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Overview

Motivation
TPLS computational framework
Results for two-phase interfacial instabilities
Simple numerical model for global modes
Exotic application – phase separation in binary liquids



Context

Two-phase stratified flow is ubiquitous in nature.

(a) Kelvin-
Helmholtz instabil-
ity

(b) Stratified flow
in pipelines

(c) Slug flow (d) Falling-film re-
actors

Mathematically, and computationally, a tough problem –
turbulence, extreme nonlinearity, topological change in
interfaces, a range of instabilities that need to be captured.
Even the laminar regime is tough - current focus of the
research.



The numerical challenge

Flows involving many length- and time-scales
Flows with sharp changes in interfacial topologies
Transient three-dimensional simulations required over long
periods of time, requiring scalable codes run at very high
resolutions.



Existing methodologies

Existing interface-capturing methods: Levelset, Volume of
Fluid, Particles, Diffuse Interface Method

Existing implementations: Open-source (e.g. Gerris, etc.),
Commercial (CFX, etc.), in-house solvers.
Some drawbacks (not respectively): Black-box approach,
validation uncertain, artificial diffusion. Key drawbacks:
resolution constraints, scalability.
TPLS addresses these issues, in particular resolution
and scalability.
Not a silver bullet – levelset methods – tradeoff between
capturing interfacial topology with great fidelity, and mass
loss. But mass loss minimized at high resolution.
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Equations of motion

Numerical solution of two-phase Navier–Stokes equations with inter-
face capturing:

ρ(φ)

(
∂u
∂t

+ u · ∇u
)

= −∇p+
1

Re
∇·
[
µ(φ)

(
∇u +∇uT

)]
+fst(φ)+ρ(φ)g,

where ∇ · u = 0 and φ is the interface-capturing field:

Levelset method:

∂φ

∂t
+ u · ∇φ = 0, fst = δε(φ)

1
We

n̂∇ · n̂. n̂ =
∇φ
|∇φ|

.
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Problem geometry and configuration

Simple channel geometry: periodic OR inlet/outlet conditions at
x = 0, x = Lx ; walls (no slip) at z = 0, z = Lz .
Basic version involves hydrodynamics only. TPLS with physics
available, e.g. evaporating droplets, contact-line dynamics, mass
transfer.



Numerical discretization schemes

Marker-and-cell discretization: pressures, densities,
viscosities, and φ at cell centres, velocities at cell faces.

Finite-volumes, with flux-conservative differencing for the
momentum equation.
Momentum step: centred differences for the convective
derivative, Crank–Nicholson treatment for the diffusion,
third-order Adams–Bashforth for the time evolution.
Projection method: Momenta are updated first, followed by
a correction step involving a pressure update, thereby
enforcing incompressibility.
The levelset function φ(x , y , z, t) is carried with the flow
(3rd-order WENO) but is corrected at each timestep
(‘redistancing’).
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Parallel computing

Typical runs involve up to 10 million gridpoints, meaning
that large-scale parallel simulation is unavoidable (larger
runs (up to 30 million gridpoints) have been performed).

Code is parallelized using hybrid MPI technology;
parallelization scheme takes account of problem geometry
(2D domain decomposition)
Code has been optimized as part of joint work with EPCC
(SSI and DCSE projects): synchronization barriers have
been systematically removed, pressure-correction step has
been optimized with PETSC linear-algebra library (TPLS
1.0). Customizable TPLS with Parallel I/O with NetCDF
data storage (TPLS 2.0)
Current implementation of pressure solver uses GMRES
with block-Jacobi preconditioner. Original crude SOR
version still available (and robust!).
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Strict benchmarks for code’s accuracy

Introduce a tiny sinusoidal perturbation at the interface.
Produces pressure and velocity fluctuations that satisfy
linear equations of motion.
Linearized equations of motion solved via eigenvalue
analysis (independent, quasi-analytical).
Gives growth rate and wave speed of wave-like
fluctuations.

Focus on finding agreement between OS analysis and wave
growth in the code.



Orr–Sommerfeld analysis – Results



Applications of TPLS



Take-home message

DNS are one of the most important tools to examine
multiphase flows
A wide range of 3D two-phase phenomena can be
modelled through full numerical simulations using TPLS.
Next aim is to merge all versions / models to have a
user-customisable multiphysics version of TPLS
New applications / collaborations always welcome
TPLS is available as opensource solution for further
applications:

http://sourceforge.net/projects/tpls/





Where do 3D waves in parallel flows come from?



We want to keep an open mind and examine all
possibilities.

Direct route for supercritical cases – wherein linear theory
predicts 2D and 3D waves are present in more-or-less
equal strengths.

