
University College Dublin

An Coláiste Ollscoile, Baile Átha Cliath

School of Mathematics and Statistics
Scoil na Matamaitice agus Staitistićı

Optimization Algorithms

For use in Optimization and Machine Learning (ACM 40990)

and Optimization Algorithms (ACM41030)

Dr Lennon Ó Náraigh

Lecture Notes in Optimization Algorithms
January 2024

Optimization in Machine Learning (ACM 40990)

� Subject: Applied and Computational Mathematics

� School: Mathematics and Statistics

� Module coordinator: Dr Lennon Ó Náraigh; Co-Lecturer: Dr Marco Viola

� Credits: 5

� Level: 4

� Semester: Spring

This module introduces students to the mathematical techniques that form the cornerstone of Ma-

chine Learning. Students will first of all study in depth the key concepts in continuous optimization

(unconstrained, constrained, and global), before going on to apply these concepts to common algo-

rithms in Machine Learning.

Topics covered: Steepest-Descent and Newton-type methods, including analysis of convergence,

Trust-region methods, including the construction of solutions of the constrained sub-problem. Nu-

merical implementations of standard optimization methods. Necessary first-order optimality condi-

tions. Introduction to Global Optimization, to include a discussion on Simulated Annealing. Applica-

tion of optimization techniques through worked examples in Python. Examples may include: Linear

Regression, Matrix Completion and Compressed Sensing, Support Vector Machines, and Neural

Networks.

What will I learn?

On completion of this module students should be able to

1. Formulate standard optimization techniques in continuous optimization, understand the con-

vergence criteria, and implement these methods from scratch;

2. Understand the first-order necessary conditions for optimality in constrained optimization, be

able to solve simple problems by hand

3. Understand the need for global optimization, implement a simulated-annealing algorithm

4. Using Python programming, apply optimization techniques to problems in Machine Learning

i

Optimization Algorithms (ACM41030)

� Subject: Applied and Computational Mathematics

� School: Mathematics and Statistics

� Module coordinator: Dr Lennon Ó Náraigh;

� Credits: 5

� Level: 4

� Semester: Spring

This module introduces students to the theory of optimization, a key tool in modern Applied Math-

ematics, Operations Research, and Machine Learning. Students will study in depth the key concepts

in continuous optimization - both unconstrained, constrained, and global.

Topics covered: Steepest-Descent and Newton-type methods, including analysis of convergence,

Trust-region methods, including the construction of solutions of the constrained sub-problem, Non-

Linear Least Squares, including the Levenberg-Marquardt method. Numerical implementa-

tions of standard optimization methods. Constrained optimization with equality and inequality

constraints, examples motivating the introduction of the Lagrange Multiplier Technique.

Necessary first-order optimality conditions, including a derivation of the Karush-Kuhn-

Tucker conditions. Farkas’s lemma and the Separating Hyperplane Theorem. Introduction

to Global Optimization, to include a discussion on Simulated Annealing.

On completion of this module students should be able to

1. Formulate standard optimization techniques in continuous optimization, understand the con-

vergence criteria, and implement these methods from scratch;

2. Implement the same methods using standard software packages, understand when these meth-

ods will work well and when they won’t;

3. Understand the first-order necessary conditions for optimality in constrained optimization, be

able to solve simple problems by hand

4. Sketch the proof of the Karush-Kuhn-Tucker conditions

5. Understand the need for global optimization, implement a simulated-annealing algorithm

ii

Editions

First edition: January 2023

This edition: January 2024

iii

iv

Acknowledgement of Source Materials

The lecture notes on local techniques for optimization (unconstrained and constrained) are based

almost entirely on the book ‘Numerical Optimization’, by Jorge Nocedal and Stephen J. Wright.

The full reference is:

Nocedal, J. and Wright, S.J. eds., 1999. Numerical Optimization. New York, NY:

Springer New York.

The lecture notes on Global Optimization with Simulated Annealing are based on my own research

experiences, as well as the following sources:

Mandl, F., 1991. Statistical physics (Vol. 14). John Wiley & Sons.

Gendreau, M. and Potvin, J.Y. eds., 2010. Handbook of Metaheuristics (Vol. 2, p. 9).

New York: Springer.

Ingber, L., 1996. Adaptive Simulated Annealing (ASA): Lessons Learned. Control and

Cybernetics, 25(1).

v

vi

Contents

Abstract i

1 Introduction to Optimization 1

2 Fundamentals of Unconstrained Optimization 11

3 Line Search Methods 21

4 The BFGS and Barzelai–Borwein Methods 28

5 Line-Search Methods – Stepsize Analysis 35

6 Linesearch Methods – Convergence analysis 43

7 Trust-Region Methods 57

8 Dog-Leg Method 65

9 Analysis of the Quadratic Approximation 71

10 Least-Squares Problems 79

11 Nonlinear Least Squares 85

12 Introduction to Constrained Optimization 92

13 Constrained Optimization: Inequality Constraints 102

14 The Tangent Cone and the Set of Linearized Feasible Descent Directions 109

vii

15 First-Order Necessary Conditions: Background 116

16 First-Order Necessary Conditions: Proof 127

17 Global Optimization via Simulated Annealing 135

viii

Chapter 1

Introduction to Optimization

Overview

We introduce the key concepts in Optimization. We also explain the rationale for studying the topic,

in the context of Data Science.

1.1 Why optimization?

Optimization is at the heart of many of the techniques in Machine Learning, this is a solid rationale

for studying optimization in the context of Data Science. In this module, we are going to look at the

theoretical underpinnings for the main methods in (continuous) Optimization. Why should we look

at the theory? This is a fair question, when languages such as Matlab and Python contain many

optimization algorithms that can be coded up in a couple of minutes. Yet the answer to the question

is already contained in this statement – these codes are ‘black boxes’, without understanding the

rudiments of what is in these black boxes, we run the risk of GIGO – this idea is also what is going

on in the background in Figure 1.1. So for these reasons, it is important to understand the theory

of what is in these black boxes, in these optimization algorithms.

The module is broken into two parts:

� First 7 weeks – we look at the mathematical theory of continuous optimization, including both

local optimization and global optimization.

� Remaining 5 weeks:

– We look at the implementation of the various optimization techniques in Machine-

Learning algorithms (ACM40990)

– We look at the theory of constrained optimization (ACM41030)

1

2 Chapter 1. Introduction to Optimization

Figure 1.1: Without mathematical knowledge of what is going on in optimization algorithms, blind
application of those algorithms can lead us into the ‘danger zone’.

1.1.1 Wider Context

Optimization is used more widely in Industry but also is a key concept in understanding natural

phenomena. In industry, Optimization is used, e.g.

� Investment – portfolio managers try to minimize the risk of a portfolio while seeking a high

rate of return;

� Manufacturing – managers try to maximize output while keeping input costs down.

In nature, systems tend to a state of minimum energy (equilibrium). For instance, soap films tend

to a configuration of minimum surface area, thereby minimizing energy. Rays of light follow paths

that minimize the travel time. In these cases, optimization can be used to convert these general

principles into sets of equations and hence, to make predictions.

