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Abstract

This is a companion document to our journal article of the same title.
We provide detailed proofs for the results stated in the main article. These
calculations would be of use in a classroom setting, where they could serve
as detailed and challenging exercises. In a second section of this companion
document, we also give details of the MATLAB script used to compute the
eigenvalues of the Bloch spectral cell problem.

1 Details of the calculations described in the main paper

The first calculation herein relates to a comment in the main paper that the results
of the homogenization theory depend on the correct choice of scaling for the non-
dimensional parameters α and β (these measure the strength of the periodic and
large-scale potentials respectively). Here, we demonstrate that choosing α = 1/ε
and β = 0, together with a time derivative that incorporates only large-scale tem-
poral variations does not lead to a band-gap structure, but rather results in a net
downward shift of all the energy levels, relative to the free-electron. The calculation
can also be viewed as a full solution to problem 15, Chapter 12 in Reference [1].

Theorem 1 Consider the following non-dimensional Schrödinger equation,

λψε = −∂
2ψε

∂x2
+

1

ε
V0

(x
ε

)
ψε, x ∈ (0, 1), (1)

with periodic boundary conditions ψε(x = 0) = ψε(x = 1). Let λ be an O(1)
eigenvalue, and let V0(·) be a continuous 1-periodic function on [0, 1]. Then, standard
homogenization theory leads to a homogenized Schrödinger equation whose energy
levels are less than the ‘free’ case (i.e. V0 = 0).

Proof: We follow standard practice in homogenization theory and treat x and
y := x/ε as independent large-scale and small-scale variations respectively, such
that the spatial derivative becomes.

∂

∂x
→ ∂

∂x
+

1

ε

∂

∂y
. (2)
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We replace ψε(x) with ψ(x, y), a function of two variables, and expand the latter in
powers of ε:

ψ(x, y) =
∞∑
p=0

εpψp(x, y). (3)

Substitution of this expansion into Equation (1) yields

−
(
∂2

∂x2
+

2

ε

∂2

∂x∂y
+

1

ε2
∂2

∂y2

) ∞∑
p=0

εpψp(x, y)+
1

ε
V0 (y)

∞∑
p=0

εpψp(x, y) = λ

∞∑
p=0

εpψp(x, y).

(4)
We equate the terms arising from each order in the power-series expansion. At
O(ε−2), we have

∂2ψ0

∂y2
= 0, (5)

hence ψ0 = ψ0(x) alone. At O(ε
−1), the result reads

−2
∂2ψ0

∂x∂y
− ∂2ψ1

∂y2
+ V0(y)ψ0 = 0. (6)

Using ψ0 = ψ0(x), this becomes

∂2ψ1

∂y2
= V0(y)ψ0(x). (7)

We assume without loss of generality that the potential has zero mean. This amounts
to choosing a particular reference level for the potential function. Then, Equation (7)
has solution

ψ1(x, y) = ψ0(x)
∂−2V0
∂y−2

,

where
∂−2V0
∂y−2

:= − 1

4π2

∞∑
n=1

1

n2
[an cos(2πny) + bn sin(2πny)] ,

and where an and bn are the Fourier coefficients of the periodic potential V0(y) (the
coefficient a0 is zero because V0 has mean zero). Finally, at O(1), we have

−∂
2ψ0

∂x2
− 2

∂2ψ1

∂x∂y
− ∂2ψ2

∂y2
+ V0(y)ψ1 = λψ0. (8)

We average Equation (8) over the small-scale variations to obtain

−∂
2ψ0

∂x2
+ ⟨V0(y)ψ1(x, y)⟩ = λψ0, (9)

2
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where ⟨·⟩ =
∫ 1

0
(·) dy denotes averaging. It remains to compute the term ⟨V0(y)ψ1(x, y)⟩:

⟨V0(y)ψ1(x, y)⟩ =

∫ 1

0

V0(y)ψ1(x, y)dy,

= ψ0(x)

∫ 1

0

V0(y)
∂−2V0
∂y−2

dy,

= −ψ0(x)

∫ 1

0

(
∂−1V0
∂y−1

)2

dy,

= −ψ0(x)

∫ 1

0

{ ∞∑
n=1

1

2πn
[an sin(2πny)− bn cos(2πny)]

}2

dy,

= −ψ0(x)
∞∑
n=1

1

8π2n2

(
a2n + b2n

)
,

:= −Dψ0(x),

where D is a positive constant. The homogenized equation (9) therefore reads

−∂
2ψ0

∂x2
−Dψ0 = λψ0. (10)

We solve this in a standard fashion, with periodic boundary conditions ψ = 0 at
x = 0, 1. The result is ψ0(x) = (2π)−1/2e2πinx, with n ∈ Z. Thus,

λn = 4π2n2 −D,

and λn ≤ 4π2n2, such that the energy levels undergo a downward shift relative to
the solution for the free-particle (V0 = 0) calculation.