For subcritical cases – possibility of linear transient growth.
For subcritical cases again – investigate possibility of
nonlinear route.
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Transient growth is not directly relevant.



Weakly nonlinear route below ‘criticality’

Periodic boundary conditions, (Re,m, r ,S) = (300,30,1,0.3).



Spanwise modes

Spanwise mode (α, β) = (0,2π/Ly ) appears not to grow
transiently but rather is slaved to streamwise fundamental.

Other info not shown - spanwise mode has extremely long
temporal frequency: it does not oscillate at the streamwise
fundamental frequency.
Suggests weakly nonlinear theory to explain slaving but
with some modifications to explain frequency mismatch:

We have obtained a very weakly nonlinear equation for the
spanwise-only amplitude, with an effective forcing on the
right-hand side (due to all other relevant modes).
Selected forcing frequency is got from the resolvent norm
of the OSS equations.
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Strong nonlilnear regime

Study response of system to impulsive disturbance in the
limit as the disturbance amplitude becomes finite.
Neumann BCs at outlet, fixed conditions at inlet.
Self-sustained oscillations are found - not only do
disturbances grow as they are propagated downstream,
but the disturbance grows in situ, thereby continuously
drawing energy into the disturbances at the impulse
location.
Hence, nonlinear absolute instability.
Absolute instability + nonlinearity =⇒ global mode.



Global modes I



Global modes II

A global mode is a nonlinear self-sustained oscillation.
Two kinds - pushed and pulled (pulled inherits all properties from
linear theory).
DNS confirms global mode is ‘pulled’.



Strong nonlinear regime – conclusions

Linear theory is embarrassingly good at
predicting nonlinear properties because
global mode is pulled.

But global-mode theory not sufficient as
the nonlinearity is not saturating.
Indeed, large-amplitude waves are
followed by wave overturning and
hence ligament and droplet formation.
Also, passage from small-amplitude 3D
waves to overturing and ligaments
needs to be elucidated – kinematic
description
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Motivation

Obtain some theoretical understanding of self-sustained
oscillations
Understand the connection (if any) to transient growth
To investigate the possibility that fluid phenomena
(transient growth, subcritical transition, self-sustained
nonlinear behaviour) can be realised in an optical analogy,
thereby opening up the possibility of having a fluids lab on
an optical bench.



Two-level system – linear theory I

Two-level system:

i
∂u
∂t

= Hu + i (µ0I + G) u, u ∈ C2,

where

H =

(
E0 A
A E0

)
, G = diag(−g1,−g2).

Note that [H,G] 6= 0 implies that the operator

L = H+ i (µ0I + G)

is non-normal, with
[
L,L†

]
∝ g2 − g1.



Two-level system – linear theory II

Eigenvalues: let u(t) = u0e−iωt , to give

Ωr = E0 ±
√

4A2 − (g1 − g2)2, Ωi = µ0 − 1
2(g1 + g2),

4A2 > (g1 − g2)2, Case 1,

Ωr = E0, Ωi = µ0 − 1
2(g1 + g2)±

√
(g1 − g2)2 − 4A2, Case 2.

We work in Case 2 (crossover is called the diabolic point).

We use
1
2

d
dt
‖u‖22 ≤ [µ0 −min(g1,g2)] ‖u‖22

to identify subcritical parameter values for the forcing µ0 where
transient growth is possible:

min(g1,g2) < µ0 <
1
2(g1 + g2)−

√
(g1 − g2)2 − 4A2.
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Introduction of nonlinear terms

Nonlinear two-level system:

i
∂u
∂t

= Lu + a
(
|u1|2 0

0 |u2|2
)

u.

We search for a self-sustained oscillatory solution:

u = ReiΩtu0, ‖u0‖22 = 1, Ω ∈ R.

Such a solution can be found for g2 < µ0 < g2: we have
Ω = E0 + aR2, where R has the special value

R2 =
g1 − g2

a

√
1

X 2 − 1, X 2 = −(µ0 − g1)(µ0 − g2)

A2 .

Recall, the linearized problem was non-normal for g1 6= g2.
The same condition implies the existence of the non-trivial
nonlinear solution!
Floquet analysis reveals that the nonlinear oscillation is
always unstable to a secondary instability (exact result).
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Numerical simulation

Numerical simulation with 8th-order accurate Runge-Kutta scheme,
with initial condition u(t = 0) = (A0/

√
2)(i,1)T .



Inhomogeneous CGL equation – linear theory I

A second toy model is the CGL equation:

i
∂u
∂t

= Hu(x , t)+i (µ0 + G) u(x , t), (x , t) ∈ R×(0,∞), µ0 ∈ R

with

u(x , t = 0) = u0(x), lim
|x |→∞

|u(x , t)| = 0, t finite,

where

H = −iU
∂

∂x
− γi

∂2

∂x2 + 1
2µ2ix2, G = γr

∂2

∂x2 −
1
2µ2rx2.