1.2 Terminology

The following is absolutely basic terminology, which will be used throughout the module:

� x ∈ Rn is the vector of variables, also referred to as the unknowns or parameters.

� f is the objective function (or cost function or penalty function). The objective function is

a scalar-valued function of x; we seek a minimum or a maximum value of f .

� ci are constraint functions, these are scalar functions of x that define certain equations (or

inequalities); the unknown vector x must satisfy these equations or inequalities.

1.2. Terminology 3

Using ths notation, the generic optimization problem to be studied in this module is:

min
x∈Rn

f(x) subject to

ci(x) = 0, i ∈ E ,

ci(x) ≥ 0, i ∈ I.
(1.1)

Here, E and I are sets of indices for equality and inequality constraints, respectively.

Example: Consider the problem:

min(x1 − 2)2 + (x2 − 1)2 subject to

x2
1 − x2 ≤ 0,

x1 + x2 ≤ 2.
(1.2)

We identify x ∈ R2, x = (x1, x2)
T . The objective function is:

f(x) = (x1 − 2)2 + (x2 − 1)2.

The constraint functions can be written as:

c(x) =

(
c1(x)

c2(x)

)
=

(
−x2

1 + x2

−x1 − x2 + 2

)
,

hence E = Ø, and I = {1, 2}.

The solution can be determined graphically from Figure 1.2. Clearly, the solution is:

Figure 1.2: Graphical interpretation of the Optimization Problem (OP) (1.2)

� As close as possible to the zero level set of f , which is the centre of the family of circles shown

in the figure (hence the point (2, 1));

4 Chapter 1. Introduction to Optimization

� Inside the feasible region

Therefore, the required minimum is at the intersection of the curves c1 and c2. We take x1 := x

and x2 := y for easy notation, and we solve for c1(x, y) = c2(x, y):

y = x2, y = 2− x =⇒ x2 = 2− x,

hence x2 + x − 2=0. The quadratic formula (positive branch) then yields x = 1, and y = 2 − x,

hence y = 1, hence finally:

x∗ = (1, 1)T .

This solution is checked numerically using Matlab (see listings below):

1 f u n c t i o n x s t a r=op1 ()

2

3 x0 = [1 ; 1] ;

4

5 f v a l=@myfun ;

6 non lcon=@mycon ;

7

8 A=[1 , 1] ;

9 b=2;

10

11 x s t a r = fmincon (f v a l , x0 ,A, b , [] , [] , [] , [] , non lcon) ;

12

13 f u n c t i o n y=myfun (x)

14 y=(x (1)=2)ˆ2+(x (2)=1)ˆ2 ;

15 end

16

17 f u n c t i o n [c , ceq] = mycon (x)

18 c = x (1) ˆ2 =x (2) ;

19 ceq = [] ;

20 end

21

22 end

Definition 1.1 The feasible region is the set of all points satisfying the constraints.

Remark: For inequality constraints, the feasible region is the area between the constraint boundaries.

Notation: We denote the solution of the optimization problem by x∗.

Example: A chemical company has the following set-up:

� 2 factories F1 and F2;

� 12 retail outlets R1, R2, · · · , R12.

Furthermore,

1.2. Terminology 5

� Each factory Fi can produce ai tons of product per week (the capacity of plant Fi).

� Each retail outlet Rj has a known weekly demand bj tons of product.

Let xij denote the number of tons shipped from factory Fi to reatail outlet Rj per week. Also,

let cij be the cost of shipping one tone of product. Write down the optimization problem fo

rminimizing the shipping cost.

Solution: The cost function is the cost of shipping xij tons at cost cij from factory i to retail outlet

j, summed over all i and j:

f =
2∑

i=1

12∑
j=1

xijcij. (1.3a)

But there are constraints:

� Factory i:
12∑
j=1

xij ≤ ai, for all i = 1, 2; (1.3b)

� Retail outlet j – meeting the demand:

2∑
i=1

xij = bj, (1.3c)

or exceeding the demand:
2∑

i=1

xij ≥ bj, (1.3d)

� Positivity:

xij ≥ 0, for all i = 1, 2, and for all j = 1, · · · , 12. (1.3e)

Notice that we can re-write the array xij as a 2 × 12 vector x. Thus, the cost function and

constraint functions are linear functions in x ∈ R12, and hence, OP (1.3) is an example of linear

programming.

1.2.1 Continuous versus discrete optimization

Often, instead of seeking a solution of minx∈Rn f(x), we are interested in optimizing over x ∈ Nn
0

or even over x ∈ {0, 1}n. Here, we are using the notation N0 = {0, 1, 2, · · · }. Examples:

� x ∈ Nn
0 : xi is the number of power plants of type i that the grid operator should construct

over the next five years, i ∈ {1, 2, · · · , n};

6 Chapter 1. Introduction to Optimization

� x ∈ {0, 1}n: xi is a binary variable, and indicates whether or not a factory should be located

in city i.

These are both examples of linear programming, which is a type of discrete optimization.

We mention discrete optimization here for completeness, however, the focus of this course is on

continuous optimization, where we solve OP (1.1).

1.2.2 Global versus local optimization

We will focus a considerable effort on understanding so-called steepest-descent algorithms (SD) for

solving OP (1.1). SD algorithms are good for finding a single solution of the OP – hence, a local

minimum. In practice, it is difficult (e.g. in a high-dimensional OP) to know if the computed

minimum is a global minimum. For so-called convex problems, there is a unique minimum,

hence, any computed minimum is the unique global minimum. For this purpose, we have to define

convexity. As well as looking at SD-type algorithms, in the later part of the course, we will also look

at metaheuristic algorithms for computing the global optimum.

1.3 Convex sets

Convexity is the fundamental concept in Optimization.

Definition 1.2 Let S ⊂ Rn. S is called a convex set if a straight line segment joining any two

points in S is itself contained entirely in S.

In symbols, S is convex if, for each x and y in S, the line segment

xt+ (1− t)y, t ∈ [0, 1],

is contained entirely in S.

See Figure 1.3.

1.3.1 The Unit Ball

Theorem 1.1 The unit ball is a convex set:

B = {x ∈ Rn|∥x∥22 ≤ 1}.

1.3. Convex sets 7

Figure 1.3: Different convex and non-convex sets

Proof: To prove this statement, we require prior knowledge of linear algebra and dot products.

We take the dot product to be the usual dot product on Rn, we will sometimes use ‘angle bracket’

notation for this:

⟨x,y⟩ =
n∑

i=1

xiyi.

Then, the L2 norm of a vector is denoted by ∥x∥22 and is given by:

∥x∥22 =
n∑

i=1

x2
i = ⟨x,x⟩.

Therefore, we can verify that the unit ball is a convex set as follows. For, let x and y both be in

B. Then consider the path

x(t) = xt+ y(1− t), t ∈ [0, 1].

We compute:

⟨x(t),x(t)⟩ = ⟨x,x⟩+ 2t(1− t)⟨x,y⟩+ ⟨y,y⟩(1− t)2.

