Homogenization theory for periodic potentials in the Schrödinger equation - Supplementary Material

Lennon Ó NÁraigh ${ }^{1}$ and Doireann O'Kiely ${ }^{1,2}$
${ }^{1}$ School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4
${ }^{2}$ School of Physics, University College Dublin, Belfield, Dublin 4

Abstract

This is a companion document to our journal article of the same title. We provide detailed proofs for the results stated in the main article. These calculations would be of use in a classroom setting, where they could serve as detailed and challenging exercises. In a second section of this companion document, we also give details of the MATLAB script used to compute the eigenvalues of the Bloch spectral cell problem.

1 Details of the calculations described in the main paper

The first calculation herein relates to a comment in the main paper that the results of the homogenization theory depend on the correct choice of scaling for the nondimensional parameters α and β (these measure the strength of the periodic and large-scale potentials respectively). Here, we demonstrate that choosing $\alpha=1 / \varepsilon$ and $\beta=0$, together with a time derivative that incorporates only large-scale temporal variations does not lead to a band-gap structure, but rather results in a net downward shift of all the energy levels, relative to the free-electron. The calculation can also be viewed as a full solution to problem 15, Chapter 12 in Reference [1].

Theorem 1 Consider the following non-dimensional Schrödinger equation,

$$
\begin{equation*}
\lambda \psi_{\varepsilon}=-\frac{\partial^{2} \psi_{\varepsilon}}{\partial x^{2}}+\frac{1}{\varepsilon} V_{0}\left(\frac{x}{\varepsilon}\right) \psi_{\varepsilon}, \quad x \in(0,1) \tag{1}
\end{equation*}
$$

with periodic boundary conditions $\psi_{\varepsilon}(x=0)=\psi_{\varepsilon}(x=1)$. Let λ be an $O(1)$ eigenvalue, and let $V_{0}(\cdot)$ be a continuous 1-periodic function on $[0,1]$. Then, standard homogenization theory leads to a homogenized Schrödinger equation whose energy levels are less than the 'free' case (i.e. $V_{0}=0$).

Proof: We follow standard practice in homogenization theory and treat x and $y:=x / \varepsilon$ as independent large-scale and small-scale variations respectively, such that the spatial derivative becomes.

$$
\begin{equation*}
\frac{\partial}{\partial x} \rightarrow \frac{\partial}{\partial x}+\frac{1}{\varepsilon} \frac{\partial}{\partial y} . \tag{2}
\end{equation*}
$$

We replace $\psi_{\varepsilon}(x)$ with $\psi(x, y)$, a function of two variables, and expand the latter in powers of ε :

$$
\begin{equation*}
\psi(x, y)=\sum_{p=0}^{\infty} \varepsilon^{p} \psi_{p}(x, y) \tag{3}
\end{equation*}
$$

Substitution of this expansion into Equation (1) yields

$$
\begin{equation*}
-\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{2}{\varepsilon} \frac{\partial^{2}}{\partial x \partial y}+\frac{1}{\varepsilon^{2}} \frac{\partial^{2}}{\partial y^{2}}\right) \sum_{p=0}^{\infty} \varepsilon^{p} \psi_{p}(x, y)+\frac{1}{\varepsilon} V_{0}(y) \sum_{p=0}^{\infty} \varepsilon^{p} \psi_{p}(x, y)=\lambda \sum_{p=0}^{\infty} \varepsilon^{p} \psi_{p}(x, y) . \tag{4}
\end{equation*}
$$

We equate the terms arising from each order in the power-series expansion. At $O\left(\varepsilon^{-2}\right)$, we have

$$
\begin{equation*}
\frac{\partial^{2} \psi_{0}}{\partial y^{2}}=0 \tag{5}
\end{equation*}
$$

hence $\psi_{0}=\psi_{0}(x)$ alone. At $O\left(\varepsilon^{-1}\right)$, the result reads

$$
\begin{equation*}
-2 \frac{\partial^{2} \psi_{0}}{\partial x \partial y}-\frac{\partial^{2} \psi_{1}}{\partial y^{2}}+V_{0}(y) \psi_{0}=0 \tag{6}
\end{equation*}
$$