Again, for L = H+ i (µ0 + G) we have a non-normal evolutionary
equation, with [L,L†] 6= 0.



Introduction of nonlinear terms I

Linear theory well understood - eigenavlues/eigenvectors,
transient growth.
We again introduce a nonlinear term in a natural way:

i
∂u
∂t

= Lu + a|u|2u;

We search for a self-sustained oscillatory solution:

u(x , t) = ReiΩtu0(x), ‖u0‖2 = 1.

No closed-form solution is found but analytical progress is
possible close to criticality, via regular perturbation theory:

µ0 = µ0c + ε2∆µ, 0 < ε� 1, ∆µ = ±1.



Introduction of nonlinear terms II

In a regular perturbation theory in the small parameter ε, we find

Ω = ω0 + ε2ω1 + O(ε4),

where

ω1 =
1√
π

a|χ|R2f (θ, k2), k2 = U2[<(1/γ)]2/4|χ|2, θ = arg(χ2).

Hence, a global mode (self-sustained nonlinear oscillation) exists
for R = Rc, with

R2
c = −ε2 ∆µ

=(ω1)
.

Depending on the exact θ and k2, =(ω1) will be positive and
negative, and hence a global mode is ruled in / out for given θ and
k2 depending on the sign of ∆µ – parameter space.



Stability of the global mode

By doing a secondary instability analysis, it can be shown ana-
lytically that the global mode (where it exists) is

Unstable for a subcritical transition (∆µ = −1)
Stable for a supercritical transition (∆µ = +1).

But all of this can be recast as a Stuart–Landay theory (?) – so
what is new?



Higher-order perturbation theory

Going to higher order in the perturbation theory, e.g.

Ω = ω0 + ω1R2 + ω2R4 + O(R6),

we see that at least two global modes are possible, with radii
corresponding to the roots of

=
[
ω0 + ω1R2 + ω2R4

]
= 0.

Even if the perturbation theory is not convergent this argument
shows a possible mechanism for the existence of further global
modes – and a motivation for numerical studies.



Two global modes

Sample RQI calculation indicates the presence of two global
modes:

(e) (f)

Numerical secondary instability analysis – the small-R global
mode is unstable, while the large-R global mode switches from
unstable to stable as the advection U is increased.
Would like to see how this behaviour is manifest in transient sim-
ulations.



Transient simulations – two unstable global modes I

Shown is spacetime plot of |u(x , t)| for U = 0, corresponding to
two unstable global modes. Initial condition:

u(x , t = 0) = k1ψ0(x)[1 + k2ψ3(x)],

with ρ = ‖u(x , t = 0)‖2 a parameter (ρ = 3 below).

More useful to study
X (t) + iY (t) = u(0, t) as
ρ varies.



Transient simulations – two unstable global modes II



Transient simulations – two unstable global modes II



Transient simulations – two unstable global modes III

Numerical evidence is that the dynamics are chaotic with recur-
rent (but non-periodic) excursions away from the large-amplitude
global mode.



Transient simulations – one unstable global mode

Numerical evidence is that the chaotic dynamics are suppressed
as the large-amplitude global mode is stabilized by advection.



Parameter space



Global modes – toy models: summary

Simple dynamical models with nonlinearity and
non-normality with exact and /or perturbative solutions

Leads to a better understanding of the interaction between
transient growth (a linearized phenomenon) and the
triggering of self-sustained nonlinear oscillations
Of potential relevance in fluids to gain understanding of the
subcritical transition
Models are fully realised in optical context – third aim is to
investigate the possibility that fluid phenomena (transient
growth, subcritical transition, self-sustained nonlinear
behaviour) can be realised in an optical analogy, thereby
opening up the possibility of having a fluids lab on an
optical bench.
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Phase separation

Binary alloys phase separate below a critical temperature. The
same phenomenon occurs for a wide range of mixtures.
A mathematical model (first introduced for the binary alloys) for
phase separation is the Cahn–Hilliard equation:

∂c
∂t

= D∇2
(

c3 − c − γ∇2c
)

where c is the concentration field, D is the diffusion coefficient and√
γ is a length.

The solution is c = ±1 in do-
mains with transition regions of
thickness

√
γ in between. The

domains grow in time. The con-
stant solution c = 0 is a well-
mixed state but it is unstable.



The stirred Cahn–Hilliard equation

The passive stirring a phase separated fluid is modelled by
an advective term in the CH equation,

∂c
∂t

+ v · ∇c = D∇2
(

c3 − c − γ∇2c
)
.

