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What is turbulence?

Turbulence in a fluid is characterized by chaotic motion on many lengthscales.

Mathematically and computationally, a very tough problem:

No analytical solutions

Numerics require resolution of a vast array of timescales and lengthscales

Dimentionality is important
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Lennon Ó Náraigh (UCD) Mathsoc talk 7th April 2016 2 / 33



What is turbulence?

Turbulence in a fluid is characterized by chaotic motion on many lengthscales.

Mathematically and computationally, a very tough problem:

No analytical solutions

Numerics require resolution of a vast array of timescales and lengthscales

Dimentionality is important
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How can it be characterized?

Turbulence depends on the dimension – 2D turbulence very
different from 3D turbulence. Take 3D turbulence as a
paradigm. The fundamental element is the eddy – a co-
herent patch of fluid motion on a particular scale.

Typically, the turbulence is forced at the large scales. The eddies interact and
transfer energy to smaller eddies, and so on.

Best summarized in poetry:

Big whorls have little whorls
Which feed on their velocity,
And little whorls have lesser whorls
And so on to viscosity.

(L.F. Richardson)
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How to characterize turbulence

Turbulence can be characterized by statistical quantities, e.g. an average
velocity field

U(x, t) = 〈u(x, t)〉,

averaged over an ensemble of experiments.

Then, introduce fluctuating velocity fields,

u′(x, t) = 〈u(x, t)〉 − u(x, t)

... and two-point correlations 〈u′iu′j〉.

Crucial information about the spatial structure is then supplied by the
following correlation function:

Rij(x, t) = 〈u′i(x + y, t)u′j(y, t)〉,

and its Fourier transform Eij(k).

Lennon Ó Náraigh (UCD) Mathsoc talk 7th April 2016 4 / 33



How to characterize turbulence

Turbulence can be characterized by statistical quantities, e.g. an average
velocity field

U(x, t) = 〈u(x, t)〉,

averaged over an ensemble of experiments.

Then, introduce fluctuating velocity fields,

u′(x, t) = 〈u(x, t)〉 − u(x, t)

... and two-point correlations 〈u′iu′j〉.

Crucial information about the spatial structure is then supplied by the
following correlation function:

Rij(x, t) = 〈u′i(x + y, t)u′j(y, t)〉,

and its Fourier transform Eij(k).
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Lennon Ó Náraigh (UCD) Mathsoc talk 7th April 2016 4 / 33



Turbulence is generic

Kolmogorov similarity hypothe-
ses:

On a sufficiently small
scale, all turbulence is
homogeneous and isotropic

and can be characterized by
universal functional forms...

meaning that

Eij(k) = f(η|k|) for all i, j

where η is a generic lengthscale
called the Kolmogorov scale.
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How do we develop an understanding of turbulence?

We aim to answer two key questions:

Where does turbulence come from?

Once turbulence is established, can we provide evidence for the turbulence
phenomenology using numerical simulations?

To answer these questions, we need a key assumption:

All relevant fluid motions – including turbulence – can be completely
characterized by the Navier–Stokes equations:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u + f , ∇ · u = 0,

where f includes the effects of large-scale forcing.

Lennon Ó Náraigh (UCD) Mathsoc talk 7th April 2016 6 / 33



How do we develop an understanding of turbulence?

We aim to answer two key questions:

Where does turbulence come from?

Once turbulence is established, can we provide evidence for the turbulence
phenomenology using numerical simulations?

To answer these questions, we need a key assumption:

All relevant fluid motions – including turbulence – can be completely
characterized by the Navier–Stokes equations:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u + f , ∇ · u = 0,

where f includes the effects of large-scale forcing.
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Where does turbulence come from?

We will look at the specific example of
channel flow.

We look at the passage to turbulence via
linear instability.

For unidirectional steady flow with
constant forcing (pressure drop) the
Navier–Stokes equations have an an-
alytical solution:

u(z) =
H2

2µ

∣∣∣∣dPdL
∣∣∣∣ [ zH − ( zH )2

]
.

This suggests a nondimesionaliza-
tion based on the friction velocity
V =

√
(H/2ρ)|dP/dL|, with

ũ(z̃) = Re∗z̃(1− z̃),

Re∗ =
ρV H

µ
.
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Lennon Ó Náraigh (UCD) Mathsoc talk 7th April 2016 7 / 33



Linear stability analysis I

Introduce a tiny sinusoidal perturbation
(wavenumber α) around the base flow.

Produces pressure and velocity fluctuations
that satisfy linearized equations of motion.

Linearized equations of motion solved via
eigenvalue analysis for complex eigenvalue
λ = −iω (Orr–Sommerfeld equation)

Instability predicted beyond
Re∗ = 214.9
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Linear stability analysis II

Theory shows base flow is unstable beyond Re∗ = Re∗c ≈ 214.9.