Using $\psi_{0}=\psi_{0}(x)$, this becomes

$$
\begin{equation*}
\frac{\partial^{2} \psi_{1}}{\partial y^{2}}=V_{0}(y) \psi_{0}(x) \tag{7}
\end{equation*}
$$

We assume without loss of generality that the potential has zero mean. This amounts to choosing a particular reference level for the potential function. Then, Equation (7) has solution

$$
\psi_{1}(x, y)=\psi_{0}(x) \frac{\partial^{-2} V_{0}}{\partial y^{-2}}
$$

where

$$
\frac{\partial^{-2} V_{0}}{\partial y^{-2}}:=-\frac{1}{4 \pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left[a_{n} \cos (2 \pi n y)+b_{n} \sin (2 \pi n y)\right]
$$

and where a_{n} and b_{n} are the Fourier coefficients of the periodic potential $V_{0}(y)$ (the coefficient a_{0} is zero because V_{0} has mean zero). Finally, at $O(1)$, we have

$$
\begin{equation*}
-\frac{\partial^{2} \psi_{0}}{\partial x^{2}}-2 \frac{\partial^{2} \psi_{1}}{\partial x \partial y}-\frac{\partial^{2} \psi_{2}}{\partial y^{2}}+V_{0}(y) \psi_{1}=\lambda \psi_{0} \tag{8}
\end{equation*}
$$

We average Equation (8) over the small-scale variations to obtain

$$
\begin{equation*}
-\frac{\partial^{2} \psi_{0}}{\partial x^{2}}+\left\langle V_{0}(y) \psi_{1}(x, y)\right\rangle=\lambda \psi_{0} \tag{9}
\end{equation*}
$$

where $\langle\cdot\rangle=\int_{0}^{1}(\cdot) \mathrm{d} y$ denotes averaging. It remains to compute the term $\left\langle V_{0}(y) \psi_{1}(x, y)\right\rangle$:

$$
\begin{aligned}
\left\langle V_{0}(y) \psi_{1}(x, y)\right\rangle & =\int_{0}^{1} V_{0}(y) \psi_{1}(x, y) \mathrm{d} y \\
& =\psi_{0}(x) \int_{0}^{1} V_{0}(y) \frac{\partial^{-2} V_{0}}{\partial y^{-2}} \mathrm{~d} y \\
& =-\psi_{0}(x) \int_{0}^{1}\left(\frac{\partial^{-1} V_{0}}{\partial y^{-1}}\right)^{2} \mathrm{~d} y \\
& =-\psi_{0}(x) \int_{0}^{1}\left\{\sum_{n=1}^{\infty} \frac{1}{2 \pi n}\left[a_{n} \sin (2 \pi n y)-b_{n} \cos (2 \pi n y)\right]\right\}^{2} \mathrm{~d} y \\
& =-\psi_{0}(x) \sum_{n=1}^{\infty} \frac{1}{8 \pi^{2} n^{2}}\left(a_{n}^{2}+b_{n}^{2}\right) \\
& :=-D \psi_{0}(x)
\end{aligned}
$$

where D is a positive constant. The homogenized equation (9) therefore reads

$$
\begin{equation*}
-\frac{\partial^{2} \psi_{0}}{\partial x^{2}}-D \psi_{0}=\lambda \psi_{0} \tag{10}
\end{equation*}
$$

We solve this in a standard fashion, with periodic boundary conditions $\psi=0$ at $x=0,1$. The result is $\psi_{0}(x)=(2 \pi)^{-1 / 2} \mathrm{e}^{2 \pi \mathrm{i} n x}$, with $n \in \mathbb{Z}$. Thus,

$$
\lambda_{n}=4 \pi^{2} n^{2}-D,
$$

and $\lambda_{n} \leq 4 \pi^{2} n^{2}$, such that the energy levels undergo a downward shift relative to the solution for the free-particle $\left(V_{0}=0\right)$ calculation.

