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Introduction

I will look at droplet impact on a smooth surface.

Impact, Spread, Retraction
In the land of splashes, what the scientist knows as Inertia and Surface
Tension are the sculptors in liquids, and fashion from them delicate shapes
none the less beautiful because they are too ephemeral for any eye but
that of the high-speed camera [Yarin, Annu. Rev. Fluid Mech. (2006)]

Highlights the importance of parameters in such studies; key parameters are
the Weber number, We = Inertia/Surface Tension, and the Reynolds
number – sculptor has two tools.
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Fix Definitions

For the avoidance of doubt, we use the following definitions for the Reynolds and
Weber numbers:

Re =
ρU0R0

µ
,

We =
ρU2

0R0

γ
,

where ρ is the fluid density, µ the vis-
cosity, and γ the surface tension.

R0

U0

x

z
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Motivation

Industry (inket printing, cooling, bloodstain pattern analysis)

Scientific curiosity...
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Rim-Lamella Structure

Droplet spreading below splash
threshold (no splash), K > 3, 000,
where K = We

√
Re

At low We, droplet spreads out into a
pancake structure – rim and lamella.

Focus of this talk is on the rim-lamella
structure.

Of interest is the maximum spreading
radius Rmax and its dependence on We
and Re.

Droplet impact study. Left: high-

speed camera. Right: OpenFOAM

simulations. Credit: Conor Quigley.

Parameters: Re = 1700 and

We = 20.
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Rim-Lamella Models

General model for describing dynamics of rim-lamella structure.

Mass and momentum equations for the rim.

Driven by fluxes from the lamella into the rim.

Balanced by the tendency of surface tenstion to promote retraction.

Key variables are rim position R, rim velocity U , rim volume V , and lamella
height h.
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Aim of present work

We won’t introduce any new models.

Instead, we will rigorously analyse existing models.

Aim instead is to prove rigorously the scaling law

Rmax

R0
= kWe1/2, Re = ∞,

in the inviscid case, and the bounds:

k1Re
1/5 − k2(1− cosϑa)

1/2Re2/5We−1/2 ≤ Rmax

R0
≤ k1Re

1/5, Re < ∞.

in the viscous case.

Here, k, k1, and k2 are constant.
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Plan of Talk

In-depth description of Rim-Lamella Model in inviscid case with Re = ∞;

Key results.

Sketch out extension to viscous case.
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Rim-Lamella Modelling

After impact, a rim-lamella structure forms. Radially symmetric flow in the
lamella. Mass and momentum balances:4

∂

∂t
(rh) +

∂

∂r
(urh) = 0,

∂u

∂t
+ u

∂u

∂r
= 0.

Valid for t ≥ τ and r ∈ (0, R).

R marks the end of the lamella and the start of the rim.

Exact solution:
u =

r

t+ t0
.

In the viscous case (later on), this gives the outer flow far from the
boundary layer (uo).

4Yarin AL,Weiss DA. 1995 Impact of drops on solid surfaces: self-similar capillary waves, and
splashing as a new type of kinematic discontinuity. Journal of Fluid Mechanics 283, 141–173.

Bounds on the spreading radius... August 2025 9 / 22



Solution for h

Solution for h:

h = (t+ t0)
−2f

(
r

t+ t0

)
.

The function f is not specified in this analysis.

We use Roisman’s ‘engineering approximation for the drop height’5 because it
fits the data:

h(r, t)

R0
=

η

(t+ t0)2
R2

0

U2
0

e−(3η/4U2
0 )[r/(t+t0)]

2

.

Pre-factors for dimensional reasons. Parameter η is free. R0 is the drop
radius prior to impact.

5Roisman IV, Berberovic E, Tropea C. 2009 Inertia dominated drop collisions. I. On the
universal flow in the lamella. Physics of Fluids 21, 052103
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Mass and Momentum Balance in the Rim

Mass and momentum balance in the rim are described by the following ordinary
differential equations, valid in the inviscid limit:

dV

dt
= 2πR (u0 − U)h(R, t),

V
dU

dt
= 2πR

[
(u0 − U)

2
h(R, t)︸ ︷︷ ︸

=Inertia

− σ

ρ
(1− cosϑa)︸ ︷︷ ︸

=Surface Tension

]
,

dR

dt
= U,

where:

V is the rim volume

u0 = R/(t+ t0),

U is the rim velocity

ϑa is the advancing contact
angle

Initial conditions:

R(τ) = Rinit, U(τ) = Uinit,

V (τ) = Vinit.
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Re-write

Velocity defect:

∆ = u0 − U =
R

t+ t0
− U.

Re-write momentum equation:

d∆

dt
+

∆

t+ t0
= −2πRh

V

{
∆2 − [c(t)]2

}
.

