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Abstract

We study the dynamics of simple reactions where the chemical species
reside on a non-uniform, oscillating surface, and are subject to externally-
imposed stirring. We derive a model for this based on a reaction-advection-
diffusion equation. We first of all focus on the autocatalytic reaction, and
determine whether stirring and surface oscillation can stabilise a particular
homogeneous state. To do this, we use homogenisation methods: we show
that the influence of the surface oscillation on the concentration field can be
parametrised by an effective-diffusion operator. In practice, our criterion for
extinction is difficult to interpret, and we therefore carry out numerical simula-
tions. We focus on a chemical reaction occurring on the surface of a thin liquid
film, and show that the surface oscillation can enhance the reaction yield. In
this numerical context, we demonstrate that the extinction of the catalyst is
unlikely. Qualitatively similar results arise when we consider purely homo-
geneous motion; here we consider both autocatalytic and bistable reaction
kinetics. Fisher-KPP equation; Advection; Multiscale methods; Manifolds

1 Introduction

We investigate the dynamics of the logistic and bistable reactions on a non-uniform,
oscillating surface, with flow. Such spatially inhomogeneous problems call for the
solution of a reaction-advection-diffusion equation, and much chemical and bio-
logical activity in fluid flow can be modelled by such equations. In particular,
problems concerning autocatalytic chemical reactions [Strogatz, 1994] and popula-
tion dynamics [Skellam, 1951, Murray, 1993] possess a logistic growth function as a
reaction term, and thus satisfy a Fisher-KPP type of equation. Other, more com-
plicated growth functions can be used to model a variety of phenomena, including
the spread of insect populations, or the propagation of electro-chemical waves in
organisms [Murray, 1993].

Before deriving and analysing our model, we place our work in context by exam-
ining several streams of work that are relevant. It is known that a growing domain
can modify biological pattern formation, as evidenced by the work of Newman and
Frisch [1979]. This has given impetus to the study of reaction-diffusion equations on
growing, one-dimensional domains [Kondon and Asal, 1995, Crampin et al., 1999].



Connecting temporal and spatio-temporal analyses – Supplementary material

Logically, this has led to the study of such problems on manifolds embedded in
three dimensions. In multiple dimensions, Gomatam and Amdjadi [1997], Varea
et al. [1999], and Chaplain et al. [2001] have considered the effects of curvature,
while Plaza et al. [2004] and Gjorgjieva and Jacobsen [2007] have examined the
twin effects of domain growth and curvature. The paper of Plaza et al. [2004] is
particularly relevant to the present work. In it, the authors derive the reaction-
diffusion equation for a class of manifolds, and then study pattern formation on
growing domains. We re-work their derivation to include the most general two-
dimensional (differentiable) manifold possible, and then shift the focus from pattern
formation to reactions in the presence of stirring. The geometric formalism of Aris
[1962] is central to our derivation. These references [Plaza et al., 2004, Gjorgjieva
and Jacobsen, 2007] consider the ‘geometric sink’, that is, the notion that a growing
domain can act as a sink for the chemical reaction. We extend this idea to oscillating
domains and examine the effects of the sink through numerical simulation.

The notion of flow-driven reactions is not new. Neufeld [2001] has considered the
effects of chaotic advection on the FitzHugh–Nagumo model. The flow produces a
coherent global excitation of the system, for a certain range of stirring rates. The
effects of flow can also induce distinctive spatial structure in the chemical concen-
tration; this is studied by Neufeld et al. [1999]. Neufeld [2001] has also examined
the single-component logistic or Fisher-KPP model. There the focus is on regime-
change, namely how the rate of chaotic advection affects the spatial structure of the
concentration. For slow stirring / fast reactions, a spatially inhomogeneous pertur-
bation decays rapidly, and the equilibrium state is reached rapidly. On the other
hand, for fast stirring / slow reactions, the perturbation persists, and a filament
structure propagates throughout the domain. Nevertheless, the asymptotic state
is still a stable homogeneous one. A similar problem has been considered by Cox
and Gottwald [2006], who used a bifurcation analysis to estimate the parameter
regimes for which a chaotic flow inhibits a chemical reaction in a bistable system.
Also, Birch et al. [2007] examine the averaged effect of a non-constant growth rate
on the dynamics of the stirred Fisher-KPP equation, wherein they use the theory
of estimates to obtain bounds on the reaction yield, as a function of the stirring
and the non-constant growth rate. When the mean growth rate is negative, the
previously-unstable zero state of the Fisher-KPP equation can become stable; then
the catalyst fails to propagate the reaction. In the Birch paper, the inhomogeneous
growth rate is the consequence of an inhomogeneous distribution of nutrient in a
plankton population. It could, however, be the result of placing the population or
chemical species on an oscillating surface, which is the subject of our report. Indeed,
our results demonstrate the possibility of increasing the reaction yield by placing
the chemical species on a moving surface.

If the flow field or the oscillations have small length scales compared to the
domain size, then homogenisation theory naturally presents itself as a tool for un-
derstanding the effects of flow and surface oscillation in an averaged sense [Pavliotis
and Stuart, 2008]. The small scales are bundled up into an effective-diffusion con-
stant, and the model reduces to a more manageable equation involving a diffusion
operator. Such methods have been applied to the linear advection-diffusion equa-
tion by McLaughlin et al. [1985], McCarty and Horsthemke [1988], and Rosencrans
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[1997]. Some differences in the formal treatment of the problem arise depending
on whether the transport equation models a passive tracer [Pavliotis and Stuart,
2008], or a scalar density [Vergassola and Avellaneda, 1997, Goudon and Poupaud,
2004]. Further techniques to estimate the magnitude of the effective diffusivity have
involved variational methods [Fannjiang and Papanicolaou, 1994].

The same methods have been applied to linear reaction-advection-diffusion equa-
tions. In particular, Mauri [1990] has examined the behaviour of a passive scalar in
a porous medium, where the chemical reaction occurs only at the boundary. Ap-
propriate scaling laws for the Damköhler and Péclet numbers are prescribed, and
the effective-diffusion operator is derived. Papanicolaou [1995] has studied a similar
problem in the same scaling limit, and has shown in detail how to construct the
homogenised solution. The convergence of the solution of the basic equation to the
solution of the homogenised equation in a singular limit has been proved rigorously
by Allaire and Raphael [2007], while Allaire and Piatnitski [2010] have recently ex-
amined strongly nonlinear reaction-diffusion equations, in the process deriving the
formal asymptotics for the effective diffusion. We propose and justify the applica-
tion of this theory to a linearised, advective Fisher-KPP equation on a time-varying
manifold. In this way, we determine the stability characteristics of the steady ho-
mogeneous state and, if unstable, the speed at which the system departs from this
state.

This paper is organised as follows. In Sec. 2 we formulate the reaction-advection-
diffusion equation for chemical reactions on a time-varying surface. In Sec. 3 we
outline a separation-of-scales technique that enables us to compute the spatial dis-
tribution of concentration as the solution of a diffusion equation, and write down
criteria for the extinction of the catalyst. In Sec. 4 we consider reaction kinetics on
the surface of a thin film under flow. We show that oscillating surfaces can increase
the reaction yield. In Sec. 5 we demonstrate a similar effect for homogeneous sys-
tems, and extend our findings to the bistable reaction. Finally, in Sec. 6 we present
our conclusions.

2 Theoretical formulation

In this section we introduce the mass-action law for the autocatalytic reaction,
and generalise to spatially-varying concentrations on oscillating two-dimensional
surfaces. The basic autocatalytic reaction is standard [Murray, 1993], while the
generalisation to time-varying manifolds is based on the treatment Aris [1962] (but
see also the works of Stone [1990] and Pereira and Kalliadasis [2008]); these last
three papers focus on a similar problem, albeit one in which the chemical species
are non-reacting.

In the homogeneous case, the evolution of two chemical species undergoing the
autocatalytic reaction reaction c1 + c2 → 2c2 is given by the equation pair

dc1
dt

= −λ0c1c2,
dc2
dt

= λ0c1c2, (1)

where λ0 > 0 is the reaction rate. The implied equation d(c1 + c2)/dt = 0 is a
statement of molecular conservation. This system is reduced to a single equation by
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defining a new variable c = c2/ (c1 + c2), giving rise to the logistic growth law

dc

dt
= λc(1− c), (2)

where F (c) = λc(1 − c) is the reaction function and λ = λ0(c1 + c2) > 0 is the
associated rate. The evolution of this relative concentration is a contest between
linear creation and quadratic destruction, which manifests itself through the sigmoid
solution

c =
c(0)eλt

1 + c(0)(eλt − 1)
, (3)

where c(0) > 0 is the initial concentration. The states c = 0 and c = 1 are equilibria,
because dc/dt = 0 there. Moreover, since F ′(c) = λ(1 − 2c), c = 0 is unstable and
c = 1 is stable.