Theorem 2 The Bloch spectral-cell problem defined in the main paper, viz.

$$
\begin{equation*}
\lambda f(y ; k)=-\left(\frac{\partial}{\partial y}+\mathrm{i} k\right)^{2} f(y ; k)+V_{0}(y) f(y ; k), \quad f(0 ; k)=f(1 ; k) \tag{11}
\end{equation*}
$$

is self-adjoint.
Proof: Since $V_{0}(y)$ in Equation (11) is a a potential energy, it is a real-valued function. Thus, it suffices to show that the operator $(d / d y+\mathrm{i} k)^{2}$ is self-adjoint. Thus, let f and g be complex-valued functions of the single real-variable y, periodic on the interval $[0,1]$. The inner product of f and g is defined in the usual way:

$$
\langle f, g\rangle:=\int_{0}^{1} f^{*} g \mathrm{~d} y .
$$

We compute $\left\langle f,(d / d y+\mathrm{i} k)^{2} g\right\rangle$, and use integration by parts (I.B.P.) repeatedly. Moreover, we use the fact that the boundary conditions are periodic, such that
boundary terms in the integration by parts vanish. We have,

$$
\begin{aligned}
\left\langle f,(d / d y+\mathrm{i} k)^{2} g\right\rangle & =\int_{0}^{1} f^{*}\left(\frac{d}{d y}+\mathrm{i} k\right)^{2} g \mathrm{~d} y, \\
& =\int_{0}^{1} f^{*}\left(\frac{d^{2} g}{d y^{2}}+2 \mathrm{i} k \frac{d g}{d y}-k^{2} g\right) \mathrm{d} y, \\
& \stackrel{\text { I.B.P. }}{=} \int_{0}^{1}\left(\frac{d^{2} f^{*}}{d y^{2}}-2 \mathrm{i} k \frac{d f^{*}}{d y} g-k^{2} f^{*} g\right) \mathrm{d} y, \\
& =\int_{0}^{1}\left[\frac{d^{2} f^{*}}{d y^{2}}+\frac{d}{d y}(2 \mathrm{i} k f)^{*}-k^{2} f^{*}\right] g \mathrm{~d} y, \\
& =\int_{0}^{1}\left[\left(\frac{d}{d y}+\mathrm{i} k\right)^{2} f\right]^{*} g \mathrm{~d} y, \\
& =\left\langle(d / d y+\mathrm{i} k)^{2} f, g\right\rangle .
\end{aligned}
$$

In the main paper, it was shown that the solution to the $O\left(\varepsilon^{-1}\right)$ and $O(1)$ problems could be computed in terms of the Bloch functions for the particular case where $k=k_{n}$, where $(d \lambda / d k)_{k_{n}}=0$. In particular, it was found that

$$
u_{1}=-\left.\mathrm{i} \frac{\partial \phi}{\partial x} \frac{\partial f}{\partial k}\right|_{k_{n}}, \quad u_{2}=-\left.\frac{1}{2} \frac{\partial^{2} \phi}{\partial x^{2}} \frac{\partial^{2} f_{n}}{\partial k^{2}}\right|_{k_{n}}, \quad k=k_{n}
$$

provided ϕ satisfies the following consistency condition:

$$
\begin{equation*}
\mathrm{i} \frac{\partial \phi}{\partial t}=-\frac{1}{2}\left(\frac{d^{2} \lambda_{n}}{d k^{2}}\right)_{k_{n}} \frac{\partial^{2} \phi}{\partial x^{2}}+V_{1, \text { eff }}(x) \phi(x), \tag{12a}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{1, \text { eff }}(x)=\int_{0}^{1} \mathrm{~d} y\left|f_{n}\left(y ; k_{n}\right)\right|^{2} V_{1}(x, y) . \tag{12b}
\end{equation*}
$$