Passage to turbulence is clear – crank up the Reynolds number, wait for the
flow to go unstable, hope that the instabilities generate a complicated chaotic
motion on all scales.

Seems like the end of the story, but there is a problem – Transition to
turbulence is observed below Re∗c – subcritical transition to turbulence.

Subcritical transition in channel flow can be understood using two theoretical
tools – transient growth and coherent states. We can understand these
using 2× 2 matrices.
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Back to ACM 10060

Consider simple two-dimensional autonomous dynamical system:

ẋ = F(x).

Fixed points x0 satisfy F(x0) = 0 (base state!)

Fixed points are classified by their stability: form Jacobian matrix

J =

(
∂F1

∂x
∂F1

∂y
∂F2

∂x
∂F2

∂y

)
x0

.

and compute eigenvalues λ = spec(J).

If <(λ) > 0 for some eigenvalue, then system is unstable, otherwise it is
stable or neutral.
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Forcing

Forcing can be introduced by looking at

ẋ = µIx + F(x), µ ∈ R+.

Fixed-point analysis as before, compute eigenvalues of Jacobian.

Generally, <(λ) < 0 for µ < µc and <(λ) > 0 for µ > µc indicating a
transition from stability to instability at the critical value µc.

But this is not the end of the story!
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Transient growth

Transient growth can occur in linear systems where the Jacobian is
non-normal:

JJ† − J†J 6= 0.

There are situations where all eigenvalues are linearly stable but solutions of
u̇ = Ju grow rapidly before the eigenvalue theory eventually kicks and and
forces

‖u‖ → 0 as t→∞.

Growth is measured by amplification factor

G(t) = sup
u0

‖u0‖=1

‖eJtu0‖

We look at a simple concrete example (motivated by physics) that will make this
much less mysterious.
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Two-level system – linear theory I

Two-level system:

i
∂u

∂t
= Hu+ i (µ0I + G)u, u ∈ C2,

where

H =

(
E0 A
A E0

)
, G = diag(−g1,−g2).

Note that [H,G] 6= 0 implies that the operator

L = H+ i (µ0I + G)

is non-normal, with
[
L,L†

]
∝ g2 − g1.
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Two-level system – linear theory II

Eigenvalues: let u(t) = u0e−iωt, to give

Ωr = E0 ±
√

4A2 − (g1 − g2)2, Ωi = µ0 − 1
2 (g1 + g2),

4A2 > (g1 − g2)2, Case 1,

Ωr = E0, Ωi = µ0 − 1
2 (g1 + g2)±

√
(g1 − g2)2 − 4A2, Case 2.

We work in Case 2 (crossover is called the diabolic point).

We use
1
2

d

dt
‖u‖22 ≤ [µ0 −min(g1, g2)] ‖u‖22

to identify subcritical parameter values for the forcing µ0 where transient
growth is possible:

min(g1, g2) < µ0 <
1
2 (g1 + g2)−

√
(g1 − g2)2 − 4A2.
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Introduction of nonlinear terms I

Transient growth by itself won’t induce a subcritical transition because
eventually the disturbance will die out.

The idea is that the transient growth will excite a nonlinear solution:
I Transient growth excites nonlinear solution,
I Nonlinear solution has a tendency to decay over time (damping) but this is

counteracted by further transient growth.
I Nonlinear solution is therefore a quasi-steady structure (coherent state)
I Nonlinear solution can itself be unstable to secondary instability leading to a

cascade whereby more and more nonlinear solutions of increasing complexity
are excited.

We therefore look to add some nonlinear terms to the two-level system to see
what might happen...
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Introduction of nonlinear terms II

Nonlinear two-level system:

i
∂u

∂t
= Lu+ a

(
|u1|2 0

0 |u2|2
)
u.

We search for a self-sustained oscillatory solution:

u = ReiΩtu0, ‖u0‖22 = 1, Ω ∈ R.

Such a solution can be found for g2 < µ0 < g2: we have Ω = E0 + aR2,
where R has the special value

R2 =
g1 − g2

a

√
1

X2
− 1, X2 = − (µ0 − g1)(µ0 − g2)

A2
.

Recall, the linearized problem was non-normal for g1 6= g2. The same
condition implies the existence of the non-trivial nonlinear solution!

Floquet analysis reveals that the nonlinear oscillation is always unstable to a
secondary instability (exact result).
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Lennon Ó Náraigh (UCD) Mathsoc talk 7th April 2016 16 / 33



Introduction of nonlinear terms II

Nonlinear two-level system:

i
∂u

∂t
= Lu+ a

(
|u1|2 0

0 |u2|2
)
u.