Here, we have used the distributivity properties of dot product. We now use the Cauchy–Schwarz

inequality, along with ⟨x,x⟩ ≤ 1 and ⟨y,y⟩ ≤ 1:

⟨x(t),x(t)⟩ ≤ (1)t2 + 2t(1− t)⟨x,y⟩+ (1− t)2(1),

≤ t2 + 2t(1− t)∥x∥2∥y∥2 + (1− t)2,

≤ t2 + 2t(1− t) + (1− t)2,

≤ t2 + 2t− 2t2 + 1− 2t+ t2,

= 1.

8 Chapter 1. Introduction to Optimization

Hence, ⟨x(t),x(t)⟩ ≤ 1, hence x(t) ∈ B.

1.3.2 Polyhedra

Theorem 1.2 Any polyhedron, i.e. any set defined by linear constraints, e.g.

S = {x ∈ Rn|Ax = b, Cx ≤ d},

where A and C are matrices of appropriate dimensions, and b and c are vectors, is a convex set.

The proof is left as an exercise.

1.4 Convex Functions

Definition 1.3 Let f : (S ⊂ Rn)→ R be a function. f is a convex function if:

1. S is a convex set;

2. The following relation holds:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y),

for all t ∈ [0, 1] and for all x and y in S.

1.4.1 Linear Functions

Theorem 1.3 Let S = Rn. Then the linear function

f(x) = ⟨b,x⟩+ α,

is a convex function, here b is a constant vector and α is a constant scalar.

1.4.2 Quadratic Functions

A key example of a convex function in Optimization is the quadratic function. Again, let S = Rn,

and consider:

f(x) = ⟨x, Hx⟩, (1.4)

where H ∈ Rn is a symmetric positive semi-definite matrix.

1.5. Optimization Algorithms 9

Theorem 1.4 f(x) in Equation (1.4) is a convex function.

Proof: Let x and y be vectors, and consider the line segment xt + y(1 − t), where ∈ [0, 1]. We

compute:

f(tx+ (1− t)y) = ⟨tx+ (1− t)y, tHx+ (1− t)Hy⟩,

= t2⟨x, Hx⟩+ 2t(1− t)⟨⟨x, Hy⟩+ (1− t)2⟨y, Hy⟩, (∗)

Consider also:

tf(x) + (1− t)f(y) = t⟨x, Hx⟩+ (1− t)⟨y, Hy⟩. (∗∗).

Now take (∗)− (∗∗):

(∗)− (∗∗) = −t(1− t)⟨x, Hx⟩+ 2t(1− t)⟨x, Hy⟩ − t(1− t)⟨y, Hy⟩,

= t(1− t) [−⟨x, Hx⟩+ 2⟨x, Hy⟩ − ⟨y, Hy⟩] ,

= −t(1− t) [⟨x, Hx⟩ − 2⟨x, Hy⟩+ ⟨y, Hy⟩] ,

= − t(1− t)︸ ︷︷ ︸
pos

⟨x− y, H (x− y)⟩︸ ︷︷ ︸
pos

,

= ≤ 0.

Hence, (∗) ≤ (∗∗), hence

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

1.5 Optimization Algorithms

In this course, we are focused on solving the OP (1.1), which is a continuous problem. We will be

solving problems in high-dimensional spaces, such that the graphical method employed for OP (1.2) is

not useful. In these cases, a numerical optimization method is required. Such numerical optimization

methods tend to be iterative, that is, they involve an initial guess, an improved guess, which

becomes the new initial guess, which is then used to generate a new improved guess and so on. The

improved guess is computed using properties of the cost function and the constraints – generally

the derivative of the cost function (and sometimes the second derivative). If the distance between

successive guesses goes to zero (in the sense of the L2 norm) as the number of iterations goes to

infinity, the method is said to converge. Besides convergence, we will look for the following ‘good’

properties in an optimization method:

10 Chapter 1. Introduction to Optimization

� Robustness – the method should be reliable for a wide class of problem and for a wide class

of initial guesses.

� Efficiency – the method should not require ‘excessive’ computer time or storage.

� Accuracy – the method should be able to identify a solution with precision, without being too

sensitive to errors in the data or to arithmetic rounding errors.

Chapter 2

Fundamentals of Unconstrained

Optimization

Overview

We look at the solution of optimization problems in the cases of continuously differentiable cost

functions. We formulate necessary and sufficient conditions at optimality in terms of the derivatives

of the cost function.

2.1 Definitions

We start with some definitions. We have in find the following OP:

min
x∈S

f(x), S ⊂ Rn.

The solution x∗ is written as:

x∗ = argminx∈Sf(x), S ⊂ Rn.

and we characterize the possible solutions of the OP as follows.

Definition 2.1 (Minimizers)

� x∗ is a Global Minimzer if

f(x∗) ≤ f(y), for all y ∈ S.

11

12 Chapter 2. Fundamentals of Unconstrained Optimization

� x∗ is a Local Minimzer if there exists a neighbourhood N ⊂ S such that

f(x∗) ≤ f(y), for all y ∈ N .

Here, by a neighbourhood, we mean a non-empty, open set.

� x∗ is a Strict Local Minimzer if there exists a neighbourhood N ⊂ S such that

f(x∗) < f(y), for all y ∈ N ,y ̸= x∗.

Example: The constant function f(x) = 1, x ∈ Rn. Hence, every x ∈ Rn is a local minimizer. But

consider f(x) = (x− 2)4, x ∈ R. Here, f(x) has a strict local minimizer.

� x∗ is an Isolated Local Minimizer if there exists a neighbourhood N of x∗ such that x∗ is

the only local minimizer in N .

Example: The function

f(x) =

x4 cos(1/x) + 2x4, x ̸= 0,

0, x = 0,

is twice continuously differentiable and has a strict local minimizer at x∗ = 0. However, there are

strict local minimizers at many nearby points xj, and we can label these points so that xj → 0

as j → ∞. This is a (pathological) example of a function with a strict local minimum that is not

isolated.

2.2 Necessary Conditions

We derive the necessary conditions for optimality in the case of f : (S ⊂ R) → R. We then

generalize by analogy to f : (S ⊂ Rn)→ R, with n > 1. The starting-point is Taylor’s Remainder

Theorem:

Theorem 2.1 Let f : R → R be continuous function with a continuous first derivative. Assume

h > 0. Then, there exists an η ∈ (0, h) such that:

f(x+ h) = f(x) + f ′(x+ η)h, η ∈ (0, h).

Furthermore, if f is twice differentiable, with a continuous second derivative, then for a given h > 0,

there exists an η ∈ (0, h) such that:

f(x+ h) = f(x) + f ′(x)h+ 1
2
f ′′(x+ η)h2, η ∈ (0, h).

2.2. Necessary Conditions 13

The idea now is to construct a necessary condition for x∗ to be the solution of the optimization

problem:

x∗ = argminx∈Rf(x) (2.1)

(here, we are taking S = R for simplicity. As such, we assume that x∗ exists, and see what conditions

f has to satisfy at x∗.

Theorem 2.2 (First-Order Necessary Condition) Let x∗ be the solution of the OP (2.1) (local

minimum). Then f ′(x∗) = 0.