We now prove the following theorem:
Theorem 3 Let the spectral cell problem

$$
\begin{equation*}
\lambda_{n} f_{n}(y ; k)=-\left(\frac{\partial}{\partial y}+\mathrm{i} k\right)^{2} f_{n}(y ; k)+V_{0}(y) f_{n}(y ; k), \quad f_{n}(0 ; k)=f_{n}(1 ; k), \tag{13}
\end{equation*}
$$

be non-degenerate. Introduce

$$
\widetilde{\phi}(x, t)=\phi\left(x-\frac{1}{\varepsilon} \frac{d \lambda}{d t} t, t\right),
$$

where $\phi(\cdot, \cdot)$ solves Equations (12). Then
$u_{0}=\mathrm{e}^{-\mathrm{i} \lambda_{n} T} f_{n}(y ; k) \widetilde{\phi}(x, t), \quad u_{1}=-\left(\mathrm{i} \frac{\partial \widetilde{\phi}}{\partial x} \frac{\partial f_{n}}{\partial k}\right) \mathrm{e}^{-\mathrm{i} \lambda_{n} T}, \quad u_{2}=-\left(\frac{1}{2} \frac{\partial^{2} \widetilde{\phi}}{\partial x^{2}} \frac{\partial^{2} f_{n}}{\partial k^{2}}\right) \mathrm{e}^{-\mathrm{i} \lambda_{n} T}$,
solves the problem

$$
\begin{equation*}
\left(\frac{1}{\varepsilon^{2}} \mathcal{L}_{0}+\frac{1}{\varepsilon} \mathcal{L}_{1}+\mathcal{L}_{2}\right)\left(u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2}\right)=O(\varepsilon) \tag{14a}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{L}_{0} & =\mathrm{i} \frac{\partial}{\partial T}-\left[-\left(\partial_{y}+\mathrm{i} k\right)^{2}+V_{0}(y)\right] \tag{14b}\\
\mathcal{L}_{1} & =-2\left(-\mathrm{i} k \partial_{x}-\partial_{x} \partial_{y}\right) \tag{14c}\\
\mathcal{L}_{2} & =\mathrm{i} \frac{\partial}{\partial t}-\left[-\partial_{x}^{2}+V_{1}(x, y)\right] \tag{14d}
\end{align*}
$$

Proof: We expand the left-hand side of the problem (14a) explicitly:

$$
\left(\frac{1}{\varepsilon^{2}} \mathcal{L}_{0} u_{0}\right)+\frac{1}{\varepsilon}\left(\mathcal{L}_{1} u_{0}+\mathcal{L}_{0} u_{1}\right)+\left(\mathcal{L}_{2} u_{0}+\mathcal{L}_{1} u_{1}+\mathcal{L}_{0} u_{2}\right)+\varepsilon\left(\mathcal{L}_{2} u_{1}+\mathcal{L}_{1} u_{2}\right)+\varepsilon^{2}\left(\mathcal{L}_{2} u_{2}\right) .
$$

The $O\left(\varepsilon^{-2}\right)$ contribution to Equation (14a) reads

$$
\mathrm{i} \frac{\partial u_{0}}{\partial T}=-\left(\frac{\partial}{\partial y}+\mathrm{i} k\right)^{2} u_{0}+V_{0}(y) u_{0} .
$$

