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Context of work I
Below a critical temperature, mixtures made up of two immiscible
components may separate into their component parts.
This happens in applications including polymer science and metallurgy.

(a) Phase separation in a polymer
mixture

(b) Phase separation
in a molten alloy
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Context of work II

A mathematical model (first introduced for the binary alloys) for phase separation
is the Cahn–Hilliard equation:

∂c

∂t
= D∇2

(
c3 − c− γ∇2c

)
, [Note:

d

dt

∫
Ω

c(x, t)dnx = 0],

where c is the concentration field, D is the diffusion coefficient and
√
γ is a length.

The solution is c = ±1 in domains with
transition regions of thickness

√
γ in be-

tween. The domains grow in time. The
constant solution c = 0 is a well-mixed
state but it is unstable.

The values c = ±1 are energetically
favourable.
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Context of work III
In applications, it can be desirable to ‘tune’ the phase separation to achieve a
certain outcome – for instance, a certain well-defined structure for the
domains.

In this talk we look at travelling-wave forcing as a means of achieving this
– this can be achieved in practice by differential heating of the binary fluid
and hence, inducing concentration gradients via temperature gradients.

The focus of this talk is on developing an analytical theory – we therefore
look at a simple model with a travelling-wave forcing term in one spatial
dimension:

∂c

∂t
= D

∂2

∂x2

(
c3 − c− γ ∂

2c

∂x2

)
+ f0k cos[k(x− vt)], x ∈ (−∞,∞),

where f0 is the forcing amplitude, etc.

With appropriate boundary conditions, the forcing term is consistent with the
conservation of the spatial mean concentration,

d

dt

∫ ∞
−∞

c(x, t) dx = 0.
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Preliminaries I
We seek travelling-wave periodic solutions of the forced Cahn–Hilliard
equaiton,

c(x, t) = ψ(η), η = x− vt, ψ(η + L) = ψ(η), L = 2π/k.

As such, we seek solutions of the ODE

−dψ

dη
= D

d2

dη2

(
ψ3 − ψ − γ d2ψ

dη2

)
+ f0k cos(kη).

We can integrate once to reduce the order. After eliminating constants of
integration, we get

γD
d3ψ

dη3
= D

d

dψ
(ψ3 − ψ) + v(ψ − 〈ψ〉) + f0 sin(kη), (1)

Spatial average: 〈ψ〉 = L−1
∫ L

0
ψ(η) dη.

The aim of the talk is to characterize the solutions of Equation (1).
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Preliminaries II
Motivated by applications, we can take ε = γ/L→ 0. We attempt a regular
perturbation theory, with ψ(η) = ψ0(η) + εψ1(η) + · · · . This quickly gives us two
important scenarios:

1 The regular limit: The regular perturbation theory is valid, and we solve

0 = D
d

dψ
(ψ3 − ψ) + v(ψ − 〈ψ〉) + f0 sin(kη),

i.e. a first-order inhomogeneous ODE (reduced-order model).
2 The singular limit applies when the regular perturbation theory breaks

down. The singular limit requires an examination of the ODE (1) with higher
derivatives (the full model).

Important solution: When f0 = v = 0, we have the following special solution
of the full model:

ψ(η) = tanh

(
η − η0√

γ

)
.

Knowing this will later on help us to characterize the singular limit (full
model) with f0 and v nonzero, but with ε→ 0.
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Reduced-order model – first insights I
We look again at the reduced-order model (subscript ‘0’ suppressed):

D
dψ

dη
= −v(ψ − 〈ψ〉)

3ψ2 − 1
− f0

3ψ2 − 1
sin(kη).

We have ψmax/min at dψ/dη = 0, hence

ψmax/min = 〈ψ〉 − f0

v
sin(kηmax/min).

But for this to make sense, the apparent singluarity at 3ψ2 − 1 = 0 can never
be reached.