Theorem 2 The Bloch spectral-cell problem defined in the main paper, viz.

λf(y; k) = −
(
∂

∂y
+ ik

)2

f(y; k) + V0(y)f(y; k), f(0; k) = f(1; k), (11)

is self-adjoint.

Proof: Since V0(y) in Equation (11) is a a potential energy, it is a real-valued
function. Thus, it suffices to show that the operator (d/dy + ik)2 is self-adjoint.
Thus, let f and g be complex-valued functions of the single real-variable y, periodic
on the interval [0, 1]. The inner product of f and g is defined in the usual way:

⟨f, g⟩ :=
∫ 1

0

f ∗g dy.

We compute ⟨f, (d/dy + ik)2g⟩, and use integration by parts (I.B.P.) repeatedly.
Moreover, we use the fact that the boundary conditions are periodic, such that

3
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boundary terms in the integration by parts vanish. We have,

⟨f, (d/dy + ik)2g⟩ =

∫ 1

0

f ∗
(
d

dy
+ ik

)2

g dy,

=

∫ 1

0

f ∗
(
d2g

dy2
+ 2ik

dg

dy
− k2g

)
dy,

I.B.P.
=

∫ 1

0

(
d2f ∗

dy2
− 2ik

df∗

dy
g − k2f ∗g

)
dy,

=

∫ 1

0

[
d2f ∗

dy2
+

d

dy
(2ikf)∗ − k2f ∗

]
g dy,

=

∫ 1

0

[(
d

dy
+ ik

)2

f

]∗
g dy,

= ⟨(d/dy + ik)2f, g⟩.

In the main paper, it was shown that the solution to the O(ε−1) and O(1)
problems could be computed in terms of the Bloch functions for the particular case
where k = kn, where (dλ/dk)kn = 0. In particular, it was found that

u1 = −i
∂ϕ

∂x

∂f

∂k

∣∣∣∣
kn

, u2 = −1
2

∂2ϕ

∂x2
∂2fn
∂k2

∣∣∣∣
kn

, k = kn,

provided ϕ satisfies the following consistency condition:

i
∂ϕ

∂t
= −1

2

(
d2λn
dk2

)
kn

∂2ϕ

∂x2
+ V1,eff(x)ϕ(x), (12a)

where

V1,eff(x) =

∫ 1

0

dy |fn(y; kn)|2V1(x, y). (12b)

We now prove the following theorem:

Theorem 3 Let the spectral cell problem

λnfn(y; k) = −
(
∂

∂y
+ ik

)2

fn(y; k) + V0(y)fn(y; k), fn(0; k) = fn(1; k), (13)

be non-degenerate. Introduce

ϕ̃(x, t) = ϕ

(
x− 1

ε

dλ

dt
t, t

)
,

where ϕ(·, ·) solves Equations (12). Then

u0 = e−iλnTfn(y; k)ϕ̃(x, t), u1 = −

(
i
∂ϕ̃

∂x

∂fn
∂k

)
e−iλnT , u2 = −

(
1
2

∂2ϕ̃

∂x2
∂2fn
∂k2

)
e−iλnT ,

4
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solves the problem(
1

ε2
L0 +

1

ε
L1 + L2

)(
u0 + εu1 + ε2u2

)
= O(ε), (14a)

where

L0 = i
∂

∂T
−
[
− (∂y + ik)2 + V0(y)

]
, (14b)

L1 = −2 (−ik∂x − ∂x∂y) , (14c)

L2 = i
∂

∂t
−
[
−∂2x + V1(x, y)

]
. (14d)

Proof: We expand the left-hand side of the problem (14a) explicitly:(
1

ε2
L0u0

)
+
1

ε
(L1u0 + L0u1)+(L2u0 + L1u1 + L0u2)+ε (L2u1 + L1u2)+ε

2 (L2u2) .

The O(ε−2) contribution to Equation (14a) reads

i
∂u0
∂T

= −
(
∂

∂y
+ ik

)2

u0 + V0(y)u0.