Clearly, this equation is solved by the ansatz $u_{0}=\mathrm{e}^{-\mathrm{i} \lambda_{n} T} f_{n}(y ; k) \widetilde{\phi}(x, t)$ proposed in the statement of the theorem. We therefore consider the contributions to Equation (14a) at $O\left(\varepsilon^{-1}\right)$. Care must be taken here, as this problem contains not only the terms $\varepsilon^{-1}\left(\mathcal{L}_{1} u_{0}+\mathcal{L}_{0} u_{1}\right)$, but also a contribution from the term $\mathcal{L}_{2} u_{0}$, since

$$
\begin{align*}
\varepsilon \mathcal{L}_{2} u_{0}= & \mathrm{i} \varepsilon \frac{\partial}{\partial t}\left[\mathrm{e}^{-\mathrm{i} \lambda_{n} T} f_{n}(y ; k) \widetilde{\phi}\left(x-\frac{1}{\varepsilon} \frac{d \lambda_{n}}{d k} t, t\right)\right] \\
& \quad-\varepsilon\left[-\partial_{x}^{2}+V_{1}(x, y)\right] \mathrm{e}^{-\mathrm{i} \lambda_{n} T} f_{n}(y ; k) \widetilde{\phi}\left(x-\frac{1}{\varepsilon} \frac{d \lambda_{n}}{d k} t, t\right), \\
= & \mathrm{i} \varepsilon \mathrm{e}^{-\mathrm{i} \lambda_{n} T} f_{n}(y ; k)\left(-\frac{1}{\varepsilon} \frac{d \lambda_{n}}{d k} \frac{\partial \widetilde{\phi}}{\partial x}+\frac{\partial \widetilde{\phi}}{\partial t}\right)+O(\varepsilon), \\
= & -\mathrm{i} \mathrm{e}^{-\mathrm{i} \lambda_{n} T} f_{n}(y ; k) \frac{d \lambda_{n}}{d k} \frac{\partial \widetilde{\phi}}{\partial x}+O(\varepsilon), \\
\mathcal{L}_{2} u_{0}= & -\frac{1}{\varepsilon} \mathrm{ie}^{-\mathrm{i} \lambda_{n} T} f_{n}(y ; k) \frac{d \lambda_{n}}{d k} \frac{\partial \widetilde{\phi}}{\partial x}+O\left(\varepsilon^{0}\right), \tag{15}
\end{align*}
$$

Next, we make the replacement $\partial / \partial T \rightarrow-\mathrm{i} \lambda_{n}$. This is legitimate, as the eigenstates are one-dimensional; hence, time derivatives in a particular eigenstate correspond unambiguously to a single eigenfunction. Using these results, and the definitions of \mathcal{L}_{0} and \mathcal{L}_{1}, the problem (14a) at $O\left(\varepsilon^{-1}\right)$ reads

$$
\begin{equation*}
\lambda_{n} u_{1}-\underline{f_{n} \frac{\partial \widetilde{\phi}}{\partial x} \frac{d \lambda_{n}}{d k}}=-\left(\frac{\partial}{\partial y}+\mathrm{i} k\right)^{2} u_{1}+V_{0}(y) u_{1}-2 \mathrm{i} k f_{n} \frac{\partial \widetilde{\phi}}{\partial x}-2 \frac{\partial f_{n}}{\partial y} \frac{\partial \widetilde{\phi}}{\partial x}, \tag{16}
\end{equation*}
$$

where the underlined term comes from the chain-rule calculation (15). We propose the trial solution $u_{1}=g(y ; k)(\partial \widetilde{\phi} / \partial x)$. Substitution of this ansatz into (16) yields

$$
\lambda_{n} g-\mathrm{i} f_{n} \frac{d \lambda_{n}}{d k}=-\left(\frac{\partial}{\partial y}+\mathrm{i} k\right)^{2} g+V_{0}(y) g-2 \mathrm{i} k f_{n}-2 \frac{\partial f_{n}}{\partial y} .
$$

On the other hand, consider the derivative of the Bloch spectral cell problem (13) with respect to k :

$$
\frac{d \lambda_{n}}{d k} f_{n}+\lambda_{n} \frac{\partial f_{n}}{\partial k}=-\left(\frac{\partial}{\partial y}+\mathrm{i} k\right)^{2} \frac{\partial f_{n}}{\partial k}+V_{0}(y) \frac{\partial f_{n}}{\partial k}-2 \mathrm{i}\left(\frac{\partial}{\partial y}+\mathrm{i} k\right) f_{n}
$$