We extend the mass-action law to the inhomogeneous case: we consider the ef-
fects of diffusion and externally-enforced stirring. Thus, we assume that the chemical
reaction takes place on a curved surface M, which varies in time in a prescribed
fashion. We assume that the surface M can be given coordinates that are inde-
pendent of time, such that time-dependence enters into the geometry only through
the metric tensor. This assumption is not necessary for this derivation [Aris, 1962];
however, such coordinates are the most natural ones for the applications we have in
mind (e.g. Secs. 3 and 4). To introduce flow into the problem, we use Lagrangian
coordinates: at time t = 0 the manifold is endowed with coordinates a, such that

M (0) = {x ∈ R3|x = x
(
a1, a2

)
}.

These coordinates can be used to label the fluid particles at time t = 0. As time
evolves, the fluid particles are advected by an imposed flow U , and the particles
move along trajectories with coordinates q (t) on the manifold, such that

U (q, t) =

(
∂q

∂t

)
a

≡ dq

dt
,

where the time derivative is taken at fixed particle label a. Since the manifold
varies smoothly in time, there is a set of transformations connecting the a and the
q coordinate systems:

q = q (a, t) , a = a (q, t) . (4)

We prescribe a metric tensor:

gij (q, t) =
∂x

∂qi
· ∂x
∂qj

, Γ =
√

det (gij). (5)

Thus, by using (4) and the metric tensor (5), we obtain a definition of area, either
as an integral over a fixed domain, or a time-varying one:∫

S(t)

dS =

∫
S(t)

Γdq1dq2 =

∫
S(0)

ΓJ da1da2,
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where S (0) is the pre-advected domain and

J =
∂ (q1, q2)

∂ (a1, a2)

is the Jacobian of the transformation. This formalism facilitates the derivation of an
analogue of the Reynolds transport theorem for a concentration field c (q (t) , t) [Aris,
1962, Bicak and Schmidt, 1999, Hu and Zhang, 2007]:

d

dt

∫
S(t)

c dS =

∫
S(t)

[(
∂c

∂t

)
a

+
c

Γ

(
∂Γ

∂t

)
a

]
dS,

=

∫
S(t)

[(
∂c

∂t

)
q

+ div (Uc) +
c

Γ

(
∂Γ

∂t

)
q

]
dS. (6)

This change in the amount of concentration in the control patch must be matched by
the diffusive flux through the boundary of the patch, and by the amount of matter
created or destroyed by the reaction, that is,

d

dt

∫
S(t)

c (q, t) dS = −
∫
∂S(t)

κ grad c · dℓ+
∫
S(t)

F (c) dS,

where κ is the (constant) diffusion coefficient and ∂S is the boundary of S. A simple
application of Gauss’s law then gives

d

dt

∫
S(t)

c (q, t) dS =

∫
S(t)

κ∆c dS +

∫
S(t)

F (c) dS, ∆ = div grad. (7)

Combining Eqs. (6) and (7) gives the following local conservation law:

∂c

∂t
+ div (Uc) = κ∆c+ F (c)− c

Γ

∂Γ

∂t
. (8)

Note that in coordinate form,

div (Uc) =
1

Γ

∂

∂qi
(
ΓU ic

)
, ∆c =

1

Γ

∂

∂qi

(
Γgij

∂c

∂qj

)
,

where (gij) is the inverse of (gij).
The appearance of the term −(c/Γ)∂tΓ in Eq. (8) has interesting ramifications.

We call it the geometric sink : its inclusion is necessary to conserve the total number
of particles on a time-varying substrate. In previous applications [Gjorgjieva and
Jacobsen, 2007, Plaza et al., 2004], this extra term was negative-definite, and was
indeed a sink; here we consider the general case, and this term can therefore act
also as a source. The presence of this added term means that the state c = 1
is no longer a solution for the autocatalytic system; however, the state c = 0 is
still a solution. Moreover, the geometric sink necessitates a modification of the
mathematical condition for incompressible flow: we call a flow U on a manifold M
with coordinates qi incompressible if

∂Γ

∂t
+

∂

∂qi
(
ΓU i

)
= 0. (9)

5



Connecting temporal and spatio-temporal analyses – Supplementary material

For such flows, Eq. (8) reduces to a standard type of reaction-diffusion equation:

∂c

∂t
+ U i ∂c

∂qi
= κ∆c+ F (c) . (10)

However, we focus on fully compressible flows throughout this paper. We now turn
to homogenisation theory to investigate further implications of this geometric sink.

3 Scale separation with stirring and surface oscillation

In this section, we continue to focus on the autocatalytic reaction. Previously, in
Sec. 2, we noted that the state c = 0 remains a solution of the autocatalytic system
in the presence of the geometric sink. Here, we linearise the system about the
state c = 0 and use homogenisation theory to determine whether surface oscillations
can stabilise an otherwise unstable uniform state c = 0. This approach applies
equally to other reaction functions (F (c)-functions) for which c = 0 is an unstable
equilibrium. The scope of this section is limited deliberately to the linear regime,
and the associated question of the stabilisation of the c = 0 state; the nonlinear
regime is treated numerically in Secs. 4–5. Our calculations demonstrate that small-
scale oscillations fail to stabilise the state c = 0, although the results for large-scale
oscillations are not so clear-cut.

The macroscopic behaviour of a system with phenomena occurring at various
length- and time-scales is described by homogenisation theory, wherein the par-
tial differential equation that describes the system is regarded as having rapidly
oscillating differential operators corresponding to the different scales of the phe-
nomena. Taking the appropriate limit of infinite scale separation, the solution of
the homogenised partial differential equation describes the large-scale behavior in-
duced by the small-scale dynamics. Solving the full logistic model (8) in this way is
problematic, as it is a non-linear equation. However, the linearised solution

c(q, t) = C0 + δψ(q, t), C0 = 0, |δ| ≪ 1 (11)

provides important information, since it enables us to predict whether the twin
effects of stirring and surface oscillation can stabilise the state c = 0, and extinguish
the reaction.

In this linearised regime, the initial-value problem to study reads(
∂

∂t
− λ

)
ψ = −div (Uψ) + κ∆ψ − ψ

Γ

∂Γ

∂t
, (12)

where κ and λ are positive constants, and the spatio-temporal domain is

Mt = {(x, t)|x = (x, y, h(x, y, t)) , (x, y) ∈ Ω, t > 0}. (13)

Note that the linearisation approach (12) pertains also to other reaction functions
for which c = 0 is an unstable equilibrium. We take Ω = [0, L]2 (Fig. 1); we also
take h(x, y, ·) to be a smooth, periodic function:

h(x+ L, y, ·) = h(x, y, ·), h(x, y + L, ·) = h(x, y, ·), (14)

6
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Also, the solution ψ(q, t) is assumed to inherit this periodicity (here q = (x, y)):

ψ(q1 + L, q2, ·) = ψ(q1, q2, ·), ψ(q1, q2 + L, ·) = ψ(q1, q2, ·).

The function U (q, t) is taken to be smooth and periodic in each of the variables (see
Eqs. (18) and (27) for the precise details) and finally, the initial condition is given
by

ψ = ψin for (x, t) ∈ M0 = {(x, t)|x = (x, y, h(x, y, 0)) , (x, y) ∈ Ω, t = 0}.

Figure 1: Schematic description of the manifold on which the chemical species are
confined.

Next, we re-write Eq. (12) in coordinate form:(
∂

∂t
− λ

)
ψ = − 1

Γ

∂

∂qi
(
U iΓψ

)
+
κ

Γ

∂

∂qi

(
gijΓ

∂ψ

∂qj

)
− ψ

Γ

∂Γ

∂t
, (15)

where Γ =
√

det(gij). We non-dimensionalise Eq. (15) according to the patch size
L and the diffusive timescale L2/κ. The result is the following equation:(

∂

∂t̃
−DaPe

)
ψ = −Pe

Γ

∂

∂q̃i

(
Ũ iΓψ

)
+

1

Γ

∂

∂q̃i

(
gijΓ

∂ψ

∂q̃j

)
− ψ

Γ

∂Γ

∂t̃
, (16)

where Pe = U0L/κ (U0 is the velocity scale) and Da = λL/U0, and where the quan-
tities with the tilde denote non-dimensional variables; the metric tensor and the
scale factor are inherently non-dimensional. Following standard practice, we hence-
forth omit the tilde over the variables and work exclusively with non-dimensional
quantities.

