ling Lii

near Stability Analysis

Transient Simulation

Ring Rupture

Conclusion

Flow Stability in Point Heated Droplets

Kenny Pang¹, Charles Cuvillier², Yutaku Kita³, Lennon Ó Náraigh¹

¹University College Dublin, ²ENSTA Paris, ³Kings College London and Kyushu University

June 2024

delling O near Stability Analysis

Transient Simulation

ling Rupture

Conclusion

Marangoni Convection

- Marangoni flow is the flow induced by surface-tension gradients.
- Gradient can be caused by a temperature difference.
- Ehrhard and Davis^a studied droplets with homogeneous heating.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

substrate

^aP. Ehrhard and S. H. Davis, Journal of Fluid Mechanics 229, 365–388 (1991).

Background ○●○○	Modelling 000	Linear Stability Analysis	Transient Simulation	Ring Rupture	Conclusion 00
Applications?					

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Modelling 000 Linear Stability Analysis

Transient Simulation

Ring Rupture

ヘロト 人間ト 人間ト 人間ト

э

Conclusion 00

Applications?

Hu and Larson. "Marangoni Effect Reverses Coffee-Ring Depositions" (2006).

Modelling 000 near Stability Analysis

Transient Simulation

Ring Rupture

Conclusion 00

Applications?

Hu and Larson. "Marangoni Effect Reverses Coffee-Ring Depositions" (2006).

Pearlman et. al., "Controlling Droplet Marangoni Flows to Improve Microscopy-Based TB Diagnosis" (2021).

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Modelling 000 near Stability Analysis

Transient Simulation

ling Rupture

Conclusion

Motivation

- Localised heating via a laser at the centre of the droplet.
- Twin vortical flow parallel to the substrate was observed.
- Contact angle = 104°, radius = 1.4mm.

55°C

Askounis et al. (2017)^a

^aA. Askounis, Y. Kita, M. Kohno, Y. Takata, V. Koutsos, and K. Sefiane, Langmuir 33, 5666 (2017), pMID: 28510453

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Background 000● Aodelling

near Stability Analysis

Transient Simulation

Ring Rupture

Conclusion

Problem Statement

- Can localised heating at the centre induce twin vortical flow parallel to the substrate?
- Deformation of the droplet interface in the case of inhomogeneous heated substrate.

Schematic description of the twin vortical flow

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

ound

Modelling

Linear Stability Analy

Transient Simulation

Ring Rupture

Conclusion 00

Lubrication Theory

Dramatic assumption – for theoretical understanding of problem.

Cylindrical polar coordinates (r, φ, z)

- When α is small, the Navier–Stokes equations can be simplified.
- The thin-film equation describes the evolution of the interface height *h*.
- The internal flow (velocity field) can be recovered from *h*.

・ロト・西ト・ヨト・ヨー シック

Linear Stability

Transient Simulation

Ring Rupture

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Conclusion 00

Temperature Model

Diffusion in the vertical direction

$$\partial_{zz} T(r,\varphi,z,t) = 0,$$

with boundary conditions

Modelling

$$T = T_s(r, \varphi), \qquad \text{at } z = 0,$$

 $-\partial_z T = \operatorname{Bi}(T - T_{ambient}),$ at z = h.

Linear Stability /

Transient Simulation

Ring Rupture

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conclusion 00

Temperature Model

Diffusion in the vertical direction

$$\partial_{zz} T(r,\varphi,z,t) = 0,$$

with boundary conditions

Modelling

0.00

$$T = T_s(r, \varphi),$$
 at $z = 0,$

 $-\partial_z T = \operatorname{Bi}(T - T_{ambient}),$ at z = h.

The surface tension is a linear function of the (interface) temperature

$$\gamma(\vartheta) = \gamma_0 - \gamma_1 \vartheta(\mathbf{r}, \varphi), \qquad \vartheta = T|_{z=h}.$$

Ring Rupture

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion

Thin-Film Equation

At lowest order in the expansion, we get

$$\partial_t h + \nabla \cdot \left\{ -\frac{1}{2} h^2 \operatorname{Ma} \nabla \vartheta - \frac{1}{3} h^3 \nabla \left(-\nabla^2 h + \phi \right) \right\} = 0,$$

Marangoni Stress Pressure Ext. Potential

where the temperature at the interface is given by

$$\vartheta(r,\varphi) = \frac{T_s(r,\varphi) + \Theta \mathrm{Bi}h}{1 - \mathrm{Bi}h}.$$

We model the substrate temperature with a Gaussian profile.

$$T_s(r) = \mathrm{e}^{-r^2/s^2}.$$

Linear Stability Analysis

Transient Simulation

Ring Rupture

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Conclusion

Equilibrium Solution

When $\partial_t h = 0$, the TFE becomes

$$h^{\prime\prime\prime}=\tfrac{3}{2}\mathrm{Ma}\frac{\vartheta^{\prime}}{h}-\frac{h^{\prime\prime}}{r}+\frac{h^{\prime}}{r^{2}},\qquad r\in[0,1].$$