Proof: Assume for contradiction that f ′(x∗) ̸= 0. Look at the case where f ′(x∗) < 0. Then by

continuity, there is a neighbourhood I = (x∗ − δ, x∗ + δ) (with δ > 0), such that

f ′(x) < 0, x ∈ I.

Now consider x = x∗ + h, where |h| < δ, but h is otherwise not specified. By Taylor’s Theorem,

f(x) = f(x∗) + f ′(x∗ + η)h, |η| < |h| < δ.

Thus, f ′(x∗ + η) < 0. As h is not specified, we can choose it to be h = −kf ′(x∗ + η), where k is

a positive constant, such that

f(x) = f(x∗)− k|f ′(x∗ + η)|2,

thus, f(x) < f(x∗), which contradicts the fact that f(x∗) is a local minimum. Thus, f ′(x∗) = 0.

Theorem 2.3 (First-Order necessary condition, Rn) Let x∗ be the solution of the OP

x∗ = argminf(x), x ∈ Rn.

Then ∇f(x∗) = 0.

Theorem 2.4 (Second-Order Necessary Condition) Let x∗ be the solution of the OP (2.1)

(local minimum). Then f ′′(x∗) ≥ 0.

Proof: Again, assume for contradiction that f ′′(x∗) < 0. Then, f ′′(x) < 0 in a neighbourhood

I = (x∗ − δ, x∗ + δ) (with δ > 0). By continuity,

f ′′(x) < 0, x ∈ I.

14 Chapter 2. Fundamentals of Unconstrained Optimization

As before, consider x = x∗ + h, where |h| < δ but h is otherwise not specificied. By Taylor’s

Theorem with f ′(x∗) = 0, we have;

f(x) = f(x∗) +
1
2
f ′′(x∗ + η)h2, |η| < |h| < δ.

Here, f ′′(x∗ + η) < 0, hence f(x) < f(x∗), which is a contradiction, hence f ′′(x∗) ≥ 0.

Theorem 2.5 (Second-Order necessary condition, Rn) Let x∗ be the solution of the OP

x∗ = argminf(x), x ∈ Rn.

Then the Hessian matrix H, with entries

Hij =

(
∂2f

∂xi∂xj

)
x∗

is positive semi-definite.

We now define sufficient conditions on f(x∗) which guarantee that x∗ is a local minimizer. Again,

we prove the result in 1D and then extend by analogy to higher dimensions.

Theorem 2.6 (Second-Order Sufficient Condition) Suppose that f is twice differentiable with

continuous second derivative, and that f ′(x∗) = 0 and furthermore, that f ′′(x∗) > 0 (strict). Then

x∗ is a strict local minimizer of f .

Proof: Because f ′′(x∗) > 0, by continuity, there is an interval I = (x∗ − δ, x∗ + δ) (with δ > 0),

such that f ′′(x) > 0 for all x ∈ I. For each x ∈ I, we write x = x∗ + h, where |h| < δ, and we

have:

f(x) = f(x∗) +
1
2
f ′′(x∗ + η)h2, |η| < |h| < δ.

Here, f ′′(x∗ + η) > 0, hence, f(x) > f(x∗) for all x ∈ I, hence, x∗ is a strict local minimizer.

Theorem 2.7 (Second-Order sufficient condition, Rn) Suppose that f is twice differentiable

with continuous second derivative, and that ∇f(x∗) = 0 and furthermore, that the Hessian matrix

H is positive-definite. Then x∗ is a strict local minimizer of f .

The reason for breaking up the conditions into necessary and sufficient like this is to handle de-

generate points – for instance, there are local minima that have f ′(x) = 0 but f ′′(x) = 0 also,

meaning the second-derivative test is inconclusive. E.g. f(x) = x4. However, if we deal with convex

functions, we don’t have to worry about the second derivative test at all. And we already know from

Chapter 2, that global and local minizers are one and the same for such functions. We prove these

facts now, going straight to the case where f : Rn → R.

2.2. Necessary Conditions 15

Theorem 2.8 When f is convex, any local minimizer x∗ is a global minimizer of f . If, in addition,

f is differentiable, then any stationary point x∗ is a global minimizer of f .

The proof comes in two parts. For the first part, we want to show that a local minimizer really is a

global minimizer. To do this, assume for contradiction that x∗ is a local minimizer but that there

is another y ∈ Rn that is the global minimizer, thus

f(y) < f(x∗).

We now construct a line segment joining these points:

x(t) = ty + (1− t)x∗, t ∈ [0, 1],

such that x(0) = x∗, and x(1) = y. By convexity,

f(x(t)) ≤ tf(y) + (1− t)f(x∗),

< tf(x∗) + (1− t)f(x∗),

= f(x∗).

Thus,

f(x(t)) < f(x∗),

and the inequality is strict. Refer to Figure 2.1, and consider the neighbourhood N around x∗. Any

Figure 2.1: A line segment joining two putatively minima

such neighbourhood will contain a part of the line segment x(t). So there are points x in N such

16 Chapter 2. Fundamentals of Unconstrained Optimization

that

f(x) < f(x∗),

which is a contradiction, since x∗ is a local minimum. Therefore, we conclude that x∗ and y are

one and the same, i.e., a global minimizer.

For the second part, we proceed as follows. For any y we have:

0 = (y − x∗) · ∇f(x∗)︸ ︷︷ ︸
=0

,

=
d

dt
f(x∗ + t(y − x∗))

∣∣
t=0

,

= lim
t↓0

f(x∗ + t(y − x∗))− f(x∗)

t
,

≤ lim
t↓0

tf(y) + (1− t)f(x∗)− f(x∗)

t
,

= f(y)− f(x∗),

hence

f(x∗) ≤ f(y),

for all y, which is a contradiction. Therefore, we conclude that x∗ is a global minimizer.

2.3 Model Problem

In unconstrained optimization (especially convex optimization), every differentiable cost function

‘locally looks quadratic’, that is, in the neighbourhood of the solution x∗ = argminf(x), the cost

function ‘looks like a quadratic’. For this reason, quadratic cost functions form an important model

problem in optimization, and we study the quadratic problem here:

f(x) = c+ ⟨a,x⟩+ 1
2
⟨x, Bx⟩. (2.2)

Here, c is a constant scalar, a is a constant vector in Rn, and B is a constant n × n matrix;

importantly, B is assumed to be positive definite.

Theorem 2.9 The minimizer of Equation (2.2) is

x∗ = −B−1a.

2.3. Model Problem 17

Proof: We re-write the cost function using index notation:

f(x1, · · · , xn) = c+ aixi +
1
2
Bijxixj,

where summation over repeated indices is assumed. The first-order optimality condition is ∂f/∂xk =

0 for all k ∈ {1, 2, · · · , n}, hence:

ak +
1
2
(Bki +Bik)xi = 0.

As B is symmetric matrix, this becomes:

ak +Bikxi = 0,

hence

x∗ = −B−1a,

and the inverse exists since B is positive-definite. The hessian of the cost function is clearly:

∂2f

∂xi∂xj

= Bij = Const.

