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Context of work I
Below a critical temperature, mixtures made up of two immiscible
components may separate into their component parts.
This happens in applications including polymer science and metallurgy.

(a) Phase separation in a polymer
mixture

(b) Phase separation
in a molten alloy
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Context of work II

A mathematical model (first introduced for the binary alloys) for phase separation
is the Cahn–Hilliard equation:

∂c

∂t
= D∇2

(
c3 − c− γ∇2c

)
, [Note:

d

dt

∫
Ω

c(x, t)dnx = 0],

where c is the concentration field, D is the diffusion coefficient and
√
γ is a length.

The solution is c = ±1 in domains with
transition regions of thickness

√
γ in be-

tween. The domains grow in time. The
constant solution c = 0 is a well-mixed
state but it is unstable.

The values c = ±1 are energetically
favourable.
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Context of work III
In applications, it can be desirable to ‘tune’ the phase separation to achieve a
certain outcome – for instance, a certain well-defined structure for the
domains.

In this talk we look at travelling-wave forcing as a means of achieving this
– this can be achieved in practice by differential heating of the binary fluid
and hence, inducing concentration gradients via temperature gradients.

The focus of this talk is on developing an analytical theory – we therefore
look at a simple model with a travelling-wave forcing term in one spatial
dimension:

∂c

∂t
= D

∂2

∂x2

(
c3 − c− γ ∂

2c

∂x2

)
+ f0k cos[k(x− vt)], x ∈ (−∞,∞),

where f0 is the forcing amplitude, etc.

With appropriate boundary conditions, the forcing term is consistent with the
conservation of the spatial mean concentration,

d

dt

∫ ∞
−∞

c(x, t) dx = 0.
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Preliminaries I
We seek travelling-wave periodic solutions of the forced Cahn–Hilliard
equaiton,

c(x, t) = ψ(η), η = x− vt, ψ(η + L) = ψ(η), L = 2π/k.

As such, we seek solutions of the ODE

−dψ

dη
= D

d2

dη2

(
ψ3 − ψ − γ d

2ψ

dη2

)
+ f0k cos(kη).

We can integrate once to reduce the order. After eliminating constants of
integration, we get

γD
d3ψ

dη3
= D

d

dψ
(ψ3 − ψ) + v(ψ − 〈ψ〉) + f0 sin(kη), (1)

Spatial average: 〈ψ〉 = L−1
∫ L

0
ψ(η) dη.

The aim of the talk is to characterize the solutions of Equation (1).
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Preliminaries II
Motivated by applications, we can take ε = γ/L2 → 0. We attempt a regular
perturbation theory, with ψ(η) = ψ0(η) + εψ1(η) + · · · . This quickly gives us two
important scenarios:

1 The regular limit: The regular perturbation theory is valid, and we solve

0 = D
d

dψ
(ψ3 − ψ) + v(ψ − 〈ψ〉) + f0 sin(kη),

i.e. a first-order inhomogeneous ODE (reduced-order model).
2 The singular limit applies when the regular perturbation theory breaks

down. The singular limit requires an examination of the ODE (1) with higher
derivatives (the full model).

Important solution: When f0 = v = 0, we have the following special solution
of the full model:

ψ(η) = tanh

(
η − η0√

γ

)
.

Knowing this will later on help us to characterize the singular limit (full
model) with f0 and v nonzero, but with ε→ 0.
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Reduced-order model – parameter space

Travelling waves, binary fluids 19th November 2018 7 / 15



The white area in the parameter space indicates a
breakdown of the reduced-order model
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Reduced-order model – Rigorous theoretical analysis

Although the figure explains everything, it is not rigorous.

We can prove rigorous results in the subcases, e.g. Case 1, with initial
conditions in the range

I = [a, b] = [〈ψ〉 − (f0/v), 〈ψ〉+ (f0/v)].

We construct a map f : I → R that takes initial conditions (η = 0) in I to
final conditions at η = L. Only delicately-chosen initial/final conditions lead
to periodic solutions.

Periodic solutions of the reduced-order model correspond to fixed points of
the map, i.e. f(ψ∗) = ψ∗ corresponds to a periodic solution
ψ(η + L) = ψ(η), with ψ(0) = ψ(L) = ψ∗.

We have used Brouwer’s Fixed Point Theorem to show that this map
exists for the subcases 0-2. We have used Banach’s Fixed Point Theorem
to show uniqueness.
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The full model

We look now at the full model – this covers cases where the reduced-order
model breaks down.

The full model is recalled here as (nondimensional, with γ → ε and D → 1)
corresponding to the small interface width:

ε
d3ψ

dη3
=

d

dη

(
ψ3 − ψ

)
+ v (ψ − 〈ψ〉) + f0 sin(kη). (2)

A first approach is to do direct numerical simulations of the corresponding
temporally-evolving equation (TENS):

∂c

∂t
− v ∂c

∂η
=

∂2

∂η2

(
c3 − c− ε ∂

2c

∂η2

)
+ f0k cos(kη), (moving frame). (3)

From the TENS (Equation (3)) we look for the emergence of travelling-wave
solutions c(η, t)→ ψ(η) – i.e. solutions of (2).
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Two distinct travellling-wave solutions are observed in the
full model
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A1 travelling waves

The A1 travelling waves (blue squares) are new. These can be understood
using an intuitive singular perturbation theory, valid as ε→ 0.

This theory dates back to ideas by Ockendon, Cox, and Mackey, who used
the same approach for forced waves in shallow-water models.

Details are skipped – inner solution is tanh-like profiles; outer solution is a
balance between cubic and forcing terms – these are matched by hand in an
informal version of the theory.

Theory valid only for v = 0; travelling-wave velocity interpreted as a phase
shift.
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The Newton solver

The idea now is to use this informal theory to construct approximate solution as a
starting value in a Newton solver for Equation (2). This works!
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Conclusions

We have rigorously analyzed the travelling-wave solutions of the forced
Cahn–Hilliard equation.

The analysis relies on a range of tools from Dynamical Systems.

Construction of a variety of travelling-wave solutions has been accomplished
with a Newton solver with a judiciously-chosen initial guess.

The analysis reveals that the mean concentration 〈ψ〉 and the forcing
amplitude f0 are key parameters that control the shape of the travelling-wave
solutions.

Submitted work:

https://arxiv.org/abs/1807.08538

Thanks to Ted Cox for showing me this problem.
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Solutions constructed using the Newton Solver agree with
the TENS
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The Newton Solver also produces multiple-spike solutions.

The theory of initial guesses can also be used to generate multiple-spike
solutions.

These are all linearly unstable, so will only feature transiently in the TENS.

Cox and Mackey also observed multiple-spike solutions in their work on
forced waves in shallow-water models.
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