Characteristic speed:

c(t) =

√
σ(1− cosϑa)

ρh(R, t)
=

√
σ(1− cosϑa)

ρηR0
(U0/R0)(t+t0)e

(3η/8U2
0 )[R/(t+t0)]

2

.

Reminiscent of the Taylor–Culick speed for the retraction of a liquid sheet of
thickness h, c =

√
2σ/ρh.
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Gronwall’s Inequality

Used to put bounds on solutions of ODEs.

E.g. Regularity of Navier–Stokes, Mixing Efficiency (advection-diffusion),...
Droplet Impact
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Key Result
Constraints on initial conditions:

Advancing rim condition: Uinit > 0;

Deceleration condition: 0 < ∆(τ) ≤ c(τ);

Rate of increase of c(t) not too large:

3η

2U2
0

[
Rinit

τ + t0
+∆(τ)

]2
< 1.

If these conditions hold, then Gronwall’s Inequality can be used to show:

0 < ∆(τ)

(
τ + t0
t+ t0

)
≤ ∆ ≤ c,

Further applications of Gronwall’s Inequality yield:

max[R(t)] ≥ R∗, R∗ =
τ + t0
4ĉ(τ)

[
ĉ(τ) +

Rinit

τ + t0

]2
,

where ĉ(τ) is another grouping of parameters. Lower Bound on max[R(t)].
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Sandwich Results

Perturbation theory gives a Upper
Bound on max[R(t)].

Upper and Lower Bounds on
max[R(t)].

Dependent on initial conditions.

With appropriate estimates on the
initial conditions, both bounds
possess We1/2 scaling at high
Weber number.

By a ‘sandwich result’, we conclude that:

Rmax = We1/2f(We), We ≫ 1.

Upper and Lower Bounds extend from max[R(t)] to Rmax (geometric
argument).

Hence, Rmax = O(We1/2), for We ≫ 1.
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Comparison with Experiments and DNS
Compare with results in the literature – Willis and Orme, Wang et al., and
Wildeman et al.6

DNS: Wildeman et al. use

a free-slip BC, equivalent to

Re = ∞. Wang et al. use

CA= 180◦.

Experiments: Willis and Orme

use a head-on collision of

two droplets... equivalent to

CA=90◦. Wang et al. use an

engineered superhydrophobic

surface with CA= 180◦.

6Experiments in Fluids 34, 28–41 (2003); Energies 15, 8181 (2022); Journal of Fluid
Mechanics 805, 636–655 (2016), respectively
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Extension to Viscous Case

We account for viscosity by considering the boundary layer in the schematic
diagram.

After lengthy derivations, the boundary-layer effect can be incorporated very
simply into the rim-lamella model via a depth-averaged velocity

u = uo(R, t)

(
1− hbl

h

)
, uo(R, t) =

R

t+ t0
,

provided hbl < h (phase 1).

Boundary-layer theory gives hbl ∼
√

νr/uo(r, t). With uo(r, t) ∼ r/(t+ t0),
hbl ∼ t1/2 (no space dependence).
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Rim-Lamella model: Viscous Case

Result is:

dV

dt
= 2πRh (u− U) ,

V
dU

dt
= 2πRhρ (u− U)

2 − 2πRγ (1− cosϑa) ,

dR

dt
= U,

where h ≡ h(R, t).

After lengthy calculations (similar in spirt to the invisicd case), we arrive at
the bounds:

k1Re
1/5−k2(1− cosϑa)

1/2Re2/5We−1/2 ≤ Rmax

R0
≤ k1Re

1/5, Re < ∞.
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Validation I

Constant k1 is fitted to agree
with the Roisman correlation:

Rmax

R0
= 1.0Re1/5

− 0.37Re2/5We−1/2.

This fixes k2 in our calculations.

Solution of ODE remains with
bounds (sanity test). Colours: Full ODE model. Black

lines: a priori bounds.
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Validation II

Bounds also validated with respect
to the energy-budget analysis of
Wildeman et al. and with respect to
experiments.

Chronos 1.4 Camera

Max: 1280× 1024@1069 fps,
Min: 320× 96@40, 413fps.

Perspex substrate.

Results at Re = 1890,
We = 25.
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Validation III
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Conclusions and Future Work

Using Rim-Lamella models as a starting point, formulated a priori bounds on
the spreading radius.

Establishes rigorously the scaling behaviour of Rmax with Re and We in the
inviscid and viscous cases.

Excellent agreement between theory numerical simulation, and experiments.

Theory of a priori bounds has proved very fruitful – could find wider use in
Fluid Mechanics: turbulence, mixing, spreading, ....
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