Optimization of Convex Functions
Theorem 2.8 When f is convex, any local minimizer \underline{x}_{*} is a global minimizer of f. If, in addition, f is differentiable, then any stationary point $(\nabla f=0)$ is a global minimizer.

Proof: First part. Assume for contradiction that \underline{x}_{*} is a local minimizer but that there is a second minimizer y such that: $\bar{f}(y)<f\left(\underline{x}_{*}\right)$. (1)

By convexity,

$$
\underline{x}(t)=t \underline{y}+\left(1-(-) \underline{x}_{*}, t \in[0,1]\right.
$$

$$
\begin{aligned}
\text { and } f(\underline{x}(t)) \leq & \underbrace{t f(\underline{y})+(1-t) f\left(\underline{x}_{*}\right)} \\
& <t f\left(\underline{x}_{*}\right) \quad(1-t) f\left(\underline{x}_{*}\right) \\
\Rightarrow & f(\underline{x}(t)) \ll f\left(\underline{x}_{*}\right) .
\end{aligned}
$$

Draw a picture:

We have :

$$
f(\underline{x}(t)) \leq f(\underline{x}) \quad \forall \quad \underline{x}(t) \in N_{*} \text {. }
$$

So no muter the size of N; Mere are points in \mathcal{N} such thai

$$
f(\cdots) \leq f\left(x_{+}\right)
$$

But \underline{X}_{*} is a local minimum.
contradiction. Hence, (1) is false. So there is no second minimizer f, so x_{*} is the global minimum.

Second port: Assume x_{*} is a stationary point:

$$
\nabla f\left(\underline{x}_{*}\right)=0 .
$$

$$
\Rightarrow \quad\left(y-\underline{x}_{*}\right) \cdot \nabla f\left(x_{*}\right)=0 .
$$

But this is the direction derivative of f at \underline{x}_{*}, in the direction $y-\underline{x}_{*}$.

$$
\begin{aligned}
& \left.\Rightarrow \quad \frac{d}{d t} f\left(\underline{x}_{*}+t\left(y-\underline{x}_{*}\right)\right)\right|_{t=0}=0 \\
& =\lim _{t \downarrow 0} \frac{f\left(x_{\infty}+t\left(y-x_{\infty}\right)\right)-f\left(x_{\infty}\right)}{t} \\
& =\lim _{t \downarrow 0} \frac{f\left(t_{*} y+(1-t) x_{\infty}\right)-f\left(x_{\infty}\right)}{t} \\
& \quad \leq \lim _{t \downarrow 0} \frac{t f(y)+y-t) f\left(x_{\infty}\right)-f\left(x_{\infty}\right)}{t}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 0 \leq \lim _{t v 0} \notin f(y)-t f\left(x_{0}\right) \\
& \cdots 0 \leq f(y)-f\left(x_{\rightarrow}\right) \\
& \Rightarrow 0 \leq f\left(x_{x}\right) \leq f(y) \quad \forall u \in S .
\end{aligned}
$$

Hence, \underline{x}_{x} is a global min.

Mudel problem ($\xi 2.3$)
When the cost function is di twice differentiable, it will "locally lock like a quadratic". The quadratic cost function is the model problem:

$$
f(\underline{x})=c+\langle\underline{a}, \underline{x}\rangle+\frac{1}{2}\langle\underline{x}, \vec{B} \underline{x}\rangle
$$

where:

- c is a constant
- \underline{a} is a constant vector
- B is an $n \times n$ SYMMETRIC 1 positive -definite matrix

$$
\begin{aligned}
& f\left(x_{1}, \ldots, x_{n}\right)=c+a_{i} x_{i}+\frac{1}{2} x_{i} B_{i j} x_{j} \\
& \frac{\partial f}{\partial x_{k}}=\frac{\partial}{\partial x_{k}}\left(\notin+a_{i} x_{i}+\frac{1}{2} x_{i} B_{i j} x_{j}\right) \\
& =0+a_{i} \frac{\partial x_{i}}{\partial x_{k}}+\frac{1}{2} B_{i j}\left(\frac{\partial x_{i}}{\partial x_{k}} x_{j}+x_{i} \frac{\partial x_{j}}{\partial x_{k}}\right)
\end{aligned}
$$