Places constraints on the parameters 〈ψ〉, v, and f0:

Case 0: 1/
√

3 < 〈ψ〉 − (f0/v),

Case 1: 〈ψ〉 − (f0/v) > −1/
√

3 and 〈ψ〉+ (f0/v) < 1/
√

3,

Case 2: 〈ψ〉+ (f0/v) < −1/
√

3.

Sufficient conditions for validity of reduced-order model.
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Reduced-order model – first insights II

To find necessary conditions we solve the reduced-order model numerically.

Rather, we solve for X = ψ3 − ψ:

D
dX

dη
+ v (ψj(X)− 〈ψ〉) + f0 sin(kη) = 0, X(L) = X(0),

where ψj solves ψ3
j − ψj = X, j = 0, 1, 2 (roots of cubic), i.e.

ψj =
2√
3

cos
[

1
3 cos−1

(
3
√

3
2 X

)
− 2πj

3

]
, j = 0, 1, 2.

Real solution of X (hence, ψj) indicates validity of reduced-order model,
whereas...

Complex solution of X indicates cusp in ψj , hence breakdown of derivative in
dψ/dη = · · ·
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Reduced-order model – parameter space
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The white area in the parameter space indicates a
breakdown of the reduced-order model
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Reduced-order model – Rigorous theoretical analysis

Although the figure explains everything, it is not rigorous.

We can prove rigorous results in the subcases, e.g. Case 1, with initial
conditions in the range

I = [a, b] = [〈ψ〉 − (f0/v), 〈ψ〉+ (f0/v)].

We construct a map f : I → R that takes initial conditions (η = 0) in I to
final conditions at η = L. Only some of these initial/final conditions lead to
periodic solutions.

Periodic solutions of the reduced-order model correspond to fixed points of
the map, i.e. f(ψ∗) = ψ∗ corresponds to a periodic solution
ψ(η + L) = ψ(η), with ψ(0) = ψ(L) = ψ∗.
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Reduced-order model – Rigorous theoretical analysis I

The construction of the map is facilitated by looking at the inhomogeneous
reduced-order ODE as a 2D dynamical system:

d

dη

(
z
ψ

)
=

(
1

−R(3ψ2 − 1, δ) [v(ψ − 〈ψ〉) + f0 sin(kz)]

)
,

with initial conditions

z = 0, ψ = ψ0 at η = 0.

Here, R is a regularization:

R(s, δ) =
s

s2 + δ2
, R ∼ 1/s for s→ 0 with δ 6= 0.

It will be helpful to write the dynamical system in a more compact form as
follows:

d

dη

(
z
ψ

)
=

(
1

Fδ(ψ, z)

)
.
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Reduced-order model – Rigorous theoretical analysis II

The dynamical system has no fixed points, limit cycles, ... Hence, f : I → J ,
where f(I) = J is another interval now (and not some weird set...).

Only dynamically important feature is the nullcline ψ = 〈ψ〉 − (f0/v) sin(kη).

Introduce g(x) = f(x)− x. Along with the fact that the nullcline can’t go
below a or above b, this means:

I A trajectory starting at a will be nonincreasing – g(a) ≤ 0.
I A trajectory starting at b will be nondecreasing – g(b) ≥ 0.

Hence, J = f(I), and I ⊂ J (J is the larger set).

By continuity of g there is at least one zero, g(x∗) = 0, hence f(x∗) = x∗,
hence fixed point exists.

As we have now found a regular periodic solution with x∗ ∈ I (and nowhere
near the singularity at ±1/

√
3 we can now safely take δ → 0 in the

regularization R(3ψ2 − 1, δ).
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A graphical description of the proof
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Aside – Brouwer’s Fixed Point Theorem

The above is a special (very simple) case of Brouwer’s Fixed Point Theorem:

If f : X 7→ X is a continuous map from a compact convex X set to
itself, then f has at least one fixed point.

Fluid mechanics application: Put a fluid in a convex container (the fluid
completely fills the container), and stir the fluid for a period of time T . Then
there is at least one fluid particle that ends up where it started.
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Reduced-order model – Uniqueness of Fixed Points

From the numerics we ‘know’ that the periodic solutions are unique. We can also
prove this rigorously in certain cases. We use:

|f(ψ1)− f(ψ0)| ≤ max
x∈I
|f ′(x)||ψ1 − ψ0|.