Comparison of these two equations yields $g(x, t)=-\mathrm{i}\left(\partial f_{n} / \partial k\right)$ and $u_{1}=-\mathrm{i}\left(\partial f_{n} / \partial k\right)(\partial \widetilde{\phi} / \partial x)$. The temporal dependence on the rapid timescale T is restored by multiplication of this solution by the appropriate phase:

$$
u_{1}=-\mathrm{i}\left(\frac{\partial f_{n}}{\partial k} \frac{\partial \widetilde{\phi}}{\partial x}\right) \mathrm{e}^{-\mathrm{i} \lambda_{n} T}
$$

Finally, consider the $O(1)$ contribution to Equation (14a). Using the fact that $u_{1}=-\mathrm{i}\left(\partial f_{n} / \partial k\right)(\partial \widetilde{\phi} / \partial x)$, and the chain rule, it follows that

$$
\begin{equation*}
\frac{\partial u_{1}}{\partial t_{1}}=-\mathrm{i} \frac{\partial f_{n}}{\partial k}\left(-\frac{1}{\varepsilon} \frac{\partial^{2} \widetilde{\phi}}{\partial x^{2}} \frac{d \lambda_{n}}{d k}+\frac{\partial^{2} \widetilde{\phi}}{\partial x \partial t_{1}}\right) . \tag{17}
\end{equation*}
$$

Hence, the term $\mathcal{L}_{2} u_{1}$ contributes to the $O(1)$ problem, which now reads

$$
\begin{align*}
\lambda u_{2}-\frac{\partial f_{n}}{\partial k} \frac{d \lambda_{n}}{d k} \frac{\partial^{2} \widetilde{\phi}}{\partial x^{2}}+\mathrm{i} f_{n} \frac{\partial \widetilde{\phi}}{\partial t_{1}}=-f_{n} \frac{\partial^{2} \tilde{\phi}}{\partial x^{2}}+V_{1}(x, y) f_{n} \widetilde{\phi}- & \left(\frac{\partial}{\partial y}+\mathrm{i} k\right)^{2} u_{2}+V_{0}(y) u_{2} \\
& -2 \mathrm{i} k \frac{\partial u_{1}}{\partial x}-2 \frac{\partial^{2} u_{1}}{\partial x \partial y}, \tag{18}
\end{align*}
$$

where the underlined term arises because of the application (17) of the chain rule. We substitute the $O\left(\varepsilon^{-1}\right)$ solutions into Equation (18). This yields

$$
\begin{aligned}
& \lambda_{n} u_{2}-\frac{\partial f_{n}}{\partial k} \frac{d \lambda_{n}}{d k} \frac{\partial^{2} \widetilde{\phi}}{\partial x^{2}}+\mathrm{i} f_{n} \frac{\partial \widetilde{\phi}}{\partial t_{1}}=-f_{n} \frac{\partial^{2} \widetilde{\phi}}{\partial x^{2}}+V_{1}(x, y) f_{n} \widetilde{\phi}-\left(\frac{\partial}{\partial y}+\mathrm{i} k\right)^{2} u_{2}+V_{0}(y) u_{2} \\
&-2 k \frac{\partial f_{n}}{\partial k} \frac{\partial^{2} \widetilde{\phi}}{\partial x^{2}}+2 \mathrm{i} \frac{\partial^{2} f_{n}}{\partial y \partial k} \frac{\partial \widetilde{\phi}}{\partial x^{2}} .
\end{aligned}
$$