As B is positive-definite, the second-order optimality condition can be used to conclude that x∗ is

a minimum.

Remark: By substituting x∗ = −B−1a back into the cost function, the minimum can be evaluated

as:

fmin = c− 1
2
⟨a, B−1a⟩.

Notice, if c ≤ 0, then fmin is negative.

2.3.1 When B is no longer positive definite

The model problem can be extended to cases when B is not positive definite: slightly weaker results

can be obtained in the case when B is positive semi-definite. This shows the importance of stating

assumptions very clearly when formulating and solving an optimization problem. As such, we have

the following theorem:

Theorem 2.10 Let f be the quadratic function defined by

f(x) = c+ ⟨a,x⟩+ 1
2
⟨x, Bx⟩,

where B is any symmetric matrix. Then the following statements are true:

18 Chapter 2. Fundamentals of Unconstrained Optimization

1. f attains a minimum if and only if B is positive semi-definite and a is in the range of B. If

B is positive semi-definite, then every p satisfying Bp = −a is a global minimizer of f .

2. f has a unique minimizer if and only if b is positive definite.

We look at Part 1. We start with the “if” statement, that is, we assume that B is positive semi-

definite and that a is in the range of B. Then, there exists a x ∈ Rn such that Bx = −a. For all
w in Rn, we have:

f(x+w) = f + ⟨a,x+w⟩+ 1
2
⟨x+w, B(x+w)⟩,

= f + ⟨a,x⟩+ 1
2
⟨x, Bx⟩

+ ⟨a,w⟩+ 1
2
[⟨x, Bw⟩+ ⟨w, Bx⟩] + 1

2
⟨w, Bw⟩,

= f(x) + ⟨a,w⟩+ 1
2
[⟨Bx,w⟩ − ⟨w,a⟩] + 1

2
⟨w, Bw⟩.

Continuing thus, we have:

f(x+w) = f(x) + ⟨a,w⟩+ 1
2
[−⟨a,w⟩ − ⟨w,a⟩] + 1

2
⟨w, Bw⟩,

= f(x) + 1
2
⟨w, Bw⟩,

≥ f(x).

Thus, f(x+w) ≥ f(x) for all w ∈ Rn, hence x is a minimizer of f .

For the other way around, assume that x is a minimizer of f . Then, by the first-order optimality

condition (Theorem 2.3), ∇f = 0, hence Bx + a = 0, hence Bx = −a, hence a is in the range

of B. Also, by the second-order optimality condition (Theorem 2.4), B is positive-semi-definite.

For Part 2, we start with the “if” statement and assume that B is positive definite. Then, the

non-strict inequality in Part 1 are replaced with strict ones, e.g.

f(x+w) = f(x) + ⟨a,w⟩+ 1
2
[−⟨a,w⟩ − ⟨w,a⟩] + 1

2
⟨w, Bw⟩,

= f(x) + 1
2
⟨w, Bw⟩,

> f(x).

Hence, x is a strict minimizer. For the “only if” statement, assume that f has a unique minimizer

(call it x). We are left with the possibility that either B is positive definite, or B is not positive

definite. Assume for contradiction that B is not positive definite. Then we can find a non-zero

vector w such that Bw = 0. Thus

f(x+w) = f(x) + 1
2
⟨w, Bw⟩ = f(x) + 0,

thus, x +w is also a minimizer, which contradicts the uniqueness assumption. Thus, B must be

2.4. A note on norms 19

positive definite.

2.4 A note on norms

In the previous example, the usual inner product on Rn appears in the construction of the quadratic

function (2.2), e.g.

⟨a,x⟩ =
n∑

i=1

aixi.

This then leads to the equally ‘natural’ L2 norm on Rn,

∥x∥22 = ⟨x,x⟩ =
n∑

i=1

x2
i .

In this book, we work almost exclusively with the L2 norm. This is to take advantage of the

Cauchy–Schwarz inequality:

⟨a,x⟩ ≤ ∥a∥2∥x∥2. (2.3)

However, all norms in a finite-dimensional space are equivalent. That is, if I have two norms ∥ · ∥P
and ∥ · ∥Q, there exist positive constants c1 and c2 such that

c1∥x∥P ≤ ∥x∥Q ≤ c2∥x∥P , for all x ∈ Rn.

For instance, if we look at the L1-norm

∥x∥1 =
n∑

i=1

|xi|,

then by Cauchy–Schwarz with x = (|x1|, · · · , |xn|) and a = (1, 1, · · · , 1), we have:

n∑
i=1

|xi| ≤ n

(
n∑

i=1

x2
i

)1/2

,

hence

∥x∥1 ≤
√
n∥x∥2.

But it is immediately obvious that e.g. ∥x∥21 ≥ ∥x∥22, hence

∥x∥2 ≤ ∥x∥1 ≤
√
n∥x∥2,

establishing the equivalence of the L1-norm and the L2-norm.

20 Chapter 2. Fundamentals of Unconstrained Optimization

2.5 Take-home Message

Our results so far are based on basic Calculus and Linear Algebra, and they provide the foundations

for unconstrained optimization algorithms for smooth cost functions. In one way or another, the

continuous optimization algorithms that we will study are based on trying to find a point where ∇f
vanishes.

Chapter 3

Line Search Methods

Overview

In this chapter, we look at Line Search methods.

3.1 Preliminaries

Line Search methods refer to a family of different methods to solve the continuous (unconstrained)

optimization problem

x∗ = arg minx∈Rnf(x).

The methods use information about the gradient of the cost function to construct a sequence of

guesses that converges to the solution of the OP. As such, these are iterative methods: they start

with a ‘reasonable’ initial guess x0, and a sequence of iterates is produced, {xk}∞k=0, such that

xk → x∗ as k →∞. In these methods, xk+1 is obtained from xk, e.g.

xk+1 = xk + sk,

where sk usually depends on ∇f(xk) and sometimes on higher derivatives as well. In all of the

Line Search Methods, sk is broken up into a ‘step length’ αk and a search direction pk, where

pk is (usually) a unit vector (but not in the Newton method). When pk is a unit vector (chosen

appropriately), then the step length αk is computed by solving a 1D optimization problem at each

iteration step:

αk = argminα>0f(xk + αpk). (3.1)

21

22 Chapter 3. Line Search Methods

Figure 3.1: Basic idea behind the SD method

3.2 Steepest-Descent Method

We look at the cost function at iteration k. We wish to update xk by xk+1 = xk + αp, where p is

to be determined. By Taylor’s theorem (exact), we have:

f(xk + αp) = f(xk) + αpi
∂f

∂xi

(xk) +
1
2
pipjα

2 ∂2

∂xi∂xj

(xk + tp), t ∈ (0, α).

The rate of change of f along p is the directional derivative p · ∇f(xk). We want to make this

change as large and as negative as possible, that way will minimize the cost function and get to x∗

as fast as possible. As such, we make p · ∇f(xk) as large and as negative as possible, bearing in

mind that ∥p∥2 = 1. Hence, we take:

p = − ∇f(xk)

∥∇f(xk)∥2
.