If maxx∈I |f ′(x)| < 1 for all x ∈ I the map f : I → J is a contraction
mapping.

If maxx∈I |f ′(x)| > 1 for all x ∈ I the inverse map f−1 : J → I is a
contraction mapping.

In either case, Banach’s fixed point theorem then establishes that the
already-derived fixed point (i.e. periodic solution) is unique.

Therefore, to make progress with uniqueness, we need to be able to evaluate
f ′(x).
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To evaluate f ′(x) we need to know about the flow.
Recall, the map f maps an initial condition ψ0 to a final condition ψ(η = L).
This can be connected to the flow of the (regularized) 2D dynamical system.

The 2D dynamical system is recalled here as

d

dη

(
z
ψ

)
=

(
1

Fδ(ψ, z)

)
.

The corresponding flow is

ϕδ : R2 × R → R2,

((z0, ψ0), η) 7→ ϕδ(z0, ψ0, η),

(we take z0 = 0).

In other words, the flow evolves a solution from the starting time z = z0 to a later
time z + z0 + η (we take z0 = 0):

ϕδ(0, ψ0, η) =

(
z = z0 + η
ψ(η)

)
.

Hence,

f(ψ0) =

(
0 0
0 1

)
ϕδ(0, ψ0, L).
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In Case 1 we get an expansion map =⇒ unique solution
Using standard results from dynamical systems theory, we can now compute
f ′(ψ0):

f ′(ψ0) = exp

(∫ L

0

∂Fδ
∂ψ

dη

)
.

We can now safely take δ → 0, as we are evaluating along a regular periodic
trajectory.

Therefore, the sign of ∂F/∂ψ determines if f ′ is positive or negative and
hence, if we have a contraction / expansion map.

We compute
∂F

∂ψ
=

3vψ2 − 6ψ [v〈ψ〉 − f0 sin(kz)] + v

(3ψ2 − 1)2
.

In Case 1 it is possible to show using straightforward algebraic manipulation
that ∂F/∂ψ > 0. Hence, f is an expansion map so f−1 is a contraction map
and by Banach’s Fixed Point Theorem the fixed point (periodic solution) is
unique.
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Linear Stability Analysis

It is of interest to classify the stability of the periodic solutions – look at a
perturbation

c(x, t) = ψ(η) + δc(η, t), η = x− vt.

Sub into CH equation (full model) and linearize:

∂

∂t
δc− v ∂

∂η
δc = D

∂2

∂η2
(Sδc)− γ ∂

4

∂η4
δc, S = 3ψ2 − 1.

Take γ → 0 (reduced model).

Eigenvalue analysis δc = eλtδ̃c(η):

λδ̃c− v ∂
∂η
δ̃c = D

∂2

∂η2

(
S δ̃c

)
Boundary conditions are δc→ 0 as |η| → ∞ (perturbation dies out at
infinity).
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Linear Stability Analysis I

The eigenvalue problem is second-order linear with periodic coefficients
(S = 3ψ2 − 1 is periodic). Therefore, the eigenfunctions are Bloch waves:

δ̃c = eipηΦp(η), Φp(η + L) = Φp(η).

Spectral theory tells us that the most unstable mode occurs at p = 0. This
corresponds to a periodic disturbance. We therefore look at the eigenvalue
problem

λΦ0 − v
∂Φ0

∂η
= D

∂2

∂η2
(SΦ0) , Φ0(η + L) = Φ0(η).

By integrating both sides from 0 to η and using the periodic boundary
conditions, we see that either λ = 0 or 〈Φ0〉 = 0 (mean zero spatial average).

In the first case (λ = 0) there is no instability, so look at second case
(〈Φ0〉 = 0).
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Linear Stability Analysis II
In the second case (〈Φ0〉 = 0) we multiply both sides of the eigenvalue problem by
Ψ∗0 and integrate. After some IBP, we obtain

Re(λ)‖Φ0‖22 = −
∫ L

0

S|Φ′0|2 + 1
2

∫ L

0

S ′′|Φ0|2.