We make the trial solution $u_{2}=h(y ; k)\left(\partial^{2} \widetilde{\phi} / \partial x^{2}\right)$, such that

$$
\begin{align*}
& \lambda_{n} h \frac{\partial^{2} \widetilde{\phi}}{\partial x^{2}}-\frac{\partial f_{n}}{\partial k} \frac{d \lambda_{n}}{d k} \frac{\partial^{2} \widetilde{\phi}}{\partial x^{2}}+\mathrm{i} f_{n} \frac{\partial \widetilde{\phi}}{\partial t_{1}}=-f_{n} \frac{\partial^{2} \widetilde{\phi}}{\partial x^{2}}+V_{1}(x, y) f_{n} \widetilde{\phi}-\frac{\partial^{2} \widetilde{\phi}}{\partial x^{2}}\left(\frac{\partial}{\partial y}+\mathrm{i} k\right)^{2} h \\
&-2 k \frac{\partial f_{n}}{\partial k} \frac{\partial^{2} \widetilde{\phi}}{\partial x^{2}}+2 \mathrm{i} \frac{\partial^{2} f_{n}}{\partial y \partial k} \frac{\partial \widetilde{\phi}}{\partial x^{2}} . \tag{19}
\end{align*}
$$

On the other hand, consider also the second derivative of the spectral cell equation (13) with respect to k :

$$
\begin{equation*}
\lambda \frac{\partial^{2} f_{n}}{\partial k^{2}}+2 \frac{\partial f_{n}}{\partial k} \frac{d \lambda_{n}}{d k}+f_{n} \frac{\partial^{2} \lambda}{\partial k^{2}}=V_{0}(y) \frac{\partial^{2} f_{n}}{\partial k^{2}}-\left(\frac{\partial}{\partial y}+\mathrm{i} k\right)^{2} \frac{\partial^{2} f_{n}}{\partial k^{2}}-4 \mathrm{i}\left(\frac{\partial}{\partial y}+\mathrm{i} k\right) \frac{\partial f_{n}}{\partial k}+2 f_{n} . \tag{20}
\end{equation*}
$$

Comparing Eqs. (19) and (20) yields

$$
u_{2}=-\frac{1}{2} \frac{\partial^{2} f_{n}}{\partial k^{2}} \frac{\partial \widetilde{\phi}}{\partial x^{2}}
$$

provided the consistency condition

$$
\begin{equation*}
\mathrm{i} \frac{\partial \widetilde{\phi}}{\partial t_{1}} f_{n}(y ; k)=-\frac{1}{2} \frac{d^{2} \lambda_{n}}{d k^{2}} \frac{\partial^{2} \widetilde{\phi}}{\partial x^{2}} f_{n}(y ; k)+V_{1}(x, y) \widetilde{\phi} f_{n}(y ; k) \tag{21}
\end{equation*}
$$

is satisfied. We multiply Equation (21) by f_{n}^{*} and integrating the result over all $y \in$ $[0,1]$. Since the f_{n} 's are orthonormal eigenfunctions on this interval, this integration yields

$$
\mathrm{i} \frac{\partial \widetilde{\phi}}{\partial t_{1}}=-\frac{1}{2 m_{\mathrm{eff}}} \frac{\partial^{2} \widetilde{\phi}}{\partial x^{2}}+V_{1, \mathrm{eff}}(x) \widetilde{\phi}
$$

where

$$
m_{\mathrm{eff}}=\left(\frac{1}{2} \frac{d^{2} \lambda_{n}}{d k^{2}}\right)^{-1}
$$

and

$$
V_{1, \mathrm{eff}}(x)=\int_{0}^{1}\left|f_{n}(y ; k)\right|^{2} V_{1}(x, y) \mathrm{d} y
$$

Again, the temporal dependence on the rapid timescale T is restored by multiplication of this solution by the appropriate phase:

$$
u_{2}=-\left(\frac{1}{2} \frac{\partial^{2} f_{n}}{\partial k^{2}} \frac{\partial \widetilde{\phi}}{\partial x^{2}},\right) \mathrm{e}^{-\mathrm{i} \lambda_{n} T}
$$