Clearly, this equation is solved by the ansatz u0 = e−iλnTfn(y; k)ϕ̃(x, t) proposed
in the statement of the theorem. We therefore consider the contributions to Equa-
tion (14a) at O(ε−1). Care must be taken here, as this problem contains not only
the terms ε−1 (L1u0 + L0u1), but also a contribution from the term L2u0, since

εL2u0 = iε
∂

∂t

[
e−iλnTfn(y; k)ϕ̃

(
x− 1

ε

dλn
dk

t, t

)]
− ε

[
−∂2x + V1(x, y)

]
e−iλnTfn(y; k)ϕ̃

(
x− 1

ε

dλn
dk

t, t

)
,

= iεe−iλnTfn(y; k)

(
−1

ε

dλn
dk

∂ϕ̃

∂x
+
∂ϕ̃

∂t

)
+O(ε),

= −ie−iλnTfn(y; k)
dλn
dk

∂ϕ̃

∂x
+O(ε),

L2u0 = −1

ε
ie−iλnTfn(y; k)

dλn
dk

∂ϕ̃

∂x
+O(ε0), (15)

Next, we make the replacement ∂/∂T → −iλn. This is legitimate, as the eigenstates
are one-dimensional; hence, time derivatives in a particular eigenstate correspond
unambiguously to a single eigenfunction. Using these results, and the definitions of
L0 and L1, the problem (14a) at O(ε−1) reads

λnu1 − fn
∂ϕ̃

∂x

dλn
dk

= −
(
∂

∂y
+ ik

)2

u1 + V0(y)u1 − 2ikfn
∂ϕ̃

∂x
− 2

∂fn
∂y

∂ϕ̃

∂x
, (16)

5
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where the underlined term comes from the chain-rule calculation (15). We propose

the trial solution u1 = g(y; k)(∂ϕ̃/∂x). Substitution of this ansatz into (16) yields

λng − ifn
dλn
dk

= −
(
∂

∂y
+ ik

)2

g + V0(y)g − 2ikfn − 2
∂fn
∂y

.

On the other hand, consider the derivative of the Bloch spectral cell problem (13)
with respect to k:

dλn
dk

fn + λn
∂fn
∂k

= −
(
∂

∂y
+ ik

)2
∂fn
∂k

+ V0(y)
∂fn
∂k

− 2i

(
∂

∂y
+ ik

)
fn

Comparison of these two equations yields g(x, t) = −i(∂fn/∂k) and u1 = −i(∂fn/∂k)(∂ϕ̃/∂x).
The temporal dependence on the rapid timescale T is restored by multiplication of
this solution by the appropriate phase:

u1 = −i

(
∂fn
∂k

∂ϕ̃

∂x

)
e−iλnT .

Finally, consider the O(1) contribution to Equation (14a). Using the fact that

u1 = −i(∂fn/∂k)(∂ϕ̃/∂x), and the chain rule, it follows that

∂u1
∂t1

= −i
∂fn
∂k

(
−1

ε

∂2ϕ̃

∂x2
dλn
dk

+
∂2ϕ̃

∂x∂t1

)
. (17)

Hence, the term L2u1 contributes to the O(1) problem, which now reads

λu2 −
∂fn
∂k

dλn
dk

∂2ϕ̃

∂x2
+ ifn

∂ϕ̃

∂t1
= −fn

∂2ϕ̃

∂x2
+ V1(x, y)fnϕ̃−

(
∂

∂y
+ ik

)2

u2 + V0(y)u2

− 2ik
∂u1
∂x

− 2
∂2u1
∂x∂y

, (18)

where the underlined term arises because of the application (17) of the chain rule.
We substitute the O(ε−1) solutions into Equation (18). This yields

λnu2 −
∂fn
∂k

dλn
dk

∂2ϕ̃

∂x2
+ ifn

∂ϕ̃

∂t1
= −fn

∂2ϕ̃

∂x2
+ V1(x, y)fnϕ̃−

(
∂

∂y
+ ik

)2

u2 + V0(y)u2

− 2k
∂fn
∂k

∂2ϕ̃

∂x2
+ 2i

∂2fn
∂y∂k

∂ϕ̃

∂x2
.

We make the trial solution u2 = h(y; k)(∂2ϕ̃/∂x2), such that

λnh
∂2ϕ̃

∂x2
− ∂fn

∂k

dλn
dk

∂2ϕ̃

∂x2
+ ifn

∂ϕ̃

∂t1
= −fn

∂2ϕ̃

∂x2
+ V1(x, y)fnϕ̃− ∂2ϕ̃

∂x2

(
∂

∂y
+ ik

)2

h

− 2k
∂fn
∂k

∂2ϕ̃

∂x2
+ 2i

∂2fn
∂y∂k

∂ϕ̃

∂x2
. (19)

6
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On the other hand, consider also the second derivative of the spectral cell equa-
tion (13) with respect to k:

λ
∂2fn
∂k2

+2
∂fn
∂k

dλn
dk

+fn
∂2λ

∂k2
= V0(y)

∂2fn
∂k2

−
(
∂

∂y
+ ik

)2
∂2fn
∂k2

−4i

(
∂

∂y
+ ik

)
∂fn
∂k

+2fn.

