In this lecture we continue to look at the BFGS formula for the descent direction. We investigate the circumstances in which the BFGS method produces a positive-definite approximation of the Hessian at each iteration.

This is based on Chapter 4 of the typed notes.
BF as Algorithm (Ch.4)
Hessian Matrix

$$
\left[\underline{B}\left(\underline{x}_{k}\right)\right]_{i j}=\left.\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right|_{x_{k}}
$$

Aim: Avoid competing B_{k}^{-1} at each iteration $\left(O\left(n^{3}\right)\right)$

Approximate:

$$
\underbrace{y_{k}}_{\nabla f\left(x_{k+1}\right)-\underline{-} f\left(x_{k}\right)} \simeq B\left(\underline{x}_{k}\right) \underbrace{\underline{s}_{k}}_{B_{k+1}}
$$

Hence:

$$
y_{k}=B_{k+1} S_{k}
$$

- n equations
- near unknowns

BFGS solves this qu in an approximate sense.

Two vector quantities:

$$
y_{k}, \quad B_{k} s_{k}
$$

Our approximate s i k to Equ is Guilt out of Ye and $B_{k} S_{k}$:

$$
\left\{\begin{aligned}
B_{k+1}=B_{k} & +\alpha y_{k} y_{k}^{\top} \\
& +\beta\left(\underline{\left(B_{k} s_{k}\right)}\left(B_{k} s_{k}\right)^{\top} .\right.
\end{aligned}\right.
$$

Here, $y_{k} y_{k}^{\top}$ is the over product:

$$
\begin{aligned}
(n \times 1) & (1 \times n)=n \times n . \\
{\left[y_{k} y_{k}^{\top}\right]_{i j} } & =\left(y_{k}\right)_{i}\left(y_{k}\right)_{j}
\end{aligned}
$$

We require that the approximation should satisfy the secant equation:

$$
y_{k}=B_{k+1} \underline{s}_{k}
$$

We have found (lecture notes) the general formula:

General formula:

$$
\begin{aligned}
& \text { General formula: } \\
& B_{k+1}=B_{k}+\frac{y_{k} y_{n}^{T}}{\left\langle y_{n}, s_{n}\right\rangle}-\frac{D_{k} s_{k} \Sigma_{n}^{\top} B_{k}^{\top}}{\left\langle s_{n}, B_{n}^{\top} S_{n}\right\rangle}
\end{aligned}
$$

In this lecture, we look in depth at the properties of the matrices B_{k} and B_{k+1} in Equation (1).

Positive -Definite Property (§.4.2.1)
Theorem: Provided B_{0} is positive definite and symmetric, and provided the curvature condition:

$$
\left\langle y_{k}, s_{k}\right\rangle>0
$$

is satisfied at each iteration, then the
BFGS method produces a symmetric positive-definite approximation to the Hessian at each iteration.

The proof is by induction on k. We start with the symmetry property:
Symmetry:

$$
\begin{aligned}
B_{k+1}^{\text {ammeky }} & =B_{k}+\underbrace{y_{k} y_{h}^{\top}+\beta\left(B_{k} S_{k}\right)\left(B_{k} S_{k}\right)^{\top}} \\
& =B_{k}+\text { Symmetric Matrices }^{\text {Sym }}
\end{aligned}
$$

By assumption. Bo is symmetric, so by mathematical induction, B_{k} is symmetric for all $k \in\{0,1,2, \ldots\}$.

We next look at the positive-definite property:
To show: $\left\langle\xi, B_{k+1} \xi\right\rangle>0 \forall \xi \neq 0$.

$$
\begin{aligned}
& +\frac{\left\langle\xi, y_{k} y_{n}^{\top} \xi\right\rangle}{\left\langle y_{n} s_{n}\right\rangle}
\end{aligned}
$$

Look at the last term, highlighted in yellow:

Last tern:

$$
\left.\frac{\left\langle\xi, \widetilde{y_{n}} \tilde{y}_{n}^{\top} \xi\right\rangle}{\left\langle y_{n}, s_{n}\right\rangle}=\frac{\left\langle\underline{\xi}, y_{n}\right\rangle^{2}}{\frac{\left\langle y_{n}, s_{n}\right\rangle}{>0, \text { curative }} \text { condition }}\right\rangle>0 .
$$

So it suffices to show that the first two terms are positive definite.

$$
\left.\Delta=\left\langle\xi, B_{k}\right\}\right\rangle-\frac{\left.\left\langle\underline{\xi}, B_{k} S_{n} s_{n}^{T} Q_{n}\right\}\right\rangle}{\left\langle\underline{S}_{k}, B_{k} \underline{S}_{n}\right\rangle}
$$