The final theorem in this companion document concerns an application of Hölder's inequality to the effective-mass calculation in the $\mathrm{Sec} . \mathrm{V}$ of the main paper, wherein it is shown that

$$
m_{\mathrm{eff}}(n=0, k=0) \geq m,
$$

where m is the ordinary inertial mass.
Theorem 4 Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous, strictly positive function on $[0,1]$: $f(x)>0$, for all $x \in[0,1]$. Then $1 / f$ is integrable and, moreover,

$$
\left(\int_{0}^{1}(1 / f) \mathrm{d} x\right)^{-1} \leq \int_{0}^{1} f \mathrm{~d} x
$$

Proof: Since $f(x)$ is continuous on $[0,1]$ it is bounded and continuous on the same interval, and is therefore integrable. Moreover, since f is strictly positive on $[0,1]$, the function $1 / f$ is bounded and continuous on the same interval, and is therefore integrable. Consider now Hölder's inequality for arbitrary integrable functions $a(x)$ and $b(x)$ on $[0,1]$:

$$
\int_{0}^{1}|a b| \mathrm{d} x \leq\|a\|_{2}\|b\|_{2}
$$

where $\|\cdot\|_{2}=\left(\int_{0}^{1}(\cdot)^{2} \mathrm{~d} x\right)^{1 / 2}$ is the usual L^{2} norm. Since f is strictly positive, we set $a=f^{1 / 2}$ and $b=1 / f^{1 / 2}$ (both integrable functions) to obtain

$$
1 \leq\left\|f^{1 / 2}\right\|_{2}\left\|f^{-1 / 2}\right\|_{2}
$$

In other words,

$$
1 \leq\left[\int_{0}^{1} f \mathrm{~d} x\right]^{1 / 2}\left[\int_{0}^{1}(1 / f) \mathrm{d} x\right]^{1 / 2} .
$$

Squaring both sides and re-arranging the inequality yields

$$
\left(\int_{0}^{1}(1 / f) \mathrm{d} x\right)^{-1} \leq \int_{0}^{1} f \mathrm{~d} x
$$

2 Details of the numerical method described in the main paper

In this section we include the MATLAB '.m' file used to generate the first few eigenvalues $\lambda_{0}, \cdots, \lambda_{N-1}$ of the Bloch spectral cell problem (Equation (11) herein), for an arbitrary potential $V_{0}(y)$. The input parameters are k, the wavenumber, and N, the number of collocation points in the numerical method. The number N can be varied until the numerical method converges. The first output (labelled 'lambdas' in the code) is an array containing an approximation to the first N eigenvalues in the spectral cell problem, in increasing order. Typically, the lowest-energy eigenvalue is the most accurately-computed value, while the accuracy decreases as one accesses higher parts of the spectrum. However, a given large-energy eigenvalue can be computed to any level of accuracy by increasing N. The other two outputs are the matrices L and M described in the main paper.

```
function [lambdas,L_mx,M_mx] = make_all_matrices(k,N)
% This matlab function calculates the first N eigenvalues
% for a given input wavenumber k.
im=sqrt(-1);
% Create an array of spatial points, with resolution determined by N
jj = 1:(2*N+1);
yy = (0.5/(N+2))*jj;
```

```
% Define the periodic potential
uu = 5*sin(2*pi*yy);
L_mx = zeros(2*N+1);
M_mx = zeros(2*N+1);
for j = 1:(2*N+1)
    for n = -N:N
            m = n + N + 1;
            M_mx(j,m) = exp(2*pi*im*n*yy(j));
            L_mx(j,m) = ((2*pi*n+k)^2)*exp(2*pi*im*n*yy(j)) ...
                + uu(j)*exp(2*pi*im*n*yy(j));
    end
end
lambdas = eig(L_mx,M_mx);
% Check that the imaginary part of the eigenvalues is zero
% to machine precision, then make the reality of the eigenvalues
% explicit in the next line:
lambdas=real(lambdas);
lambdas=sort(lambdas);
```


Acknowledgements

We thank R. Smith for pointing out the application of Hölder's inequality in Theorem 4.

References

[1] G. Pavliotis and A. M. Stuart. Multiscale Methods. Springer, Berlin, 2008.