In this work, we assume that a separation of scales exists: the non-dimensional
correlation length ℓ of the velocity U is assumed to be small, such that ε = ℓ/L≪ 1.
Moreover, we assume that the fluid mixing is dominated by transport rather than
diffusion, and we take Pe = 1/ε≫ 1. For definiteness, we assume that the reaction
and diffusive timescales are comparable (DaPe = O(1)). On flat surfaces, other
authors have examined alternative orderings for the group DaPe – see Mauri [1990],

7
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Papanicolaou [1995], Allaire and Raphael [2007], Pavliotis and Stuart [2008]. We
assume that the velocity field has the following structure:

U = U(q/ε, t/ε2),

such that the velocity varies rapidly in space and time. Here, the choice of temporal
scaling is called diffusive scaling, and is appropriate when the effects of velocity are
expected to ‘average out’. The equation we study is therefore(

∂

∂t
− α

)
ψ = −1

ε

1

Γ

∂

∂qi
(
U iΓψ

)
+

1

Γ

∂

∂qi

(
gijΓ

∂ψ

∂qj

)
− ψ

Γ

∂Γ

∂t
, (17)

with α := DaPe = O(1). Finally, we assume that the initial condition varies only
on the large scales:

ψin = f(q).

Since the initial data are slowly varying and so is the solution, it is natural to
look at how small-scale motions affect the concentration described by Eq. (17) ‘on
average’. Indeed, if the vector field U averages to zero in an appropriate sense, we
expect the ‘averaged-out’ behaviour of ψ to be characterised by the reaction and
by an ‘effective’ diffusion process. Our goal is to use homogenisation methods to
reduce Eq. (17) to an equation that is valid at length and time scales that are large
compared to the period of oscillations of the velocity field and/or the metric tensor
in space and time. We need to distinguish between two cases: when the metric
tensor varies on small space and time scales, and when it varies on large scales.

3.1 The metric has small-scale variations (Case 1)

Here, both the metric tensor gij and the flow U are explicit functions of the small
scales only, and we take

gij = gij(q/ε, t/ε2), U = U(q/ε, t/ε2).

We take DaPe := α = O(1). We also introduce auxiliary independent variables
Q = q/ε and τ2 = t/ε2. We assume that the metric tensor and the flow are periodic
in space and time, in the sense that

gij(Q1+1, ·, ·) = gij(Q1, ·, ·), gij(·, Q2+1, ·) = gij(·, Q2, ·), gij(·, ·, τ2+T02) = gij(·, ·, τ2),
(18)

and similarly for U . The scale factor Γ also inherits this structure from the metric
tensor. We treat the large-scale variable q and the small-scale variable Q as though
they were independent. Similarly, we treat the two time variables τ2 = t/ε2 and
τ1 = t as independent. We also derive the Laplace operator, treating q and Q as
independent variables. Let ϕ(q,Q) be a scalar field. Then, by the chain rule,

∆ϕ = gij
∂2ϕ

∂qi∂qj
+

1

ε

1

Γ

∂

∂Qi

(
Γgij

∂ϕ

∂qj

)
+

1

ε
gij

∂

∂qi
∂ϕ

∂Qj
+

1

ε2
1

Γ

∂

∂Qi

(
Γgij

∂ϕ

∂Qj

)
,

:= ∆qϕ+
1

ε
∆Qqϕ+

1

ε2
∆Qϕ.
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Similarly, the time derivative now also has two components:

∂

∂τ1
+

1

ε2
∂

∂τ2
.

The scalar density equation (17) therefore reads(
∂

∂τ1
+ ε−2 ∂

∂τ2

)
ψ =

(
ε−2L0 + ε−1L1 + L2

)
ψ, (19)

where

L0ψ = − 1

Γ

∂

∂Qi

[
ΓU i(Q, τ2)ψ

]
− 1

Γ

∂Γ

∂τ2
ψ +∆Qψ,

L1ψ = − 1

Γ

∂

∂qi
[
ΓU i(Q, τ2)ψ

]
+∆Qqψ,

= −U i(Q, τ2)
∂ψ

∂qi
+∆Qqψ,

L2ψ = (α +∆q)ψ.

We expand the function ψ in powers of ε, as

ψ(Q, q, τ1, τ2) = ψ0(Q, q, τ1, τ2) + εψ1(Q, q, τ1, τ2) + ε2ψ2(Q, q, τ1, τ2) + · · · ,

where ψj(q,Q, τ1, τ2) are periodic in Q and τ2 with periodicities 1 and T02 respec-
tively, for j = 0, 1, · · · . Equating powers of ε in the expansion of the equation (19),
we obtain the following triad of problems:

∂ψ0

∂τ2
− L0ψ0 = 0, (20a)

∂ψ1

∂τ2
− L0ψ1 = L1ψ0, (20b)

∂ψ2

∂τ2
+
∂ψ0

∂τ1
− L0ψ2 = (L1ψ1 + L2ψ0) . (20c)

We first compute the solution to Eq. (20a). Written out in full, this is

∂ψ0

∂τ2
= − 1

Γ

∂

∂Qi

[
ΓU i(Q, τ2)ψ0

]
− 1

Γ

∂Γ

∂τ2
ψ0 +∆Qψ0.

Here, we cannot simply set ψ0 = ψ0(q, τ1) here, because the source-like term[
− 1

Γ

∂

∂Qi

(
ΓU i

)
− 1

Γ

∂Γ

∂τ2

]
ψ0.

Instead, we take
ψ0 = ψ̃0(q, τ1)m(Q, τ2), (21a)

where
∂m

∂τ2
= − 1

Γ

∂

∂Qi

[
ΓU i(Q, τ2)m

]
− 1

Γ

∂Γ

∂τ2
m+∆Qm. (21b)
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The maximum principle can be used to construct a solution m ≥ 0 [Vergassola
and Avellaneda, 1997]. Moreover, by linearity, we choose the normalisation of m
such that

∫
Γd2Qm = 1, and this normalisation is preserved under the evolution

of the PDE. Hence, m is a probability distribution function, and dµ = Γmd2Q is a
probability measure.

Using the solution (21), the second equation (20b) becomes

∂ψ1

∂τ2
− L0ψ1 = L1ψ0,

=

[
−U i(Q, τ2)

∂

∂qi
+∆Qq

]
mψ̃0,

=

[
−mU i +

1

Γ

∂

∂Qi

(
Γgijm

)
+ gij

∂m

∂Qj

]
∂ψ̃0

∂qi
,

or

∂ψ1

∂τ2
+

1

Γ

[
∂Γ

∂τ2
+

∂

∂Qi

(
ΓU i

)]
ψ1 + U i∂ψ1

∂Qi
−∆Qψ1

=

[
−mU i +

1

Γ

∂

∂Qj

(
Γgijm

)
+ gij

∂m

∂Qj

]
∂ψ̃0

∂qi
. (22)

This equation has solution

ψ1 = θi(Q, τ2)
∂ψ̃0

∂qi
,

where

∂θi

∂τ2
+

1

Γ

[
∂Γ

∂τ2
+

∂

∂Qj

(
ΓU j

)]
θi+U j ∂θ

i

∂Qj
−∆Qθ

i = −mU i+
1

Γ

∂

∂Qj

(
Γgijm

)
+gij

∂m

∂Qj

(23)
(Equation (23) is called the cell problem).

Note that the space-time average of the left-hand side of Eq. (23) is zero. Thus,
the space-time average of the right-hand side is also zero:

0 =

∫ T02

0

x
ΩQ

[
−mU i +

1

Γ

∂

∂Qj

(
Γgijm

)
+ gij

∂m

∂Qj

]
Γd2Q dτ2,

=

∫ T02

0

x
ΩQ

[
−mU i + gij

∂m

∂Qj

]
Γd2Q dτ2.

Thus, we have a centering condition:∫ T02

0

x
ΩQ

(
Û im

)
Γd2Q dτ2 = 0, Û i = U i − gij

∂

∂Qj
.

The centering condition is equivalent to the requirement that the velocity should
‘average out’ of the problem. Note that

Û i = U i − gij
∂

∂Qj

10
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is an effective velocity and has been promoted to be an operator, rather than a
vector field.

Finally, we introduce the solvability condition: Eq. (20c) has a solution provided∫ T02

0

x
ΩQ

(
−∂ψ0

∂τ1
+ L1ψ1 + L2ψ0

)
Γd2Q dτ2 = 0,

that is, if

∂ψ̃0

∂τ1
(τ1, q) =

(
α + ⟨gij⟩ ∂2

∂qi∂qj

)
ψ̃0 (τ1, q) +ϖ−1

∫ T02

0

x
ΩQ

(L1ψ1) Γd
2Q dτ2, (24)

where ϖ is a volume factor and

⟨gij⟩ = ϖ−1

∫ T02

0

x
ΩQ

(
mgij

)
Γd2Q dτ2.

