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The Landau–de Gennes Equation

In the absence of flow, the Landau–de Gennes equation governs the orientation
dynamics of an ensemble of liquid-crystal molecules:

ζ1
∂Q

∂t
= −

[
δF

δQ
− 1

3 tr

(
δF

δQ

)
I
]

where Q is the (symmetric, traceless) Q-tensor encoding information about the
orientation of the molecules and F is the Landau free energy functional.

Shown are snapshots of the scalar order parameter S =
√

6tr(Q2). The system
forms domains – coherent regions where the system relaxes locally to a single
(stable) fixed point. The domains grow in time – coarsening.
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Liquid-crystal dynamics with flow

An appropriate (materially frame-indifferent) model coupling the Q-tensor
dynamics to hydrodynamics leads to a model with a highly non-Newtonian form
for the stress tensor:

Q-tensor: ζ1

(
∂Q

∂t
+ v · ∇Q−ΩQ−QΩ

)
+ ζ2D︸︷︷︸

Note inhomogeneity!

=

k∇2Q−
(
αFQ− 3βFQ2 + 4γF tr(Q2)Q

)
+ 1

3 I
[
ζ2tr(D)− 3βF tr(Q2)

]
,

Hydrodynamics: ρ0

(
∂v

∂t
+ v · ∇v

)
= ∇ ·T,

T = −pI− k∇Q�∇Q + ζ2
◦
Q +ζ3D + ζ31(DQ + QD) + ζ32(D ·Q)Q,

Incompressibility: ∇ · v = 0.
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Non-dimensional equations – dimensionless groups
Length scale ` and timescale t0 = ζ1/(8γF ) – hence dimensionless Q-tensor
equation

∂Q

∂t̃
+ ṽ · ∇̃Q− Ω̃Q−QΩ̃ + Tu︸︷︷︸

=(ζ2/ζ1)

D̃

= ε2∇̃2Q+g1(1−θ)Q+3g2Q
2− 1

2 tr(Q2)Q+ 1
3 I
[
Tu tr(D̃)− 3g2tr(Q2)

]
,

where

αF /(8γF ) = −g1[1− (T/T∗)] ≡ −g1(1− θ), βF /(8γF ) = g2, ε
2 = k/(8`2γF ).

Hence also, a dimensionless momentum equation:

∂ṽ

∂t̃
+ ṽ · ∇̃ṽ = −∇̃p̃+

1

Re
∇ · D̃ + Br∇ ·

[
−ε2∇̃Q� ∇̃Q + · · ·

]
,

where

Br =
ζ1

ρ0`(`/t0)
, Re =

ρ0`(`/t0)

ζ3
.
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Limiting case

We work on the limit where Br = 0 – no feedback of Q-tensor gradients into the
flow – flow is independent of Q-tensor. We can therefore apply standard chaotic
flows to the Q-tensor dynamics

∂Q

∂t̃
+ ṽ · ∇̃Q− Ω̃Q−QΩ̃ + Tu︸︷︷︸

=(ζ2/ζ1)

D̃

= ε2∇̃2Q + g1(1− θ)Q + 3g2Q
2 − 1

2 tr(Q2)Q + 1
3 I
[
Tu tr(D̃)− 3g2tr(Q2)

]
,

The flow timescales and the tumbling parameter Tu are the key parameters.
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Two-dimensional geometry

We work with a sample confined between two narrowly separated parallel plates.
Anchoring conditions are applied in the same fashion at the top and bottom
walls such that the director is parallel to the plates.

x, y

z

As such, the Q-tensor simplifies:

Q =

 q r 0
r s 0
0 0 −(q + s)

 .
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Fixed-point analysis

We look at fixed points for v = ∇ = ∂t = 0. Remarkably, all fixed points can be
found in closed form (not shown) and classified:

Case 1a (r = 0, s = q) gives stable and unstable states – biaxial

Case 1b,c (r = 0, s 6= q) give neutral and unstable state – uniaxial

Case 2 gives neutral and unstable state – uniaxial
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Model sine flow
We use a model (quasi-) periodic velocity field,

u = A sin (k0y + ϕn) , 0 ≤ mod(t, τ) < 1
2τ,

v = A sin (k0x+ ψn) , 1
2τ ≤ mod(t, τ) < τ,

which mimics the effect of turbulence at high Prandtl number.
The phases ϕn and ψn are held constant or are randomized periodically.
The velocity field has a Lagrangian timescale given by the Lyapunov exponent
Λ, which can be computed for the constant-phase and random-phase cases.
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Results – no tumbling, constant-phase sine flow
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Coarsening is arrested / overwhelmed
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Discussion / Conclusions

Stirring by inhomogeneous shear affects orientation of liquid-crystal molecules:

Low values of τ – domain structures ‘frozen in’ to flow structure.

High values – domains overwhelmed and everything relaxes to biaxial state.

Random-phase sine flow – everything is biaxial.

Understanding depends on studying dynamics along Lagrangian trajectories:

d

dt

 q
r
s

 =

 F1(q, r, s)
F2(q, r, s)
F3(q, r, s)

+

 2rΩ12

Ω12(s− q)
−2rΩ12

 ,
Tu = 0,

(Diffusion negligible)

Ongoing work – investigate robustness of results to different model flows

Future work – Apply known techiques to the reduced planar model:
I Bounds and a priori estimates
I Lubrication theory
I DNS of the fully coupled system – the backreaction will be back!
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