Since B_{k} is symmetric positive -definite,

$$
\begin{aligned}
& \left.\mathcal{B}_{R} \underline{u}_{i}=\lambda_{i} \underline{u}_{i}, \quad \lambda_{i}\right\rangle 0 . \\
& \xi=\sum_{i} \xi_{i} \underline{u}_{i}, \quad \xi_{i}=\left\langle\xi, \underline{u}_{i}\right\rangle \\
& \underline{s}_{k}=\sum_{i} \sigma_{i} \underline{u}_{i}, \quad \sigma_{i}=\left\langle s_{r}, u_{i}\right\rangle . \\
& \left\langle\xi, B_{k} \xi_{i}\right\rangle=\sum_{i} \lambda_{i} \xi_{i}^{2}
\end{aligned}
$$

Sub these relations back into the expression for \triangle

Re-arrange the sums:

$$
\Delta=\sum_{i} \lambda_{i} \xi_{i}^{2}-\frac{\sum_{i} \sum_{j} \xi_{i} \xi_{j}\left\langle\underline{u}_{i} B_{k} \underline{s}_{k} s_{h}^{\top} B_{k} \underline{u}_{j}\right\rangle}{\sum \lambda_{i} \sigma_{i}^{2}}
$$

Move $B_{l e}$ and use the fact that it's symmetric:

$$
\begin{aligned}
& \Delta=\sum_{1} \lambda_{i} \xi_{i}^{2}-\frac{\sum_{i} \sum_{j} \xi_{i} \xi_{j}\left\langle B_{k}^{T} \underline{u}_{i}, \underline{S}_{k} \underline{S}_{n}^{T} \underline{B}_{k} \underline{u}_{j /}\right\rangle}{\sum \lambda_{i} \sigma_{i}{ }^{2}} \\
& \text { Use } B_{R} \underline{u}_{i}=\lambda_{i} \underline{u}_{i} \\
& \Delta=\sum_{i} \lambda_{i} \xi_{i}^{2}-\frac{\left.\sum_{i} \sum_{j} \xi_{i}\right\}_{j} \lambda_{i} \lambda_{j}\left\langle\underline{u}_{i}, \underline{S}_{k} \underline{S}_{n}^{T} \underline{u}_{j}\right\rangle}{\sum_{i} \lambda_{i} \sigma_{i}^{2}}
\end{aligned}
$$

Use the following key fact:

$$
\left\langle\underline{u}_{i}, \underline{S}_{k} \underline{S}_{n}^{\top} \underline{u}_{j}\right\rangle=\sigma_{i} \cdot \sigma_{j}
$$

Hence:

$$
\Delta=\sum_{i} \lambda_{i} \xi_{i}^{2}-\frac{\sum_{i} \sum_{j} \xi_{i} \zeta_{j} \lambda_{i} \lambda_{j} \sigma_{i} \cdot \sigma_{j}}{\sum \lambda_{i} \sigma_{i}^{2}}
$$

Intrude X and Y such that:

$$
X_{i}=-\sqrt{\lambda_{i}} \xi_{i}, Y_{i}=\sqrt{\lambda_{i}} \sigma_{i}
$$

Hence:

$$
\begin{aligned}
& \Delta=\frac{\left(\sum_{i} \lambda_{j} \xi_{i}^{2}\right)\left(\sum_{i} \lambda_{i} \sigma_{i}^{2}\right)-\sum_{i} \xi_{i} \lambda_{i} \sigma_{i} \sum_{j} \xi_{j} \lambda_{j} \sigma_{j}}{\sum \sum \sigma_{i}^{2}} \\
& \text { denuminato } \\
& =\frac{\left(\sum_{i} X_{i}^{2}\right)\left(\sum_{i} Y_{i}^{2}\right)-\left(\sum_{i} X_{i} Y_{i}\right)\left(\sum_{i} X_{j} y_{j}\right)^{\prime}}{\sum_{i} Y_{i}^{2}}
\end{aligned}
$$

Re-write this as:

$$
\Delta=\frac{\|x\|_{2}^{2}\|y\|_{2}^{2}-(x \cdot y)^{2}}{\|y\|_{2}^{2}}
$$

Hence:
$\Delta \geq 0$, by C.S.

$$
\begin{aligned}
& \text { So } \\
& \left\langle\xi, B_{k+1} \xi\right\rangle=\Delta+\frac{{\left.\widehat{\langle\xi}, y_{4}\right\rangle^{2}}^{\left\langle y_{n}, s_{n}\right\rangle}>0 .}{} . . \quad \text {. }
\end{aligned}
$$

So \underline{B}_{k+1} is positive-definite.

Hence:
B_{R} is p.def. $\Rightarrow B_{k+1}$ is p.def.
Since B_{0} is p.def. by mathematical induction, B_{k} is p.def. for all $k \in\{0,1,2, \ldots\}$.