Introduce:

$$
\begin{aligned}
& \Rightarrow \frac{\partial f}{\partial x_{k}}=\underbrace{a_{i} \delta_{i k}}+\frac{1}{2} B_{i j}\left(\delta_{i k} x_{j}+x_{i} \delta_{j k}\right) \\
& \Rightarrow \frac{\partial f}{\partial x_{k}}=a_{k}+\frac{1}{2} \underline{B_{i j}} \delta_{i k} x_{j} \\
& +\frac{1}{2} B_{i j} \delta_{j k} x_{i} \\
& =a_{k}+\frac{1}{2} B_{k j} x_{j}+\frac{1}{2} \underbrace{B_{i k}}_{i k} x_{i} \\
& \stackrel{\text { symandic }}{=} a_{k}+\frac{1}{2} B_{k j} x_{j}+\frac{1}{2} B_{k i} x_{i} \\
& \stackrel{D_{m i n g}}{=} a_{x}+\frac{1}{2} \underline{\underline{B_{j}} x_{j}}+\frac{1}{2} B_{k_{j}} X_{j} \\
& =a_{k}+B_{k j} x_{j} \\
& =a_{n}+[\underline{B} \underline{x}]_{k} \\
& \Rightarrow \nabla f=\underline{a}+B \underline{x}
\end{aligned}
$$

First-order optinality: $\nabla f=0$

$$
\begin{aligned}
& \Rightarrow \quad \underline{a}+B \underline{x}=0 \\
& \Rightarrow \quad \underline{x}=-B^{-1} \underline{a} \\
& \quad \underline{x}_{*}=-B^{-1} a
\end{aligned}
$$

Second-order optimality:

$$
\begin{aligned}
\frac{\partial f}{\partial x_{k}} & =a_{k}+B_{k j} x_{j} \delta_{j l} \\
\frac{\partial^{2} f}{\partial x_{l} \partial x_{k}} & =x_{k}+B_{k j} \frac{\partial x_{j}}{\partial x_{l}} \\
& =B_{k j} \delta_{j l} \\
& =B_{k l}
\end{aligned}
$$

$$
\Rightarrow \frac{\partial^{2} f}{\partial x_{l} \partial x_{k}}=\text { Burke, } \quad \begin{aligned}
& \text { Hessian matrix } \\
& \text { just } B
\end{aligned}
$$

But \underline{B} is positive definite, as per the model problem, so $\underline{x}_{x}=-B^{-1} \underline{a}$ is a local minimizer. By convexity, this is the unique global minimizer

Evaluation:

$$
\begin{aligned}
f\left(\underline{x}_{*}\right) & =c+\left\langle\underline{a}, \underline{x}_{*}\right\rangle+\frac{1}{2}\left\langle\underline{x}_{x}, B \underline{x}_{*}\right\rangle \\
& =c-\left\langle\underline{a}, B^{-1} \underline{a}\right\rangle+\frac{1}{2}\left\langle B^{-1} \underline{a}, \underline{B B^{-1} \underline{a}},\right. \\
& =c-\left\langle\underline{a}, B^{-1} \underline{a}\right\rangle+\frac{1}{2}\left\langle B^{-1} \underline{a}, \underline{q}\right\rangle \\
f\left(\underline{x}_{*}\right) & =c-\frac{1}{2}\left\langle\underline{a}, B^{-1} \underline{a}\right\rangle=f_{\text {min }} .
\end{aligned}
$$

Remark: Recall the definition of a convex function:

$$
\begin{aligned}
& \underline{x}(t)=t \underline{x}+(1-t) \underline{y}, t \in[0,1] \\
& f(\underline{x}(+1) \leq t f(x)+(1-t) f(\underline{y}) .
\end{aligned}
$$

global minimizer.

A convex function is U -shaped; the model problem involves such a function:

$$
f(\underline{x})=C+\langle\underline{a}, \underline{x}\rangle+\frac{1}{2}\langle\underline{x}, B \underline{x}\rangle
$$

U-shapad surface in \mathbb{R}^{\prime}.

Of course, we have already proved algebraically in a previous lecture that the model problem is a convex function. The above sketches are just to supplement the analytical results with a pictorial understanding.