The value of ϖ is computed as

ϖ =

∫ T02

0

x
ΩQ

mΓd2Qdτ2 =

∫ T02

0

dτ2 = T02,

while the second contribution to the right-hand side of Eq. (24) can be written as∫ T02

0

x
ΩQ

[
−U i(Q, τ2)

∂

∂qi
+

1

Γ

∂

∂Qi

(
Γgij

∂

∂qj

)
+ gij

∂

∂qi
∂

∂Qj

]
θk
∂ψ̃0

∂qk
Γd2Q dτ2,

=

∫ T02

0

x
ΩQ

(
−U iθj + gik

∂θj

∂Qk

)
∂2ψ̃0

∂qi∂qj
Γd2Q dτ2 =

∫ T02

0

x
ΩQ

(
−Û iθj

) ∂2ψ̃0

∂qi∂qj
Γd2Q dτ2.

We therefore introduce

M ij := ϖ−1

∫ T02

0

∫
ΩQ

(
−Û iθj

)
Γd2Q dτ2,

such that the homogenised problem reads

∂ψ̃0

∂τ1
(τ1, q) =

[
α +

(
⟨gij⟩+M ij

) ∂2

∂qi∂qj

]
ψ̃0 (τ1, q) . (25)

The appropriate initial condition on Eq. (25) reads

ψ̃0(q, τ1 = 0) = f(q);

see Goudon and Poupaud [2004], Papanicolaou [1995]. In Appendix A, we show
that the quadratic form

Q(w) := ϖ
(
⟨gij⟩+M ij

)
wiwj

11
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is positive for non-zero constant covariant vectors wi and hence, the homogenised
diffusion operator in (25) is uniformly elliptic.

We address whether the small-scale variations in the problem can stabilise the
state c = 0. Our starting-point is the diffusion equation (25). The periodicity
imposed on the solution (Eqs. (14) and (18)) amounts to an assumption that the
manifold (13) is doubly periodic, with different periodicities for the small and the
large spatial scales. Then, the solution of the diffusion equation (25) can be written
in terms of a periodic Fourier sum,

ψ0 =
∑

ni,nj∈Z

Cni,nj
e(α−4π2⟨g⟩ijninj−4π2M ijninj)tei(2πni)q

1

ei(2πnj)q
2

, (26)

where Cni,nj
is a constant. The mode (ni, nj) = 0 is unstable, with growth rate eαt.

This is the usual reaction-driven instability, and is not influenced by the effective
diffusion. Thus, the small-scale stirring and the surface oscillation do not stabilise
the state c = 0. We therefore turn to flows whose metric tensor varies on the large
scales and consider the same question.

3.2 The metric has large-scale variations (Case 2)

Here, the metric tensor gij is an explicit function of the large scales only, and the
flow U is an explicit functions of the small scales; we take

gij = gij(q, t), U = U(q/ε, t/ε2).

As before, we introduce auxiliary independent variables Q = q/ε and τ2 = t/ε2. We
assume that the metric tensor and the flow are periodic in space and time, in the
sense that

gij(q1+1, ·, ·) = gij(q1, ·, ·), gij(·, q2+1, ·) = gij(·, q2, ·), gij(·, ·, τ1+T01) = gij(·, ·, τ1).
(27a)

The scale factor Γ inherits this structure from the metric tensor. Also,

U(Q1+1, ·, ·) = U(Q1, ·, ·), U(·, Q2+1, ·) = U (·, Q2, ·), U (·, ·, τ2+T02) = U(·, ·, τ2).
(27b)

As before, we treat q, Q, τ1, and τ2 as though they were independent variables. In
this way, we derive the Laplace operator, using the chain rule:

∆ =
1

Γ

∂

∂qi

(
Γgij

∂

∂qj

)
+

1

ε

1

Γ

∂

∂qi

(
Γgij

∂

∂Qj

)
+

1

ε
gij

∂

∂qi
∂

∂Qj
+

1

ε2
gij

∂2

∂Qi∂Qj
,

:= ∆q +
1

ε
∆Qq +

1

ε2
∆Q.

The partial differential equation to homogenise reads(
∂

∂τ1
+ ε−2 ∂

∂τ2

)
ψ =

(
ε−2L0 + ε−1L1 + L2

)
ψ,

12
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where

L0ψ = gij
∂2ψ

∂Qi∂Qj
− ∂

∂Qi

(
U iψ

)
,

L1ψ = −U
i

Γ

∂

∂qi
(Γψ) + ∆Qqψ,

L2ψ =

(
α +∆q −

1

Γ

∂Γ

∂t

)
ψ.

As in Case 1, there is a triad of sub-problems to solve:

∂ψ0

∂τ2
− L0ψ0 = 0, (28a)

∂ψ1

∂τ2
− L0ψ1 = L1ψ0, (28b)

∂ψ2

∂τ2
+
∂ψ0

∂τ1
− L0ψ2 = (L1ψ1 + L2ψ0) . (28c)

We first compute the solution to Eq. (28a). Written out in full, this is

∂ψ0

∂τ2
= − ∂

∂Qi

[
U i(Q, τ2)ψ0

]
+∆Qψ0,

or
∂ψ0

∂τ2
+ U i∂ψ0

∂Qi
+ ψ0

∂U i

∂Qi
= gij(q, τ1)

∂2ψ0

∂Qi∂Qj
.

It is not possible to set ψ0 = m(Q, τ2)ψ̃0(q, τ1) because the m-equation would have
a parametric dependence on the large scales, through the metric tensor gij(q, τ1).
This hampers a separation-of-scales approach. A way to make progress and to
clarify the homogenisation procedure is to stipulate that the flow be incompressible
on small scales , since then the source-like term −(∂U i/∂Qi)ψ0 vanishes and we can
take ψ0 = ψ0(q, τ1) only.

Thus, we assume that the flow U is incompressible on the small scales, such that
ψ0 = ψ0(q, τ1) only. Using this solution, the second equation (28b) becomes

∂ψ1

∂τ2
− L0ψ1 = L1ψ0,

=

[
−U

i

Γ

∂

∂qi
[Γ (·)] + ∆Qq

]
ψ0,

= −U
i

Γ

∂

∂qi
(Γψ0) .

or
∂ψ1

∂τ2
+ U i∂ψ1

∂Qi
= gij

∂2ψ1

∂Qi∂Qj
− U i

Γ

∂

∂qi
(Γψ0) .

This equation has solution

ψ1 = θi(Q, τ2; q, τ1)

[
1

Γ

∂

∂qi
(Γψ0)

]
,

13
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where
∂θi

∂τ2
+ Uk ∂θ

i

∂Qk
= gjk

∂2θi

∂Qj∂Qk
− U i. (29)

Eq. (29) is the cell problem. Note that θi depends only parametrically on the large
scales. The scaling of the metric terms compared to the scaling of the flow field
makes a separation-of-scales approach difficult, and Eq. (29) contains both large
and small scales. Nevertheless, we continue with the method. Note also that the
space-time average of the left-hand side of Eq. (29) is zero, with respect to the small
scales. This follows from the space-time periodicity of the solution on the same
small scales. Thus, the space-time average of the right-hand side of Eq. (29) is also
zero:

0 =

∫ T02

0

x
ΩQ

U i d2Q dτ2.

This is the centering condition.
Finally, we introduce the solvability condition: Eq. (28c) has a solution provided∫ T02

0

x
ΩQ

(
−∂ψ0

∂τ1
+ L1ψ1 + L2ψ0

)
d2Q dτ2 = 0,

that is, if

∂ψ0

∂τ1
(τ1, q) = (α +∆q)ψ0 +ϖ−1

∫ T02

0

x
ΩQ

(L1ψ1) d
2Q dτ2, (30)

where ϖ is a volume factor,

ϖ =

∫ T02

0

x
ΩQ

d2Q dτ2 = T02.

14
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The second contribution to the right-hand side of Eq. (30) can be written as∫ T02

0

x
ΩQ

(L1ψ1) d
2Q dτ2,

=

∫ T02

0

x
ΩQ

[
−U

i

Γ

∂

∂qi
[Γ (·)] + 1

Γ

∂

∂qi

(
Γ
∂

∂Qi

)
+ gij

∂

∂qi
∂

∂Qj

]
θk

Γ

∂

∂qk
(Γψ0) d

2Q dτ2,

=

∫ T02

0

x
ΩQ

[
−U

i

Γ

∂

∂qi
[Γ (·)]

]
θk

Γ

∂

∂qk
(Γψ0) d

2Q dτ2,

=

∫ T02

0

x
ΩQ

[
−U

i

Γ

∂

∂qi

(
θk

∂

∂qk
(Γψ0)

)]
d2Q dτ2,

=

∫ T02

0

x
ΩQ

[
−U

i

Γ

∂

∂qi

(
θk
∂Γ

∂qk

)]
ψ0 d

2Q dτ2

+

∫ T02

0

x
ΩQ

d2Q

[
−U

iθk

Γ

∂Γ

∂qk
− Uk

Γ

∂

∂qk
(
θiΓ
)] ∂ψ0

∂qi
d2Q dτ2

+

∫ T02

0

x
ΩQ

d2Q
(
−U iθk

) ∂2ψ0

∂qi∂qj
d2Q dτ2,

:= ϖ

[
A(q, τ1)ψ0 +Bi(q, τ1)

∂ψ0

∂qi
+M ij(q, τ1)

∂2ψ0

∂qi∂qj

]
.