Hence,

Reλ‖Φ0‖22 ≤ −Smin

∫ L

0

|Φ′0|2 + 1
2 max |S ′′|

∫ L

0

|Φ0|2,

= −Smin‖Φ′0‖22 + 1
2 max |S ′′|‖Φ0‖22,

Poincaré
≤ −Smin(2π/L)2‖Φ0‖22 + 1

2 max |S ′′|‖Φ0‖22,

where we can use Poincaré’s inequality in this neat way because 〈Φ0〉 = 0.

Therefore, a sufficient condition for stability is

Smin(2π/L)2 ≥ 1
2 max

[0,L]
|S ′′|.
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Linear stability – parameter space
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The full model

We look now at the full model – this covers cases where the reduced-order
model breaks down.

The full model is recalled here as (with γ → ε) corresponding to the small
interface width:

εD
d3ψ

dη3
= D

d

dη

(
ψ3 − ψ

)
+ v (ψ − 〈ψ〉) + f0 sin(kη). (2)

A first approach is to do direct numerical simulations of the corresponding
temporally-evolving equation (TENS):

∂c

∂t
− v ∂c

∂η
= D

∂2

∂η2

(
c3 − c− ε ∂

2c

∂η2

)
+ f0k cos(kη), (moving frame). (3)

From the TENS (Equation (3)) we look for the emergence of travelling-wave
solutions c(η, t)→ ψ(η) – i.e. solutions of (2).
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Two distinct travellling-wave solutions are observed in the
full model
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A1 travelling waves I

The A2 travelling waves are clearly the same as the stable solutions that
appear in the reduced-order

The A1 travelling waves are new. These can be understood using an intuitive
singular perturbation theory, valid as ε→ 0.

This theory back to an idea by Cox, Mackey, and Ockendon, who used the
same approach for forced waves in shallow-water models.
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A1 travelling waves II
Recall Equation (2):

εD
d3ψ

dη3
= D

d

dη

(
ψ3 − ψ

)
+ v (ψ − 〈ψ〉) + f0 sin(kη).

The spatial variations separate into rapid variations on the scale ε1/2 and
slow variations on the scale L.

In the limiting case v → 0 (or f0 →∞), the slow variations are governed by
the balance

D
d

dη
(ψ3 − ψ) ∼ f0 sin(kη),

hence ψ3 − ψ ∼ −[f0/(Dk)] cos(kη) + β, where β is a constant of
integration.

I A cubic equation with three possible solutions, parametrized by β.
I The dynamics select a solution with max(ψ) ≈ 1 and min(ψ) ≈ −1 because

these are energetically favourable in the CH equation.
I The dynamics further stitch together a patchwork of such solutions.

These can be thought of as ‘outer solutions’ in a singular perturbation theory.

Travelling waves, binary fluids 9th January 2019 26 / 34



A1 travelling waves II
Recall Equation (2):

εD
d3ψ

dη3
= D

d

dη

(
ψ3 − ψ

)
+ v (ψ − 〈ψ〉) + f0 sin(kη).

The spatial variations separate into rapid variations on the scale ε1/2 and
slow variations on the scale L.

In the limiting case v → 0 (or f0 →∞), the slow variations are governed by
the balance

D
d

dη
(ψ3 − ψ) ∼ f0 sin(kη),

hence ψ3 − ψ ∼ −[f0/(Dk)] cos(kη) + β, where β is a constant of
integration.

I A cubic equation with three possible solutions, parametrized by β.
I The dynamics select a solution with max(ψ) ≈ 1 and min(ψ) ≈ −1 because

these are energetically favourable in the CH equation.
I The dynamics further stitch together a patchwork of such solutions.

These can be thought of as ‘outer solutions’ in a singular perturbation theory.