This is the direction of steepest descent (SD). It is also the direction that is orthogonal to the

level sets of f = Const. The idea behind the SD method is shown in Figure 3.1. The basic idea of

the algorithm is shown below in Algorithm 1.

3.3. Newton Method 23

Algorithm 1 Outline of SD Method

Choose x0 (sufficiently close to the solution x∗).

for k = 0, 1, 2, · · · do
Compute the steepest descent direction pk.

Choose the stepsize αk (somehow, e.g. Equation (5.1))

Write sk = αkpk.

Set xk+1 = xk + sk.

end for

3.3 Newton Method

For the Newton Method, we start with a local approximation of f(x) at x = xk + p:

f(xk + p) ≈ f(xk) + pi
∂f

∂xi

(xk) +
1
2
pipj

∂2f

∂xi∂xj

(xk).

Now, we think of f(xk) as fixed (with ai = (∂f/∂xi)(xk) and Bij = (∂2f/∂xi∂xj)(xk), and we

look at the following function of p:

mk(p) = c+ aipi +
1
2
pipjBij

Here, p is a variable, and we seek to minimize mk. We take ∇pmk = 0 to obtain:

ai = −
n∑

j=1

Bijpj.

Assuming the matrix Bij is invertible (we actually require more than this), we get:

pi = −
n∑

j=1

(B−1)ijaj,

hence, the descent direction (and step length) is given as:

pk = −B−1(xk)∇f(xk).

Notation: We use pN
k for the Newton descent direction, pN

k = −B−1(xk)∇f(xk).

24 Chapter 3. Line Search Methods

Algorithm 2 Outline of the Newton Method

Choose x0 (sufficiently close to the solution x∗).

for k = 0, 1, 2, · · · do
Compute the Newton Direction by inverting the Hessian:

pk = −B−1(xk)∇f(xk).

Notice the stepsize in ‘pure’ Newton is αk = 1.

Write sk = αkpk.

Set xk+1 = xk + sk.

end for

3.3.1 Positive-Definite Property

Actually, for the Newton method to work, a sufficient condition is that B be positive-definite: if B

is positive-definite, then it is invertible, furthermore,

f(xk + tpk) = f(xk) + t
n∑

i=1

(pk)i
∂f

∂xi

(xk) +O(t2),

= f(xk)− t
n∑

i=1

[
n∑

j=1

(
B−1

)
ij

∂f

∂xj

(xk)

]
∂f

∂xi

(xk) +O(t2),

= f(xk)−t⟨∇f(xk), B
−1(xk)∇f(xk)⟩︸ ︷︷ ︸

Negative

+O(t2),

hence, for t sufficiently small,

f(xk + tpk) < f(xk),

thus, for t sufficiently small, going off in the direction given by the Newton method reduces f .

3.3.2 Quadratic Convergence

There are several advantages to the Newton step over the standard steepest-descent method:

� Step length is provided, no need to solve the sub-problem 5.1.

� Simple criterion for the method to work (positive-definite Hessian).

� Quadratic convergence

3.3. Newton Method 25

We illustrate what quadratic convergence means in the context of a 1D example, and we look at

the general case in Rn later in Chapter 6. As such, we look at

xk+1 = xk −
f ′(xk)

f ′′(xk)
, (3.2)

which converges to x∗, with f ′(x∗) = 0. We let ϵk denote the error in the iterative process at iterate

k:

ϵk = x∗ − xk,

ϵk+1 = x∗ − xk+1.

Substitute into Equation (3.2):

x∗ − ϵk+1 = x∗ − ϵk −
f ′(xk)

f ′′(xk)
, (3.3)

or:

ϵk+1 = ϵk +
f ′(xk)

f ′′(xk)
. (3.4)

We have:

f ′(xk) = f ′(x∗ − ϵk) =����f ′(x∗)− ϵkf
′′(xk) +

1
2
ϵkf
′′′(x∗) + · · · ,

and similarly,

f ′′(xk) = f ′′(x∗ − ϵk) = f ′′(x∗)− f ′′′(x∗)ϵk + · · ·

We substitute these expansions into Equation (3.4):

ϵk+1 = ϵk +
−ϵkf ′′(xk) +

1
2
ϵkf
′′′(x∗) + · · ·

f ′′(x∗)− f ′′′(x∗)ϵk + · · ·
,

= ϵk − ϵk

[
1− 1

2
ϵ2k

f ′′′(xk)
f ′′(xk)

+ · · ·

1− f ′′′(x∗)
f ′′(x∗)

ϵk + · · ·

]
,

Binomial Thm
= ϵk − ϵk

[
1− 1

2
ϵ2k
f ′′′(xk)

f ′′(xk)
+ · · ·

] [
1 +

f ′′′(x∗)

f ′′(x∗)
ϵk + · · ·

]
,

= ϵk − ϵk

[
1 +

f ′′′(x∗)

f ′′(x∗)
ϵk − 1

2
ϵ2k
f ′′′(x∗)

f ′′(x∗)
+O

(
(ϵk)

3
)]

,

= ��ϵk −��ϵk − ϵ2k
f ′′′(x∗)

f ′′(x∗)
+O

(
(ϵk)

3
)

Hence,

ϵk+1 = −
f ′′′(x∗)

f ′′(x∗)
[ϵk]

2 +O
(
(ϵk)

3
)
,

26 Chapter 3. Line Search Methods

and it is equally valid to write:

ϵk+1 = −
f ′′′(xk)

f ′′(xk)
[ϵk]

2 +O
(
(ϵk)

3
)
.

Thus, we obtain quadratic convergence, e.g. if the error at iterate k is O(10−4), then the error at

the next iterate is O(10−8), and then at the next level O(10−16), which is machine precision in three

steps.

There are also drawbacks to the Newton method:

� Requires computation of the Hessian at each iteration.

� Requires inversion of the Hessian at each iteration O(n3).

3.4 Secant Methods

To address the drawbacks of the Newton method, people use secant methods. These can be easily

understood in the context of the 1D problem, by Taylor expansion:

f ′(xk + δx) ≈ f ′(xk) + f ′′(xk)δx.

If we take δx = xk+1 − xk, this gives

f ′(xk+1)− f ′(xk) ≈ f ′′(xk)[xk+1 − xk]. (3.5)

Call

yk = f ′(xk+1)− f ′(xk), sk = xk+1 − xk.

Thus, a numerical approximation for the 1D Hessian is:

f ′′(xk) ≈ yk/sk.

In n dimensions, the equivalent expression to Equation (3.5) is:

∇f(xk+1)−∇f(xk) ≈ B(xk) (xk+1 − xk) ,

or

yk ≈ B(xk)sk.

We write this more precisely as:

yk = Bk+1sk, (3.6)

3.4. Secant Methods 27

where the matrix Bk+1 is the approximation to the Hessian.

Algorithm 3 Outline of Secant Method

Choose x0 (sufficiently close to the solution x∗).

for k = 0, 1, 2, · · · do
Compute the descent direction by solving Bkpk = −∇f(xk) (somehow!).

Choose the stepsize αk (somehow!).

Write sk = αkpk.

Set xk+1 = xk + αksk.