We are therefore left with the equation

∂ψ0

∂τ1
(τ1, q) = (α +∆q)ψ0 +M ij(q, τ1)

∂2ψ0

∂qi∂qj
+Bi(q, τ1)

∂ψ0

∂qi
+ A(q, τ1)ψ0. (31)

Again, the appropriate initial condition on Eq. (31) reads ψ̃0(q, τ1 = 0) = f(q).
In Appendix A, we show that the quadratic form M ijwiwj is positive for non-zero
constant covariant vectors wi and hence, the homogenised second-order diffusion
operator (31) is uniformly elliptic.

We address whether geometric variations in the problem can stabilise the state
c = 0. Our starting-point is the diffusion-type equation (31). Two mechanisms
for stabilisation suggest themselves. The first method concerns the term A(q, τ1).
Clearly, if a flow U and a scale factor Γ can be chosen such that

α + A(q, τ1) ≤ 0,

then the instability is quenched. This requires some coupling between the small and
the large scales to render the integral A(q, τ1) negative, and this could be provided
by the intermediate function θi(Q, τ2; q, τ2). Nevertheless, this criterion is difficult
to interpret a priori.

The second mechanism by which surface oscillations might stabilise the homoge-
neous state is the same whether or not there is flow, and the flow is omitted herein
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without loss of generality to simplify the discussion. In the absence of flow, Eq. (31)
reads

∂ψ0

∂τ1
=

(
α +∆q −

1

Γ

∂Γ

∂t

)
ψ0. (32)

We expand the solution in terms of the eigenfunctions of the Laplacian ∆q,

ψ0 =
∑
ℓ

Aℓ(t)ϕℓ(q; t), ∆qϕℓ(q; t) = −λ2ℓ(t)ϕℓ(q; t),
x
Ωq

ϕℓϕk Γd
2q = δℓk,

where we sum over the index ℓ labelling the eigenfunctions. Here, time appears as a
parameter in the eigenfunctions because the substrate shape oscillates. Substitution
of the trial solution into Eq. (32) yields

dAℓ

dt
=
[
α− λ2ℓ(t)

]
Aℓ +

∑
k

Ckℓ(t)Ak, (33a)

where

Ckℓ(t) = −
x
Ωq

∂

∂t
(Γϕk)ϕℓ d

2q. (33b)

Thus, if the normal modes of Eq. (33a) decay, then the homogeneous state c = 0
is stable. A similar result holds for the full equation (Eq. (31)). Thus, the state
c = 0 can in principle be stabilised. Indeed, an example that is closely related to the
subject of this paper concerns chemical reactions on exponentially-growing spheres
without flow [Gjorgjieva and Jacobsen, 2007], wherein the exponential growth in the
manifold’s scale factor (the sphere’s radius) stabilises the homogeneous equilibrium
states. Again, however, the general criterion (33) is rather involved. This means that
a more practical approach – such as numerical simulations – is needed to address
the problem of the extinction of the catalyst.

4 Numerical studies

The homogenisation theory of Sec. 3 leads to a characterisation of the reaction
kinetics in the linear regime. However, this is a special case. To consider long-
time, nonlinear evolution, we pass over to numerical simulations, and consider a
chemical system residing on a thin film under flow. In studying this system, we
are motivated by practical, fluid-mechanical applications. However, we have verified
that the results are qualitatively very similar to the situation wherein the surface
oscillation is explicitly prescribed as an oscillation that varies sinusoidally in space
and time [Kamhawi, 2009]. Concerning the full fluid-mechanical system, in the limit
where there is no backreaction between the concentration gradient of the chemicals
and the film flow (e.g. no Marangoni forces [Oron et al., 1997]), the model derived
in Sec. 2 applies, and the flow is given by the standard lubrication theory [Oron
et al., 1997, Craster and Matar, 2009]. We first of all discuss this flow regime and
then present our results.

We consider thin-film flow, wherein a layer of fluid rests on a flat plate with a free
upper boundary (free surface), h(x, y, t). In the limit where the vertical variations
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in the flow structure are large compared to the horizontal variations, the following
equations for the free surface hold:

∂h

∂t
+∇1 · (Uh) = 0, ∇1 = (∂x, ∂y) , (34a)

U =
1

3µ
h2
(
−∇1ϕ− S∇2

1h+ fD

)
, (34b)

where ϕ is the body-force potential evaluated at the surface, and S∇2
1h represents

surface tension, and fD is an externally-prescribed driving force [Oron et al., 1997,
Craster and Matar, 2009]. The constants µ and S represent dynamic viscosity and
surface tension, respectively. In this section, we seek a minimal model in order to
examine the effects of flow and surface variation on the chemical reaction. There-
fore, we work in a limit where the variations in the free-surface height around an
equilibrium value h0 are small, and we write h ∼ h0 + δh1(x, y, t). We also ignore
body-force effects and focus on a situation wherein the driving force and the surface
tension dominate (surface tension must be included if the nonlinear equation (34)
is not to admit breaking waves). We restrict ourselves further by examining a limit

where the surface tension and viscosity are large: µ = µ̂/δ and S = Ŝ/δ. Then, the
driving force appears only in the h1-equation, and our approach is self-consistent.
We therefore have the following model for the linearised free-surface height:

∂h1
∂t

= − Ŝ

3µ̂
h30∇4

1h1 +
h30
3µ̂

∇1 · fD, (35a)

which is a linear hyperdiffusion equation with a source term. The associated flow is
as follows:

U = δ

(
− Ŝ

3µ̂
∇1∇2

1h1 +
h20
3µ̂

fD

)
. (35b)

Next, we consider placing the chemical species on the surface z = h(x, y, t) ∼
h0 + δh1(x, y, t). The position vector x of a point on the surface is given by

x = (x, y, h (x, y, t)) .

The metric tensor is thus

(gij) =

(
1 + h2x hxhy
hxhy 1 + h2y

)
,

with determinant

Γ2 = det(gij) = 1 + h2x + h2y := 1 + (∇1h)
2 ,

while the inverse is (
gij
)
=

1

Γ

(
1 + h2y −hxhy
−hxhy 1 + h2x

)
.

Hence, the chemical equation reads

∂c

∂t
= − 1

Γ

∂

∂xi
(
ΓU ic

)
+
κ

Γ

∂

∂xi

(
Γgij

∂c

∂xj

)
+ λc (1− c)− c

Γ

∂Γ

∂t
. (36)
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For the purpose of numerical calculations, we prescribe the driving force fD =
−∇1U , where U is given in what follows. We non-dimensionalise Eqs. (35)–(36) on
the horizontal length scale L and the flow timescale

τ =
3µ̂L2

h20U0

,

where U0 is the typical magnitude of U . This gives non-dimensional space and
time variables x̃ = x/L and t̃ = t/τ , and h̃1 = h1/h0. The result is the following
non-dimensional system of equations:

∂h̃1

∂t̃
= −β∇̃4

1h̃1 − ∇̃2
1Ũ , (37a)

Ũ = δ
(
−∇̃1Ũ − β∇̃1∇̃2

1h̃1

)
, (37b)

∂c

∂t̃
= − 1

Γ

∂

∂x̃i

(
ΓŨ ic

)
+
γ

Γ

∂

∂x̃i

(
Γgij

∂c

∂x̃j

)
− αc (1− c)− c

Γ

∂Γ

∂t
, (37c)

where

α = λτ, β =
Ŝh30

3µ̂λL4
, γ =

κ

λL2
(37d)

are non-dimensional groups (following standard practice, we henceforth omit the or-
namentation over the non-dimensional variables). We prescribe the following driving
force:

U = sin (k1x+ A1 cos (ωt)) sin (k2y)
[
1− A2 cos

2(ωt)
]
, fD = −∇1U , (38)

where k1, k2, A1, A2, and ω are constants (ω is the driving frequency). This partic-
ular choice of U is chosen to give the flow a cellular structure in space, with both an
oscillating phase and an oscillating amplitude. Such a time-varying phase is helpful
in enhancing transport [Solomon et al., 1998]. We set the following initial condition
on the concentration:

c = 0.05 + 0.01 sin (2πx/L) sin (2πy/L) . (39)

The form of the global time-varying factor in Eq. (38) ensures that the area
∫
Γdxdy

is increased relative to the steady state (ω = 0).
We have solved the system of equations (37) on a doubly periodic domain with

sides of length L = 1, where α = 10, β = 0.01, γ = 1, k1 = k2 = n(2π/L),
A1 = 0.1, A2 = 0.5, and where n and ω are variable. We have used standard spectral
methods [Boyd, 2001], and have obtained fully converged numerical results with a
timestep 10−3 and a spatial resolution 2562, up to the non-dimensional frequency
ω = 50. Our numerical results are focussed on the reaction yield. The yield is simply
the quantity of product created in the reaction, and is defined by writing down a
differential for the quantity of product present in a patch of area

dN = c(q, t) dS (t) = c(q, t)Γdq1dq2.
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Figure 2: (a), (b) The instantaneous yield for k1 = k2 = n(2π/L), and for various
frequencies: ω = 0 (·−), ω = 10 (· · ·), ω = 20 (−−), and ω = 50 (—); (c) The
time-averaged yield as a function of n and ω.

