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Marangoni Convection

• Marangoni flow is the flow
induced by surface-tension
gradients.

• Gradient can be caused by a
temperature difference.

• Ehrhard and Davisa studied
droplets with homogeneous
heating.

aP. Ehrhard and S. H. Davis,
Journal of Fluid Mechanics 229,
365–388 (1991).

Substrate
Contact line

Vertical slice

Axisymmetric Marangoni current
– homogeneously heated
substrate
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Applications?

Hu and Larson. “Marangoni
Effect Reverses Coffee-Ring
Depositions” (2006).

Pearlman et. al., “Controlling
Droplet Marangoni Flows to
Improve Microscopy-Based TB
Diagnosis” (2021).
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Motivation

• Localised heating via a laser
at the centre of the droplet.

• Twin vortical flow parallel to
the substrate was observed.

• Contact angle = 104◦,
radius = 1.4mm.

45◦C

55◦C

Askounis et al. (2017)a

aA. Askounis, Y. Kita, M. Kohno,
Y. Takata, V. Koutsos, and K. Sefiane,
Langmuir 33, 5666 (2017), pMID:
28510453
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Problem Statement

• Can localised heating at the
centre induce twin vortical
flow parallel to the
substrate?

• Deformation of the droplet
interface in the case of
inhomogeneous heated
substrate.

Substrate
Contact line

Horizontal slice

Schematic description of the twin
vortical flow
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Lubrication Theory

Dramatic assumption – for theoretical understanding of problem.
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Cylindrical polar coordinates (r , φ, z)

• When α is small, the
Navier–Stokes equations
can be simplified.

• The thin-film equation
describes the evolution of
the interface height h.

• The internal flow (velocity
field) can be recovered
from h.
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Temperature Model

Diffusion in the vertical direction

∂zzT (r , φ, z , t) = 0,

with boundary conditions

T = Ts(r , φ), at z = 0,

−∂zT = Bi(T − Tambient), at z = h.

The surface tension is a linear function of the (interface)
temperature

γ(ϑ) = γ0 − γ1ϑ(r , φ), ϑ = T |z=h.
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Thin-Film Equation

At lowest order in the expansion, we get

∂th +∇ ·
{
−1

2h
2Ma∇ϑ− 1

3h
3∇

(
−∇2h + ϕ

)}
= 0,

Marangoni Stress Pressure Ext. Potential

where the temperature at the interface is given by

ϑ(r , φ) =
Ts(r , φ) + ΘBih

1− Bih
.

We model the substrate temperature with a Gaussian profile.

Ts(r) = e−r2/s2 .
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Equilibrium Solution

When ∂th = 0, the TFE becomes

h′′′ = 3
2Ma

ϑ′

h
− h′′

r
+

h′

r2
, r ∈ [0, 1].

Solved using the shooting method with boundary conditions

h′(0) = 0, h(1) = 0, h′(1) = −α.

The Stokes stream function is given by

ψ(r , z ; h) = 1
2Maz2rψ′ −

(
1
2hz

2 − 1
6z

3
)
r
∂

∂r

(
h′′ +

h′

r

)
.
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Equilibrium Solution

(a) Homogeneous heating Ts(r) = 0.

(b) Localized heating Ts(r) = e−r2/0.22 .
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Linear Stability Analysis

Introduce small perturbation to the equilibrium solution h0,

h(r , φ, t) = h0(r) + h1(r)e
σt+ikφ, k = 0, 1, 2, . . . .

The linearized TFE becomes

Lh1 = A4h
′′′′
1 + A3h

′′′
1 + A2h

′′
1 + A1h

′
1 + A0h1 = σh1.

This eigenvalue problem can be solved using a Chebyshev method
with appropriate boundary conditions.
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Eigenmodes and Eigenvalues

The equilibrium solutions are stable!
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Precursor Film

To understand the onset of the twin vortices, we perform transient
simulations. But need to avoid the contact-line singularity. Hence,
we introduce a precursor film.

r

z

h(r , φ, t)

Precursor film O(ε)

Contact regiongas

liquid

solid

The potential has the form:

ϕ(h) = A(ε2h−2 − ε3h−3).

With this, we can simulate off-centered heating.
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Off-centered Heating

The velocity field can be computed with

(u, v) = −Maz∇ϑ+
(
1
2z

2 − hz
)
∇(−∇2h + ϕ),

and the z-component of the
vorticity is given by

ωz(x , y , z , t) = ∂xv − ∂yu.

Simulation of off-centered
heating revealed twin vortical
flow on the droplet interface.
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Rupturing

Rupturing occurs for
certain parameter
values. Physically:

• Low CA α

• High heating
power

We provide a precise
criterion for rupture in
terms of α and Ma
next.



Background Modelling Linear Stability Analysis Transient Simulation Ring Rupture Conclusion

Rupture – Parameter Space

Parameter space with regions for

droplet solutions and ring-shaped

solutions (r∗ = 1)

Analysis of the base-state
ODE reveals a necessary con-
dition for no rupture in the
case Bi = 0:

α2 ≥ 3Ma [Ts(0)− Ts(r∗)] .

• α ∼ Ma1/2 for small Ma;

• Transition curve ’curves
back down towards zero’
for finite Bi.
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Plateau–Rayleigh Instability
• Slightly off-centred heating and parameter values
corresponding to ring rupture.

• Leads to droplet breakup into smaller and larger regions.
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Conclusion

• Axisymmetric heating is linearly stable to small perturbation
(in the lubrication theory).

• Twin vortical flow can be induced by slight off-centred
heating.

• For certain parameter combinations, a ring rupture occurs.
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