Travelling waves, binary fluids 9th January 2019 26 / 34



A1 travelling waves II
Recall Equation (2):

εD
d3ψ

dη3
= D

d

dη

(
ψ3 − ψ

)
+ v (ψ − 〈ψ〉) + f0 sin(kη).

The spatial variations separate into rapid variations on the scale ε1/2 and
slow variations on the scale L.

In the limiting case v → 0 (or f0 →∞), the slow variations are governed by
the balance

D
d

dη
(ψ3 − ψ) ∼ f0 sin(kη),

hence ψ3 − ψ ∼ −[f0/(Dk)] cos(kη) + β, where β is a constant of
integration.

I A cubic equation with three possible solutions, parametrized by β.
I The dynamics select a solution with max(ψ) ≈ 1 and min(ψ) ≈ −1 because

these are energetically favourable in the CH equation.
I The dynamics further stitch together a patchwork of such solutions.

These can be thought of as ‘outer solutions’ in a singular perturbation theory.

Travelling waves, binary fluids 9th January 2019 26 / 34



Idea – The outer solutions are stitched together across
narrow transition regions
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Implementation – The outer solutions are stitched together
across narrow transition regions

Across a small region of width ε1/2, distinct outer and inner solutions are
patched.

Here, the dominant balance is

ε
d3ψ

dη3
∼ d

dη
(ψ3 − ψ)

But the solution of this equation is the special CH solution mentioned earlier
– tanh functions.

Hence, an approximate solution is constructed as

ψapprox = s tanh

(
η − c1√

2ε

)
tanh

(
η − c2√

2ε

)
, ε→ 0, s = 1,

where c1 = L/4 and c2 = c1 + (1/2)[L− s〈ψ〉] – these choices give

〈ψapprox〉 ≈ 〈ψ〉;

the spatial average 〈ψ〉 is an externally-prescribed parameter.
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The Newton solver
The idea now is to use this construction of an approximate solution as a starting
value in a Newton solver for Equation (2), with the understanding that the finite
value of v will manifest itself as a simple phase shift between the true solution and
ψapprox. This works!
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Solutions constructed using the Newton Solver agree with
the TENS
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Linear stability and multiple-spike solutions

That the TW solutions constructed with the Newton Solver agree with the
TENS is no suprirse.

But this is nice – we can do a linear stability analysis using the solution
constructed with the Newton Solver as the base state (equilibrium solution).

Linear stability analysis reveals the A1-solution to be stable in the domain
shown in the previous parameter space.

But we can also construct an A2-type solution with s = −1 in

ψapprox = s tanh

(
η − c1√

2ε

)
tanh

(
η − c2√

2ε

)
, ε→ 0, s = −1.

And there is nothing to stop us from constructing multiple-spike initial
guesses:

ψapprox = (±1)

N∏
j=0

tanh

(
Nη − j − c1√

2ε

)
tanh

(
Nη − j − c2√

2ε

)
, ε→ 0,

with c1 and c2 unchanged from before.
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The Newton Solver produces multiple-spike solutions.

The multiple-spike solutions are all linearly unstable.

Cox and Mackey also observed multiple-spike solutions in their work on
forced waves in shallow-water models.
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Conclusions

We have rigorously analyzed the travelling-wave solutions of the forced
Cahn–Hilliard equation.

The analysis relies on a range of tools from Dynamical Systems.

Construction of a zoo of travelling-wave solutions has been accomplished
with a Newton solver with a judiciously-chosen initial guess (no time to go
into this Newton solver – it is a very sensitive beast – uses a backtracking
linesearch to converge on the correct solution).

The analysis reveals that the mean concentration 〈ψ〉 and the forcing
amplitude f0 are key parameters that control the shape of the travelling-wave
solutions.

Submitted work:

https://arxiv.org/abs/1807.08538

Thanks to Ted Cox for showing me this problem.
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IUTAM Symposium in Multiphase Flows, June 2019
Main focus is computational methods for twophase flows.
Theoretical and experimental contributions are also extremely welcome.
A packed lineup is in store but I can still squeeze in a few more speakers.
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