mathrm{d}U_0}{\mathrm{d}z}\right) - \frac{\mathrm{d}P}{\mathrm{d}L} = 0.$$

- $\tau_R$  is the **Reynolds stress** similar to the residual stress of the LES technique.
- Not known a priori needs to be modelled (closure problem again!!)
- Eddy viscosity:

$$\tau_R = \mu_T \frac{\mathrm{d}U_0}{\mathrm{d}z}$$

Somewhere between the wall and the centreline,

$$\mu_T \sim \kappa z^2 \left| \frac{\mathrm{d}U_0}{\mathrm{d}z} \right|$$

leading to law of the wall

$$\frac{U_0}{u_*} = \frac{1}{\kappa} \log z + \text{Const.}$$



## Conclusions

- Fluid turbulence can be understood in the context of instability
- But it is more than linear instability subcritical transition to turbulence is common
- Can be understood by combining transient growth with coherent structures
- ... which can in turn be understood with a two-level dynamical system.

## Conclusions

- Fluid turbulence can be understood in the context of instability
- But it is more than linear instability subcritical transition to turbulence is common
- Can be understood by combining transient growth with coherent structures
- ... which can in turn be understood with a two-level dynamical system.
- For fully-developed turbulence, DNS can be expensive, but LES provides lots of understanding at a lower computational cost.
- TPLS computational framework has been used to illustrate some standard results in channel turbulence.

## Conclusions

- Fluid turbulence can be understood in the context of instability
- But it is more than linear instability subcritical transition to turbulence is common
- Can be understood by combining transient growth with coherent structures
- ... which can in turn be understood with a two-level dynamical system.
- For fully-developed turbulence, DNS can be expensive, but LES provides lots of understanding at a lower computational cost.
- TPLS computational framework has been used to illustrate some standard results in channel turbulence.
- But TPLS is much more than this...

## TPLS has been used in a wide variety of applications



...and is available as open-source software: http://sourceforge.net/projects/tpls/