We search for a self-sustained oscillatory solution:

u = ReiΩtu0, ‖u0‖22 = 1, Ω ∈ R.

Such a solution can be found for g2 < µ0 < g2: we have Ω = E0 + aR2,
where R has the special value

R2 =
g1 − g2

a

√
1

X2
− 1, X2 = − (µ0 − g1)(µ0 − g2)

A2
.

Recall, the linearized problem was non-normal for g1 6= g2. The same
condition implies the existence of the non-trivial nonlinear solution!

Floquet analysis reveals that the nonlinear oscillation is always unstable to a
secondary instability (exact result).
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Numerical solution

Numerical simulation with 8th-order accurate Runge-Kutta scheme, with initial
condition u(t = 0) = (A0/

√
2)(i, 1)T .
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Transient growth is found in Orr–Sommerfeld equation
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Transient growth is much more important for 3D modes
than for 2D modes
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Transient growth is found in Orr–Sommerfeld equation
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Coherent structures are found in channel flows as unstable
travelling waves

[Waleffe, JFM, 2001]
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The second question

Once turbulence is established, can we provide evidence for the turbulence
phenomenology using numerical simulations?

Answer is yes, but direct numerical simulation is extremely costly:
All energy-containing scales down to the Kolmogorov microscale η need to be
resolved.
Back-of-the envelope scaling calculations indicate that

η ∼ Re−3/4

where Re is the Reynolds number based on the large-scale forcing and
domain size.
Hence, ∆x ∼ Re−3/4 in a numerical simulation, requiring NT gridpoints,
where

NT ∼ ∆x−3 ∼ Re9/4.

For flow around an aeroplane, we might have Re = 2× 107, leading to a
requirement of

NT ∼ 1017 gridpoints.
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Turbulence modelling

DNS are restricted to low-to-intermediate Reynolds numbers.

Also, for doing parameter studies, running hundreds of DNS may be
infeasible – even at the low-Reynolds number end.

Requirement for turbulence models more sophisticated than two-level systems
(!) but less computationally intensive than high-res DNS.

The best tradeoff so far (used commonly by engineers, scientists, and
designers) is large-eddy simulation.
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Large-eddy simulation (LES)

Closure problem – additional stresses τij to be modelled
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Closure problem – Smagorinsky model
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Computational framework

Even a large eddy-simulation can be challenging to
implement numerically – In-house implementation
uses TPLS computational framework developed by
yours truly:

Finite-volume projection method to solve
single-phase and two-phase
incompressible Navier–Stokes equations.

Fully MPI-parallelized code runs on
10s–1000s of CPU cores.

Research-level version deployed to solve
problems in two-phase flows where interface
is captured using levelset formulation.

Single-phase version available for demon-
stration purposes, and incorporates the
Smagorinsky-LES model.
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Aside – why write your own code?

https://www.youtube.com/watch?v=gzSMkKef9nQ

Lennon Ó Náraigh (UCD) Mathsoc talk 7th April 2016 27 / 33

https://www.youtube.com/watch?v=gzSMkKef9nQ


LES Results – instantaneous snapshots I
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LES Results – instantaneous snapshots II

Top – streamwise
Middle – spanwise
Bottom – wall-normal
All taken in a particular xz plane
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LES Results – turbulent statistics I
Spacetime average of physical quantities is steady – forcing and dissipation in
balance on average.

Introduce spacetime average variables (Reynolds averaging), in particular
average streamwise velocity U0(z), averaged over space, time, and
symmetry plane.
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LES Results – law of the wall

Reynolds averaging also gives a
balanace equation for the mean
velocity:

d

dz

(
τR + µ

dU0

dz

)
− dP

dL
= 0.

τR is the Reynolds stress –
similar to the residual stress of the
LES technique.

Not known a priori – needs to be
modelled (closure problem again!!)

Eddy viscosity:

τR = µT
dU0

dz

Somewhere between the wall and
the centreline,

µT ∼ κz2

∣∣∣∣dU0

dz

∣∣∣∣
leading to law of the wall

U0

u∗
=

1

κ
log z + Const.
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Conclusions

Fluid turbulence can be understood in the context of instability

But it is more than linear instability – subcritical transition to turbulence is
common

Can be understood by combining transient growth with coherent structures

... which can in turn be understood with a two-level dynamical system.

For fully-developed turbulence, DNS can be expensive, but LES provides lots
of understanding at a lower computational cost.

TPLS computational framework has been used to illustrate some standard
results in channel turbulence.

But TPLS is much more than this...
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TPLS has been used in a wide variety of applications

...and is available as open-source software:

http://sourceforge.net/projects/tpls/
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