The flow field can be prescribed (‘passive stirring’) or be
obtained from coupling to the Navier–Stokes equations.
Many studies in two dimensions, fewer in three. Our aim is
to fully characterize the structure of the domains under
a generic three-dimensional flow.



Direct numerical simulation of the Cahn–Hilliard
equation

Numerical solution of the fourth-order Cahn–Hilliard equation
with advection:

∂c
∂t

+ u · ∇c = D∇2(c3 − c − γ∇2c)

∇ · u = 0,

Framework:
Flow field u is externally prescribed (e.g. synthetic
turbulence)
Periodic boundary conditions in each direction in three
dimensions
‘Random’ initial conditions
c(x , t = 0) = 0 + random fluctuation



Numerical Discretization

Very similar to TPLS – finite-volume method with a MAC grid for
spatial discretization
Combination of Adams–Bashforth and Crank–Nicholson methods
for temporal discretization:

cn+1
ijk − cn

ijk

∆t
=
[

23
12An

ijk − 4
3An−1

ijk + 5
12An−2

ijk

]
−1

2γD
(
∇4cn+1

ijk +∇4cn
ijk

)
,

A = ∇2(c3 − c)− u · ∇c, α =
√
γD∆t .

Reduced to a linear problem at each timestep:(
1 + γD∆t∇4

)
cn+1

ijk = RHS := bijk .



Parallel Computing I

Currently linear problem is solved by ‘operator
factorization’ into a double Helmholtz problem:(

1− α∇2
)2

cn+1
ijk = bijk − 2α∇2c∗ijk , c∗ijk− = cn+1

ijk

and the unknown term on the right-hand side is estimated
by interpolation:

c∗ijk ≈ 3
2cn

ijk − 1
2cn−1

ijk .

The double Helmholtz problem can be solved by two
passes of SOR:(

1− α∇2
)

cn+1
ijk = ωijk ,(

1− α∇2
)
ωijk = bijk − 2α∇2c∗ijk

As in standard diffusive problems, the matrix is
diagonally-dominant and convergence is rapid.



Parallel Computing II

Code is parallelized using full 3D MPI domain
decomposition
Periodic boundary conditions in each dimension – handled
effortlessly by MPI
SOR is modified to include ‘red-black colouring’ in the
parallel version – eliminates ‘race conditions’
For typical problem size – 3123 gridpoints – domain
decompositions fit into the cache on Fionn, meaning that
superlinear speedup has been achieved in the code with
up to ∼ 500 MPI processes.



Strict benchmarks for code’s accuracy (again)

The equilibrium c = 0 is linearly unstable to
small-amplitude perturbations of the form δc ∝ eσt+ik ·x .
In the absence of flow the dispersion relation is known:

σ(k) = Dk2(1− γk2), k = |k |.

Comparison between
linear theory and direct
numerical simulation.
Model parameters:
D = 1 and γ = 5 × 10−4.
Simulation parameters:
∆x = 1/304, ∆t = 10−6.



Very simple turbulence model

Prescribed flow to mimic turbulence:

u = A sin(ky + kz + ϕi), 0 ≤ mod(t , τ) < 1
3τ,

v = A sin(kx + kz + ψi),
1
3τ ≤ mod(t , τ) < 2

3τ,

w = A sin(kx + ky + χi),
2
3τ ≤ mod(t , τ) < τ,

where the other velocity components are zero, and
τ is the quasi-period of the flow and t = qτ + µ with q an
integer and 0 ≤ µ < τ , hence µ = mod(t , τ).
The random phases (ϕ,ψ, χ) are renovated once every Nτ
periods – correlation time τcorr = Nτ .
Flow is manifestly incompressible, ∇ · u = 0.
Analogous model for 2D can be written down.



Some results – phase separation without flow

In the absence of flow, domains grow algebraically in time.

Domains coarsen at a rate ` ∼
t1/3 – Lifshitz–Slyozov law in
3D.



Some results – phase separation with flow

Shear flow induces
coarsening arrest.
At large flow
amplitudes and long
correlation times,
domains are
overwhelmed and
remixing occurs.
This limit can be
described by linear
theories (e.g.
advection-diffusion).



Importance of dimensionality

Dimensionality manifests itself in the remixing limit through the
PDF of the concentration – first two figures in 2D, last figure on
RHS in 3D.

Reason:
Apply effective-diffusion theory to linearized equations.
Green’s function has longer range in 2D compared to 3D
Leads to a distribution with ‘fat’ tails



Conclusions

TPLS and its derivatives can be used to simulate a variety of
two-phase flow applications.
Best to have some theory to make sense of the enormous amounts
of data produced by the simulations!
TPLS is open source!