Solved using the shooting method with boundary conditions

$$h'(0) = 0,$$
 $h(1) = 0,$ $h'(1) = -\alpha.$

ckground 00 elling Li

Linear Stability Analysis

Transient Simulation

Ring Rupture

Conclusion 00

Equilibrium Solution

When $\partial_t h = 0$, the TFE becomes

$$h^{\prime\prime\prime}=\tfrac{3}{2}\mathrm{Ma}\frac{\vartheta^{\prime}}{h}-\frac{h^{\prime\prime}}{r}+\frac{h^{\prime}}{r^{2}}, \qquad r\in[0,1].$$

Solved using the shooting method with boundary conditions

$$h'(0) = 0,$$
 $h(1) = 0,$ $h'(1) = -\alpha.$

The Stokes stream function is given by

$$\psi(r,z;h) = \frac{1}{2}\mathrm{Ma}z^2 r\psi' - \left(\frac{1}{2}hz^2 - \frac{1}{6}z^3\right)r\frac{\partial}{\partial r}\left(h'' + \frac{h'}{r}\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

0000

Linear Stability Analysis

Ring Rupture

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Equilibrium Solution

(a) Homogeneous heating $T_s(r) = 0$.

(b) Localized heating $T_s(r) = e^{-r^2/0.2^2}$.

ound Mode

Linear Stability Analysis

Transient Simulation

Ring Rupture

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion 00

Linear Stability Analysis

Introduce small perturbation to the equilibrium solution h_0 ,

$$h(r,\varphi,t) = h_0(r) + h_1(r)e^{\sigma t + ik\varphi}, \qquad k = 0, 1, 2, \dots$$

The linearized TFE becomes

$$\mathcal{L}h_1 = A_4 h_1''' + A_3 h_1''' + A_2 h_1'' + A_1 h_1' + A_0 h_1 = \sigma h_1.$$

This eigenvalue problem can be solved using a Chebyshev method with appropriate boundary conditions.

Modelling Li

Linear Stability Analysis

Transient Simulation

Ring Rupture

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Conclusion 00

Eigenmodes and Eigenvalues

The equilibrium solutions are stable!

Precursor Film

To understand the onset of the twin vortices, we perform transient simulations. But need to avoid the contact-line singularity. Hence, we introduce a **precursor film**.

The potential has the form:

$$\phi(h) = \mathcal{A}(\varepsilon^2 h^{-2} - \varepsilon^3 h^{-3}).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

With this, we can simulate off-centered heating.

Mode

Linear Stability Ana

Transient Simulation

Ring Rupture

Conclusion

Off-centered Heating

The velocity field can be computed with

$$(u, v) = -\operatorname{Maz} \nabla \vartheta + \left(\frac{1}{2}z^2 - hz\right) \nabla (-\nabla^2 h + \phi),$$

and the *z*-component of the vorticity is given by

$$\omega_z(x,y,z,t) = \partial_x v - \partial_y u.$$

Simulation of off-centered heating revealed twin vortical flow on the droplet interface.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Modelling 000 inear Stability Analysis

Transient Simulation

Ring Rupture

Conclusion 00

Rupturing

Rupturing occurs for certain parameter values. Physically:

- Low CA α
- High heating power

We provide a precise criterion for rupture in terms of α and Ma next.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Aodelling

near Stability Analysis

Transient Simulation

Ring Rupture

Conclusion

Rupture – Parameter Space

Parameter space with regions for droplet solutions and ring-shaped solutions ($r_* = 1$) Analysis of the base-state ODE reveals a necessary condition for no rupture in the case Bi = 0:

$$\alpha^2 \geq 3\mathrm{Ma}\left[T_s(0) - T_s(r_*)\right].$$

- $\alpha \sim Ma^{1/2}$ for small Ma;
- Transition curve 'curves back down towards zero' for finite Bi.

・ロト・日本・日本・日本・日本・日本・日本

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion 00

Plateau-Rayleigh Instability

- Slightly off-centred heating and parameter values corresponding to ring rupture.
- Leads to droplet breakup into smaller and larger regions.

- Axisymmetric heating is linearly stable to small perturbation (in the lubrication theory).
- Twin vortical flow can be induced by slight off-centred heating.
- For certain parameter combinations, a ring rupture occurs.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

near Stability Analysis

Transient Simulation

Ring Rupture

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion

Acknowledgments

- Funding from ThermaSMART (Marie Sklodowska–Curie grant agreement No. 778104).
- Funding from Science Foundation Ireland (Centre for Research Training in Foundations of Data Science, Grant Number 18/CRT/6049)