The integral of this quantity is the instantaneous yield:

N (t) =
x
Ω1

c(q, t)Γdq1dq2. (40)

Sample graphs of the time-varying yield are shown in Fig. 2. For ω > 0, the time-
averaged yield is approximately independent of frequency. The yield corresponding
to ω = 0 differs discontinuously from the time average of the oscillating yield (for
detailed explanation of this phenomenon, see Sec. 5). For n > 2, the time-averaged
yield increases with increasing n – the driving force creates more surface area, which
increases the reaction yield. Moreover, the amplitude of the yield-oscillations in-
creases with increasing n. In each parametric study, the oscillating surface provides
an enhanced yield relative to the ω = 0 case. The period of oscillation is in fact
half that associated with the frequency ω in Eq. (38). This is because it is the
global, time-dependent factor in Eq. (38) that controls the free-surface variations
(and hence the reaction), and this factor can be re-written as 1−(A2/2)[1+cos 2ωt],
such that the driving force is dominated by the frequency 2ω. The time-dependent
phase A1 cosωt has the sole effect of causing the locations of the free-surface maxima
and minima to oscillate back and forth in the x-direction. A further description of
the flow is obtained by taking a snapshot of the free-surface height and the chemical
concentration (Fig. 3, n = 3, ω = 10), in the quasi-steady regime, where the reac-
tion yield oscillates. The instantaneous concentration is large in regions where the
free surface is high, and lower in regions of lower free-surface height. The spatial
structure of the concentration field mirrors closely that of the free-surface height;
the latter can therefore be viewed as driving the chemical reaction.

It is tempting to conclude that any surface oscillation will enhance the reaction
yield. However, the reaction yield depends delicately on the oscillation protocol.
Thus, if instead of Eq. (38) we use the driving force

U = sin (k1x+ A1 cos (ωt)) sin (k2y) [1 + A2 cos(ωt)] ,

then the time average of the reaction yield is reduced relative to the case without
oscillations. The reason for this difference lies in the fact that on average, the first
choice of oscillation protocol increases the surface area available for the reaction,
while the second choice of protocol decreases the surface area (Fig. 4).
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(a) Free-surface height (b) Concentration

Figure 3: Instantaneous snapshots of the free-surface height and the chemical con-
centration, for ω = 10 and k1 = k2 = 3(2π/L).

We comment on the likelihood that the flow and the surface oscillation will ex-
tinguish the reaction, and stabilise the state c = 0. In each numerical simulation
reported on, we have initialised the concentration with a small-amplitude distur-
bance (Eq. (39)). However, no stabilisation is ever observed (we have varied the
amplitudes of the normal modes in Eq. (39), and the results are the same in each
case). It seems unlikely that the criterion (33) can be met for the kind of flow
studied here, wherein the length- and timescales of the metric and the flow are in-
timately linked. Here, the metric must have the same scale of variation as the flow:
we have demonstrated theoretically that small-scale variations are not stabilising
(Sec. 3.1, Eq. (26)), and our numerical simulations in Figs. 2 and 4 suggest a similar
outcome for large scales. Finally, the results in Fig. 3 indicate clearly the existence
of a quasi-steady-state, wherein the system relaxes to a state determined entirely
by the driving force. To further understand such states, we turn lastly to a simpler
quasi-steady-state, wherein spatial structure is entirely absent.

5 The homogeneous solution

If the metric tensor gij is separable, such that gij = ρ2 (t)Gij (q), then the geometric
sink in Eq. (8) becomes uniform:

∂ log Γ (q, t)

∂t
=
d log ρ2(t)

dt
. (41)

We call factor ρ(t) is called the scale factor ; the derivative (1/Γ)∂tΓ is written
throughout this section as ∂t log Γ to emphasise the fact that it is a perfect derivative.
This separability condition can be realised on a sphere of radius R(t) = ρ(t), or
on a torus, where the outer and inner radii are constrained as R1(t) = aρ(t) and
R2(t) = ρ(t)/a respectively, with a > 1. When we restrict ourselves to such metrics,
a uniform solution is possible, which we now characterise.

When the geometric sink depends only on the scale factor, the presence of dif-
fusion in the problem (8) makes the concentration relax to a uniform state. This is
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Figure 4: The dependence of the reaction yield on the oscillation protocol. Here
n = 3 and ω = 0 (·−), ω = 10 (· · ·), ω = 20 (−−), and ω = 50 (—).

given by the solution of the equation

dc0
dt

= αc0 (1− c0)− c0
d log ρ2

dt
, (42)

with explicit solution [Polyanin, 2003]

c0 (t) =
e

∫ t
0

(
α− d log ρ2

dt′

)
dt′

1
c0(0)

+ α
∫ t

0
e
∫ t′
0

(
α− d log ρ2

dt′′

)
dt′′

dt′
. (43)

We examine oscillating scale factors. In particular, we are interested in determining
whether such oscillations enhance the yield of the autocatalytic reaction. We shall
also extend our findings to bistable reaction kinetics. For definiteness, we consider
the scale-factor variation

ρ(t) =
r0

1 + δ sin (ωt)
, (44)

where r0, δ < 1 and ω are positive constants. The protocol (44) modifies the yield
of the reaction, herein given by the formula

N (t) = g0ρ
2 (t) c0 (t) , (45)
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where g0 is some geometric factor. We obtain the mean yield by taking the time-
average of Eq. (45)

⟨N⟩ = lim
t→∞

1

T

∫ T

0

N (t) dt.

To compute this, we use the oscillation protocol (44), together with the homogeneous
solution (43), to obtain the asymptotic relation

ρ2 (t) c0 (t) ∼
r20

1 + 2αωδ
α2+ω2

[
α
ω
sin (ωt)− cos (ωt)

]
+ 1

2
δ2

α2+4ω2 [α2 + 4ω2 − α2 cos (2ωt)− 2ωα sin (2ωt)]
,

as t→ ∞. (46)

(further details of this derivation are given in Appendix B. This gives the long-time
average

⟨N⟩ = g0 lim
T→∞

1

T

∫ T

0

ρ2(t)c0(t) dt,

= g0r
2
0 lim
T→∞

1

T

∫ T

0

dt

1 + 2δαω
α2+ω2

(
α
ω
sin (ωt)− cos (ωt)

)
+ 1

2
δ2
[
1− α2 cos(2ωt)+2ωα sin(2ωt)

α2+4ω2

] ,(47a)

= g0r
2
0

[
1 + 1

2
δ2
3α2 − ω2

α2 + ω2

]
+O

(
δ3
)
, ω > 0. (47b)

Thus, the amount of product created can either be raised or lowered, depending
on the reaction rate and the oscillation frequency; for large frequencies, the yield is
lowered.

The exact form of the yield ⟨N⟩ (ω) is plotted in Fig. 5. Note that ⟨N⟩ (ω) is
not continuous at ω = 0:

⟨N⟩ (ω = 0) ̸= lim
ω→0

⟨N⟩(ω). (48)

In more detail, if we set ω to zero in Eq. (45) and then average the result, we
obtain ⟨N⟩(ω = 0) = g0r

2
0. This corresponds to the case with no oscillations, and

corresponds also to the left-hand side of relation (48). On the other hand, if instead
we take ω to be a small but finite number in Eq. (45), compute the average, and
then take ω → 0, we obtain the result

⟨N⟩ = g0r
2
0 lim
T→∞

1

T

∫ T

0

dt

1 + 2δ sin (ωt) + δ2 sin2 (ωt)
= g0r

2
0

[√
1− δ2 + 2δ2

1− δ2

]
. (49)

This corresponds to the right-hand side of relation (48).
We also extend our investigation of the homogeneous state to more complicated

mass-action laws, focussing on the bistable reaction. Here, in the absence of surface
oscillation, there are two stable states: c = 0, and c = 1; there is also an interme-
diate, unstable state, c = cmid, where 0 < cmid < 1. We study this reaction for the
scale factor (44); the relevant homogeneous equation is

dc

dt
= α(c− 1)(cmid − c)c+ c

(
2δω cosωt

1 + δ sinωt

)
. (50)
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Figure 5: Homogeneous solution, separable metric. (a) The instantaneous yield
⟨N⟩ (t) for ω = 10 = α, and δ = 0.5. The system settles down to a periodic state
wherein the concentration oscillates with the driving-force frequency. The dashed
line indicates the yield in the absence of oscillation; (b) The time-averaged yield as
a function of the oscillation frequency. The units on the vertical axis in (a) and
(b) are arbitrary, since only the difference between the stationary and driven yield
curves matters.