(20)
Comparing Eqs. (19) and (20) yields

u2 = −1
2

∂2fn
∂k2

∂ϕ̃

∂x2
,

provided the consistency condition

i
∂ϕ̃

∂t1
fn(y; k) = −1

2

d2λn
dk2

∂2ϕ̃

∂x2
fn(y; k) + V1(x, y)ϕ̃fn(y; k) (21)

is satisfied. We multiply Equation (21) by f ∗
n and integrating the result over all y ∈

[0, 1]. Since the fn’s are orthonormal eigenfunctions on this interval, this integration
yields

i
∂ϕ̃

∂t1
= − 1

2meff

∂2ϕ̃

∂x2
+ V1,eff(x)ϕ̃,

where

meff =

(
1
2

d2λn
dk2

)−1

,

and

V1,eff(x) =

∫ 1

0

|fn(y; k)|2V1(x, y)dy.

Again, the temporal dependence on the rapid timescale T is restored by multiplica-
tion of this solution by the appropriate phase:

u2 = −

(
1
2

∂2fn
∂k2

∂ϕ̃

∂x2
,

)
e−iλnT .

The final theorem in this companion document concerns an application of Hölder’s
inequality to the effective-mass calculation in the Sec. V of the main paper, wherein
it is shown that

meff(n = 0, k = 0) ≥ m,

where m is the ordinary inertial mass.

Theorem 4 Let f : [0, 1] → R be a continuous, strictly positive function on [0, 1]:
f(x) > 0, for all x ∈ [0, 1]. Then 1/f is integrable and, moreover,(∫ 1

0

(1/f) dx

)−1

≤
∫ 1

0

f dx.

7
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Proof: Since f(x) is continuous on [0, 1] it is bounded and continuous on the same
interval, and is therefore integrable. Moreover, since f is strictly positive on [0, 1],
the function 1/f is bounded and continuous on the same interval, and is therefore
integrable. Consider now Hölder’s inequality for arbitrary integrable functions a(x)
and b(x) on [0, 1]: ∫ 1

0

|ab| dx ≤ ∥a∥2∥b∥2,

where ∥ · ∥2 = (
∫ 1

0
(·)2 dx)1/2 is the usual L2 norm. Since f is strictly positive, we

set a = f 1/2 and b = 1/f 1/2 (both integrable functions) to obtain

1 ≤ ∥f 1/2∥2∥f−1/2∥2.

In other words,

1 ≤
[∫ 1

0

f dx

]1/2 [∫ 1

0

(1/f)dx

]1/2
.

Squaring both sides and re-arranging the inequality yields(∫ 1

0

(1/f) dx

)−1

≤
∫ 1

0

f dx.

2 Details of the numerical method described in the main
paper

In this section we include the MATLAB ‘.m’ file used to generate the first few
eigenvalues λ0, · · · , λN−1 of the Bloch spectral cell problem (Equation (11) herein),
for an arbitrary potential V0(y). The input parameters are k, the wavenumber, and
N , the number of collocation points in the numerical method. The number N can be
varied until the numerical method converges. The first output (labelled ‘lambdas’ in
the code) is an array containing an approximation to the first N eigenvalues in the
spectral cell problem, in increasing order. Typically, the lowest-energy eigenvalue is
the most accurately-computed value, while the accuracy decreases as one accesses
higher parts of the spectrum. However, a given large-energy eigenvalue can be
computed to any level of accuracy by increasing N . The other two outputs are the
matrices L and M described in the main paper.

function [lambdas,L_mx,M_mx] = make_all_matrices(k,N)

% This matlab function calculates the first N eigenvalues

% for a given input wavenumber k.

im=sqrt(-1);

% Create an array of spatial points, with resolution determined by N

jj = 1:(2*N+1);

yy = (0.5/(N+2))*jj;

8
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% Define the periodic potential

uu = 5*sin(2*pi*yy);

L_mx = zeros(2*N+1);

M_mx = zeros(2*N+1);

for j = 1:(2*N+1)

for n = -N:N

m = n + N + 1;

M_mx(j,m) = exp(2*pi*im*n*yy(j));

L_mx(j,m) = ((2*pi*n+k)^2)*exp(2*pi*im*n*yy(j)) ...

+ uu(j)*exp(2*pi*im*n*yy(j));

end

end

lambdas = eig(L_mx,M_mx);

% Check that the imaginary part of the eigenvalues is zero

% to machine precision, then make the reality of the eigenvalues

% explicit in the next line:

lambdas=real(lambdas);

lambdas=sort(lambdas);
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