Update yk = ∇f(xk+1)−∇f(xk) and update Bk+1.

end for

Chapter 4

The BFGS and Barzelai–Borwein Methods

Overview

In this chapter, we study the BFGS formula in detail. Towards the end of the chapter, we also

showcase another simple method called the Barzelai–Borwein method.

4.1 Review

We start with a review of the Secant Method from Chapter 3. For the 1D problem where we wish

to solve f ′(x∗) = 0, we construct a sequence of iterates, where

f ′(xk + δx) ≈ f ′(xk) + f ′′(xk)δx.

If we take δx = xk+1 − xk, this gives

f ′(xk+1)− f ′(xk) ≈ f ′′(xk)[xk+1 − xk]. (4.1)

Call

yk = f ′(xk+1)− f ′(xk), sk = xk+1 − xk.

Thus, a numerical approximation for the 1D Hessian is:

f ′′(xk) ≈ yk/sk.

In n dimensions, the equivalent expression to Equation (4.1) is:

∇f(xk+1)−∇f(xk) ≈ B(xk) (xk+1 − xk) ,

28

4.2. BFGS Formula 29

or

yk ≈ B(xk)sk.

We write this more precisely as:

yk = Bk+1sk, (4.2)

4.2 BFGS Formula

Equation (4.2) is an equation for the unknown matrix Bk+1. There are n× n unknowns and only n

equations, so there can be a solution only in some approximate sense. In the BFGS formula, Bk+1

is approximated by Bk and two matrices, built out of the only thing we have:

yk, Bksk.

These are n× 1 column vectors. So we build the new matrix as follows:

Bk+1 = Bk + αyky
T
k + β(Bksk)(Bksk)

T , (4.3)

where now yky
T
k is an array of size (n×1)×(1×n) = n×n, and the same for (Bksk)(Bksk)

T . Here

also, α and β are scalars to be determined. We do this simply by imposing the secant condition (4.2).

Theorem 4.1 The following are the values of α and β in the BFGS method:

β = − 1

⟨sk, BT
k sk⟩

, α =
1

⟨yk, sk⟩
.

Proof: The proof is by direct computation. We take the approximation (4.3) for Bk+1 and we

impose the secant condition (4.2). This gives:

yk = Bk+1sk,

=
[
Bk + αyky

T
k + β(Bksk)(Bksk)

T
]
sk,

= Bksk + αyky
T
k sk + βBksks

T
kB

T
k sk,

0 = Bksk + β(Bksk) sTkB
T
k sk︸ ︷︷ ︸

(1×n)(n×n)(n×1)=1×1

+αyk (yT
k sk)︸ ︷︷ ︸

(1×n)(n×1)=1×1

−yk.

Hence,

0 = Bksk
(
1 + β⟨sk, BT

k sk⟩
)
+ yk (−1 + α⟨yk, sk⟩) ,

and hence finally,

β = − 1

⟨sk, BT
k sk⟩

, α =
1

⟨yk, sk⟩
.

30 Chapter 4. The BFGS and Barzelai–Borwein Methods

We put all of these calculations together to obtain a final formula for the approximate Hessian in

the BFGS method:

Bk+1 = Bk −
Bksks

T
kBk

⟨sk, BT
k sk⟩

+
yky

T
k

⟨yk, sk⟩
. (4.4)

4.2.1 Positive-Definite Property

The BFGS method has the desirable property that the positive-definiteness of Bk is maintained,

which means that pk is a search direction that always minimizes the cost function. We prove this

as follows.

Theorem 4.2 Provided B0 is positive definite and provided the curvature condition ⟨yk, sk⟩ is
satisfied for each iteration, the BFGS method produces a symmetric positive-definite approximation

to the Hessian at each iteration.

We start with symmetry:

Bk+1 = Bk + Symmetric Matrices,

if B0 is symmetric, then by induction, Bk is symmetric for all k ∈ {1, 2, · · · }.

We next look at positive definiteness. Again, we have to proceed by mathematical induction, so

we assume that Bk is positive definite. We then show that Bk+1 is positive definite. We also use

the extra assumption of positive curvature ⟨yk, sk⟩ > 0 at each iteration. As such, for any vector

ξ ∈ Rn, we have:

⟨ξ, Bk+1ξ⟩ = ⟨ξ, Bkξ⟩ −
⟨ξ, Bksks

T
kBkξ⟩

⟨sk, BT
k sk⟩

+
⟨ξ,yky

T
k ξ⟩

⟨yk, sk⟩
,

= ⟨ξ, Bkξ⟩ −
⟨ξ, Bksks

T
kBkξ⟩

⟨sk, BT
k sk⟩

+
⟨ξ,yk⟩2

⟨yk, sk⟩
.

As the second term is positive definite, we focus on the first term, we call it ∆, and so we have to

show that ∆ > 0:

∆ = ⟨ξ, Bkξ⟩ −
⟨ξ, Bksks

T
kBkξ⟩

⟨sk, BT
k sk⟩

.

By induction Bk is positive definite, so it is diagonalizable, with positive eigenvalues λi and eigen-

vectors ui. As such, we have

ξ =
∑
i

ξiui, ξi = ⟨ξ,ui⟩, sk =
∑
i

σiui, σi = ⟨sk,ui⟩.

and

⟨ξ, Bkξ⟩ =
∑
i

λiξ
2
i .

4.2. BFGS Formula 31

Hence,

∆ =
∑
i

λiξ
2
i −
⟨Bkξ, sks

T
kBkξ⟩∑

i λiσ2
i

,

=
∑
i

λiξ
2
i −
⟨
∑

i λiξiui, (sks
T
k)
∑

j λjξjuj⟩∑
i λiσ2

i

,

=
∑
i

λiξ
2
i −

∑
i

∑
j λiλjξjξi⟨ui, (sks

T
k)uj⟩∑

i λiσ2
i

,

=
∑
i

λiξ
2
i −

∑
i

∑
j λiλjξjξiσiσj∑

i λiσ2
i

,

=

∑
i λiξ

2
i

∑
j λjσ

2
j −

∑
i

∑
j λiλjξjξiσiσj∑

j λjσ2
j

,

If we introduce two new vectors X and Y , with components Xi =
√
λiξi and Yi =

√
λiσi, then ∆

can be re-written as:

∆ =
∥X∥22∥Y ∥22 − (X · Y)2

∥Y ∥22
,

which is positive, by Cauchy-Schwarz. Hence, Bk+1 is positive definite.

Furthermore, as B0 is assumed to be positive definite, by mathematical induction, Bk is positive

definite, for all k ∈ {0, 1, 2, · · · }.