The preferred state depends on the oscillation parameters and the unstable level
cmid. To see the relation between these parameters, we fixed δ = 0.5 and α = 10,
and investigated the state selection as a function of ω and cmid. For each value of
cmid there is a critical frequency such that above that frequency, the zero state is
preferred, while below that frequency, an oscillatory state is selected. This relation-
ship is shown in Fig. 6 (a). For large values of cmid, close to cmid = 1, the critical
frequency is shifted downward, indicating that the zero state is preferred for all
but the slowest of oscillation frequencies. We have investigated the time-averaged
mean yield as a function of ω and fixed cmid. Fig. 6 (b) shows this relationship
for cmid = 0.4. For ω < ωc (cmid = 0.4), the time-averaged mean yield exceeds the
stationary value (where ω = 0), while for ω > ωc the mean yield is zero.

The physical explanation of this state selection is as follows. Consider again (50).
When δ = 0, the states c = 0 and c = 1 are stable equilibria. Now, when δ is
nonzero, the equilibrium state c = 1 ceases to exist. However, for small values of
ω, the driving term can be treated as though it were a constant (since it varies
slowly in this case), and the solution consists of slowly-varying oscillations around
the original equilibrium points. Thus, the solution c = 1 + oscillations is possible
for small ω-values. On the other hand, when ω is large, the geometric sink can no
longer be treated adiabatically, and this term drives the system. In this case, the
evolution is always towards the only equilibrium state that persists, c = 0. In spite
of this apparently simple explanation, care must be taken in describing the system
fully: Eq. (50) is a nonlinear parametric oscillator equation, and a full quantitative
description requires the kind of detailed numerical simulations performed herein.

In conclusion, the results in Fig. 6 demonstrate that for the correct parameter-
tuning, it is still possible to obtain a yield above the stationary yield simply by an
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appropriate oscillation of the surface on which the chemical system resides. Further
numerical results, along the same lines, can be found in the work of Kamhawi [2009].

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

c
mid

ω
c

No Oscillations

Oscillations

(a)

0 0.5 1 1.5 2
100

120

140

160

180

200

ω

<
N

>

ω
c
=1.31

(b)

Figure 6: Characterisation of the bistable reaction. Subfigure (a) gives the param-
eter regimes in which either the zero state c = 0, or the oscillatory state, is selected
as the asymptotic state. The oscillatory state is preferred at small frequencies, and
the critical frequency is reduced at large cmid-values. Subfigure (b) gives the time-
averaged yield as a function of ω for cmid = 0.4. The time-averaged yield exceeds
the stationary (ω = 0; dotted line) yield for ω < ωc, while for ω > ωc, the yield is
zero. The units on the vertical axis in (b) are arbitrary.

6 Conclusions

We have reviewed the theory of mass balance for flow-driven chemical reactions
on arbitrary, time-varying surfaces. The associated partial-differential equation in-
volves a geometric source / sink, which affects the reaction kinetics. In particular,
we have reduced the problem to a diffusion-type problem, in the limit when the
flow varies only on small scales, and when the manifold varies either on the small
scales, or on the large scales. We focus on the state c = 0 of the autocatalytic re-
action, and determine whether surface oscillations can stabilise this state. We have
demonstrated that stirring and surface oscillation fail to stabilise this state when
the scales of variation are small; however, if the manifold has large-scale variations,
then stabilisation is possible. This condition for stabilisation is difficult to interpret,
and we therefore turn in the latter part of the paper to numerical simulations.

Using numerical simulations, we have examined chemical reactions on the surface
of a thin film under flow. We have investigated the behaviour of the reaction kinetics
wherein the thin-film flow is forced using different oscillation protocols. Typically,
those protocols that increase the surface area of the thin film are those that enhance
the reaction yield. For the choices of oscillation protocol considered, it is the spatial
scale of the flow, rather than its frequency, that controls the reaction. Finally, we
have investigated separable metric tensors, wherein the geometric sink reduces to
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a function of time alone, and a homogeneous solution emerges. We have carried
out numerical studies, for two kinds of reaction kinetics. For the logistic case,
the reaction yield associated with the homogeneous solution can be enhanced by
including an oscillating scale factor. The same is true for the bistable reaction,
albeit with a twist: below a critical oscillation frequency the chemical concentration
oscillates, giving an enhanced time-averaged yield; above this threshold however,
the state c = 0 is selected, and the yield is zero. Both sets of numerical simulations
exhibit some of the same generic features: that the geometric sink dramatically
alters the outcome of the reaction (in particular the reaction yield), and that careful
parameter tuning is required to generate an enhanced reaction yield.
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A The homogenised diffusion operator is uniformly elliptic

A.1 The metric has small-scale variations (Case 1)

We consider the homogenised problem (25)

∂ψ̃0

∂τ1
(τ1, q) =

[
α +

(
⟨gij⟩+M ij

) ∂2

∂qi∂qj

]
ψ̃0 (τ1, q) , (51)

where the coefficients are defined in Sec. 3.1. In this appendix, we show that the
quadratic form

Q(w) := ϖ
(
⟨gij⟩+M ij

)
wiwj

is positive for non-zero constant covariant vectors wi.
To prove this, we proceed in a manner similar to the calculation for compressible

flow on flat surfaces Goudon and Poupaud [2004] (note, however, that the adjoint
problem defined below differs substantially from the flat case). We introduce the
notation

∂θi

∂τ2
+
1

Γ

[
∂Γ

∂τ2
+

∂

∂Qj

(
ΓU j

)]
θi+U j ∂θ

i

∂Qj
−∆Qθ

i = −mU i+
1

Γ

∂

∂Qj

(
Γgijm

)
+gij

∂m

∂Qj
,

or
∂θi

∂τ2
− L0θ

i = −mU i +
1

Γ

∂

∂Qj

(
Γgijm

)
+ gij

∂m

∂Qj
,

or

T0θ
i = −mU i +

1

Γ

∂

∂Qj

(
Γgijm

)
+ gij

∂m

∂Qj
.

We also introduce the adjoint problem

T ∗
0 θ

i∗ = −Û i∗ := −U i − 1

Γ

∂

∂Qj

(
Γgij

)
.
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Here,

T0 =
∂

∂τ2
+

1

Γ

[
∂Γ

∂τ2
+

∂

∂Qi

(
ΓU i

)]
(·) + U i ∂

∂Qi
−∆Qψ1,

=
∂

∂τ2
+

1

Γ

∂Γ

∂τ2
(·) + 1

Γ

∂

∂Qi

[
ΓU i(·)

]
−∆Q,

T ∗
0 = − ∂

∂τ2
− U i ∂

∂Qi
−∆Q.

Consider now the diffusion matrix

M ij =

∫ T02

0

x
ΩQ

(
−Û iθj

)
Γd2Q dτ2,

=

∫ T02

0

x
ΩQ

(
−U iθj + gik

∂θj

∂Qk

)
Γd2Q dτ2,

=

∫ T02

0

x
ΩQ

[
−U iθj − θj

Γ

∂

∂Qk

(
Γgik

)]
Γd2Q dτ2,

=

∫ T02

0

x
ΩQ

(
−Û i∗θj

)
Γd2Q dτ2,

=

∫ T02

0

x
ΩQ

(
T ∗
0 θ

i∗) θj Γd2Q dτ2,

=

∫ T02

0

x
ΩQ

θj
(
− ∂

∂τ2
− Uk ∂

∂Qk
−∆2

Q

)
θi∗Γd2Q dτ2.

The part involving the time derivative can be re-written as

Time part =

∫ T02

0

x
ΩQ

θj
[
− ∂

∂τ2

(
θi∗
)]

Γd2Q dτ2,

=

∫ T02

0

x
ΩQ

θi∗
(
∂θj

∂τ2
+
θj

Γ

∂Γ

∂τ2

)
Γd2Q dτ2.

Similarly,

Space part =

∫ T02

0

x
ΩQ

θj
(
−Uk ∂

∂Qk
−∆2

Q

)
θi∗Γd2Q dτ2,

=

∫ T02

0

x
ΩQ

θi∗
[
1

Γ

∂

∂Qk

(
UkΓθj

)
−∆Qθ

j

]
Γd2Q dτ2.
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Hence,

M ij =

∫ T02

0

x
ΩQ

θi∗
[
∂θj

∂τ2
+
θj

Γ

∂Γ

∂τ2
+

1

Γ

∂

∂Qk

(
UkΓθj

)
−∆Qθ

j

]
Γd2Q dτ2,

=

∫ T02

0

x
ΩQ

θi∗
[
−mU j +

1

Γ

∂

∂Qk

(
Γgjkm

)
+ gjk

∂m

∂Qk

]
Γd2Q dτ2,

=

∫ T02

0

x
ΩQ

θi∗
[
−
(
U j +

1

Γ

∂

∂Qk
(Γgjk)

)
m+

1

Γ

∂

∂Qk
(Γgjk)m

]
Γd2Q dτ2,

=

∫ T02

0

x
ΩQ

(
mθi∗T ∗

0 θ
j
)
Γd2Q dτ2 + 2

∫ T02

0

x
ΩQ

θi∗
[
1

Γ

∂

∂Qk

(
Γgjkm

)]
Γd2Q dτ2.

Consider therefore the quadratic form

Q(w) = ϖ
(
⟨gij⟩+M ij

)
wiwj,

=

∫ T02

0

x
ΩQ

m⟨w,w⟩Γd2Q dτ2 +

∫ T02

0

x
ΩQ

(mθwT ∗
0 θw) Γd

2Q dτ2

+ 2

∫ T02

0

x
ΩQ

θ∗w

[
1

Γ

∂

∂Qk

(
Γwjg

jkm
)]

Γd2Q dτ2,

:= Q1 +Q2 +Q3,

where
θ∗w = wiθ

i∗, θw = wiθ
i,

and ⟨w,w⟩ = wiwig
ij. We now do the integral Q2, herein performed on a generic

test function ϕ:

Q2 =

∫ T02

0

x
ΩQ

(mϕT ∗
0 ϕ) Γd

2Q dτ2,

=

∫ T02

0

x
ΩQ

mϕ

[
− ∂

∂τ2
− Uk ∂

∂Qk
−∆Q

]
ϕΓd2Q dτ2,

=

∫ T02

0

x
ΩQ

mϕ

(
∂ϕ

∂τ2
+ Uk ∂ϕ

∂Qk
−∆Qϕ

)
Γd2Q dτ2 − 2

∫ T02

0

x
ΩQ

ϕgij
∂ϕ

∂Qi

∂m

∂Qj
Γd2Q dτ2.

Hence,∫ T02

0

x
ΩQ

mϕ

[
−2

∂ϕ

∂τ2
− 2Uk ∂ϕ

∂Qk
−∆Qϕ

]
Γd2Q dτ2,

=

∫ T02

0

x
ΩQ

mϕ (−∆Qϕ) Γd
2Q dτ2 − 2

∫ T02

0

x
ΩQ

ϕgij
∂ϕ

∂Qi

∂m

∂Qj
Γd2Q dτ2,
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or

2Q2 = 2

∫ T02

0

x
ΩQ

mϕ (−∆Qϕ) Γd
2Q dτ2 − 2

∫ T02

0

x
ΩQ

ϕgij
∂ϕ

∂Qi

∂m

∂Qj
Γd2Q dτ2.

An application of integration by parts once on the first term yields

Q2 =

∫ T02

0

x
ΩQ

mgij
∂ϕ

∂Qi

∂ϕ

∂Qj
Γd2Q dτ2 ≥ 0,

since gij is the metric tensor and is therefore positive definite.
We assemble these results now:

Q =

∫ T02

0

x
ΩQ

m

(
gijwiwj + gij

∂θ∗w
∂Qi

∂θ∗w
∂Qj

)
Γd2Q dτ2

+ 2

∫ T02

0

x
ΩQ

θ∗w

[
1

Γ

∂

∂Qk

(
Γwjg

jkm
)]

Γd2Q dτ2,

=

∫ T02

0

x
ΩQ

m

(
gijwiwj +mgij

∂θ∗w
∂Qi

∂θ∗w
∂Qj

)
Γd2Q dτ2

− 2

∫ T02

0

x
ΩQ

mwjg
jk ∂θ

∗
w

∂Qk
Γd2Q dτ2,

=

∫ T02

0

x
ΩQ

m

(
⟨w,w⟩+

⟨∂θ∗w
∂Q

,
∂θ∗w
∂Q

⟩
− 2
⟨
w,

∂θ∗w
∂Q

⟩)
Γd2Q dτ2,

=

∫ T02

0

x
ΩQ

m
⟨
w − ∂θ∗w

∂Q
,w − ∂θ∗w

∂Q

⟩
Γd2Q dτ2 ≥ 0.

Here, the penultimate line follows because gij is the metric tensor and is therefore
positive symmetric; the last line follows because the metric tensor is positive definite.

A.2 The metric has large-scale variations (Case 2)

We consider Eq. (31), viz.

∂ψ0

∂τ1
(τ1, q) = (α +∆q)ψ0 +M ij(q, τ1)

∂2ψ0

∂qi∂qj
+Bi(q, τ1)

∂ψ0

∂qi
+ A(q, τ1)ψ0, (52)

where the coefficients are defined in Sec. 3.2. We are going to show that M ij is a
positive-definite matrix and hence, the homogenised problem (31) is parabolic.
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We take

Q(w) = ϖM ijwiwj,

= −
∫ T02

0

x
ΩQ

(
U iθj

)
wiwj d

2Q dτ2,

= −
∫ T02

0

x
ΩQ

U ·wθ ·w d2Q dτ2,

= −
∫ T02

0

x
ΩQ

U ·w θw d2Q dτ2.

But recall Eq. (29):

∂θw
∂τ2

+ Uk ∂θw
∂Qk

− gjk
∂2θw

∂Qj∂Qk
= −U ·w, (53)

or
T0θw = −U ·w.

Hence,

Q(w) =

∫ T02

0

x
ΩQ

θwT0θw d2Q dτ2,

=

∫ T02

0

x
ΩQ

θw

[
∂θw
∂τ2

− gjk
∂2θw

∂Qj∂Qk
+ Uk ∂θw

∂Qk

]
d2Q dτ2,

=

∫ T02

0

x
ΩQ

[
∂

∂τ2

(
1
2
θ2w
)
− θwg

jk ∂2θw
∂Qj∂Qk

]
d2Q dτ2,

=

∫ T02

0

x
ΩQ

gij
∂θw
∂Qi

∂θw
∂Qj

d2Q dτ2 ≥ 0,

since gij is the metric tensor. Here, the integral involving the time derivative vanishes
because of the temporal periodicity. Thus, the ordinary diffusion ∆q is enhanced
by the transport. This is not surprising, as the results of this section are clearly
inherited from the flat-space calculation; the difference being the presence of lower-
order terms A and Bi due to the spatial variations in the metric tensor.

B Asymptotic solutions of the uniform reaction-diffusion
equation

In this appendix, we study in detail the asymptotic (t→ ∞) solutions of the equation

dc0
dt

= αc0 (1− c0)− c0
d log ρ2

dt
, (54)

subject to

ρ(t) =
r0

1 + δ sin (ωt)
, (55)
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To do this, we use the following explicit solution for Eq. (54):

c0 (t) =
e

∫ t
0

(
α− d log ρ2

dt′

)
dt′

1
c0(0)

+ α
∫ t

0
e
∫ t′
0

(
α− d log ρ2

dt′′

)
dt′′

dt′
.

Hence,

c0(t) =
1/ρ(t)2

e−αt

c0(0)ρ(0)2
+ αe−αt

∫ t

0
[eαt′/ρ2(t′)] dt′

.

In what follows, we take t → ∞ and therefore omit terms that are proportional to
e−αt. Thus,

c0(t) ∼
[1 + δ sin(ωt)]2

αe−αt
∫ t

0
eαt
[
1 + 2δ sin(ωt′) + δ2 sin2(ωt′)

]
dt′
, as t→ ∞.

We perform the integral and again omit terms that are proportional to e−αt:

c0(t) ∼
[1 + δ sin(ωt)]2

1 + 2δαω
ω2+δ2

[
α
ω
sin(ωt)− cos(ωt)

]
+ 1

2
δ2

α2+4ω2 [α2 + 4ω2 − α2 cos (2ωt)− 2ωα sin(2ωt)]
,

as t→ ∞.

Hence,

ρ2 (t) c0 (t) ∼
r20

1 + 2αωδ
α2+ω2

[
α
ω
sin (ωt)− cos (ωt)

]
+ 1

2
δ2

α2+4ω2 [α2 + 4ω2 − α2 cos (2ωt)− 2ωα sin (2ωt)]
,

as t→ ∞.
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