4.2.2 Sherman-Morrison–Woodbury Formula

In reality, we are not that interested in Bk, only in B−1k . Therefore, the BFGS method will simplify

if we can find a simple way to compute B−1k directly at each iteration. More precisely, a performing

a matrix inversion is O(n3), however, if we can find a way of exploiting the structure of the matrix

Bk, then maybe this can be reduced. The key here is to recall the Sherman-Morrison–Woodbury

formula from Linear Algebra:

Theorem 4.3 (Sherman–Morrison–Woodbury) Given a square invertible n × n matrix M , an

n× k matrix U , and a k× n matrix V , let M be an n× n matrix such that M = B +UV . Then,

assuming (Ik + V B−1U) is invertible, we have:

M−1 = B−1 −B−1U
(
Ik + V B−1U

)−1
V B−1. (4.5)

For our purposes, we recall the BFGS formula (4.4), recalled here as:

Bk+1 = Bk −
Bksks

T
kBk

⟨sk, BT
k sk⟩

+
yky

T
k

⟨yk, sk⟩
.

32 Chapter 4. The BFGS and Barzelai–Borwein Methods

We are going to suppress the subscripts, and write this as:

M = B − BssTB

⟨s, BTs⟩
+

yyT

⟨y, s⟩
.

We match this up with Equation (4.5) as follows:

M = B + [Bs,y]︸ ︷︷ ︸
=U, 2×n

[
− 1
⟨s,Bs⟩ 0

0 1
⟨y,s⟩

][
sTB

yT

]
︸ ︷︷ ︸

=V T , 2×n

Thus, k = 2, and the Sherman–Morrisson–Woodbury formula tells us that:

M−1 = B−1 −B−1U
(
I2 + V B−1U

)−1
V B−1.

So we now go through the calculations:

M−1 = B−1

−B−1 [Bs,y]

(
I2 +

[
− 1
⟨s,Bs⟩ 0

0 1
⟨y,s⟩

][
sTB

yT

]
B−1[Bs,y]

)−1 [
− 1
⟨s,Bs⟩ 0

0 1
⟨y,s⟩

][
sTB

yT

]
B−1

To make the notation a bit clearer we use H = B−1:

M−1 = H−1

−H [Bs,y]

(
I2 +

[
− 1
⟨s,Bs⟩ 0

0 1
⟨y,s⟩

][
sTB

yT

]
H[Bs,y]

)−1 [
− 1
⟨s,Bs⟩ 0

0 1
⟨y,s⟩

][
sTB

yT

]
H

We multiply in by the H on the left and the H on the right-hand side, using BH = HB = In:

M−1 = H−1

− [s, Hy]

(
I2 +

[
− 1
⟨s,Bs⟩ 0

0 1
⟨y,s⟩

][
sTB

yT

]
H[Bs,y]

)−1 [
− 1
⟨s,Bs⟩ 0

0 1
⟨y,s⟩

][
sT

yTH

]

Let’s call:

D =

[
− 1
⟨s,Bs⟩ 0

0 1
⟨y,s⟩

]
.

4.2. BFGS Formula 33

We bring D inside the (I2 + · · ·)−1D matrix term, and remember that the inverse of a product is

the product of the inverse, in reverse order, hence (I2 + · · ·)−1D = [D−1 +D−1(· · ·)]−1, hence:

M−1 = H−1 − [s, Hy]

([
−⟨s, Bs⟩ 0

0 ⟨y, s⟩

]
+

[
sTB

yT

]
H[Bs,y]

)−1 [
sT

yTH

]
,

= H−1 − [s, Hy]

([
−⟨s, Bs⟩ 0

0 ⟨y, s⟩

]
+

[
sTB

yT

]
[s, Hy]

)−1 [
sT

yTH

]
,

= H−1 − [s, Hy]

([
−⟨s, Bs⟩ 0

0 ⟨y, s⟩

]
+

[
⟨s, Bs⟩ ⟨s,y⟩
⟨s,y⟩ ⟨y, Hy⟩

])−1 [
sT

yTH

]
,

= H−1 − [s, Hy]

([
−0 ⟨s,y⟩
⟨s,y⟩ ⟨y, s⟩+ ⟨y, Hy⟩

])−1 [
sT

yTH

]
,

= H−1 − [s, Hy]

([
0 ⟨s,y⟩
⟨s,y⟩ ⟨y, s⟩+ ⟨y, Hy⟩

])−1 [
sT

yTH

]
,

= H−1 +
[s, Hy]

⟨s,y⟩2

[
⟨y, s⟩+ ⟨y, Hy⟩ −⟨s,y⟩
−⟨s,y⟩ 0

][
sT

yTH

]
,

= H−1 +

(
1 +
⟨y, Hy⟩
⟨s,y

)
ssT

⟨s,y⟩
− HysT + (HysT)T

⟨s,y⟩2
.

Restoring the superscripts, the update rule for the BFGS method is:

B−1k+1 = B−1k +

(
1 +
⟨yk, B

−1
k yk⟩

⟨sk,yk⟩

)
sk(sk)

T

⟨sk,yk⟩
− B−1k yk(sk)

T + sk(yk)
TB−1k

⟨sk,yk⟩
. (4.6)

Thus, we can work with B−1k and B−1k+1 directly, without ever having to know Bk or Bk+1.

4.2.3 Operation Count

Equation (4.6) involves updating each entry in an n×n matrix, hence the operation count is O(n2).

This is the limiting factor in the iteration step in Algorithm 3 (‘Outline of Secant Method’), as

the other steps are O(n). Thus, the operation count for the BFGS method is O(n2). This is a

significant speedup compared to the ordinary Newton method, which is O(n3) (the limiting factor

there is Gaussian elimination at every iteration).

34 Chapter 4. The BFGS and Barzelai–Borwein Methods

4.3 Barzelai–Borwein Formula

In the BFGS formula, the idea is to update Bk using a rank-two matrix. Barzelai–Borwein is much

simpler. Instead, we approximate Bk at each iteration by a diagonal matrix:

sk = xk − x−1, yk = ∇f(xk)−∇f(xk−1),

with

yk = Bksk

Now, the matrix Bk is approximated as a simple diagonal matrix:

Bk ≈
1

αk

In.

The equation yk = Bksk is then solved in the least-squares sense:

αk = argminα>0∥
1

αk

sk − yk∥22,

this has an analytical solution

αk =
∥sk∥22
⟨sk,yk⟩

.

The update step is thus:

xk+1 = xk −B−1k ∇f(x
k),

= xk − αk∇f(xk).

Advantages:

� Fast and simple, no need to use Equation (5.1) to estimate step size αk.

Disadvantages:

� Convergence is not guaranteed to be monotonic, i.e. f(xk+1) is not less than f(xk) necessarily.

� Notice how the iterates are constructed – the method is not self-starting, another method is

needed for k = 0.

Chapter 5

Line-Search Methods – Stepsize Analysis

Overview

In Chapter 3, we showed how the Line Search methods involves a sub-problem in which it is required

to compute the optimal step size αk, for a given descent direction pk.

αk = argmin
α>0

f(xk + αpk). (5.1)

This is yet another optimization problem, albeit a 1D problem. In this chapter we look at quick

alternatives to solving the full problem (5.1).

5.1 Strong Wolfe Conditions

We view

ϕ(α) = f(xk + αpk)

as a simple one-dimensional problem, which we seek to minimize. However, instead of minimizing

α, we can chose an ‘okay’ value of α that gets us close to the minimum. The rationale here is

that what we really wish to minimize is minx∈Rn f(x), so how close we are to the minimum of the

sub-problem (5.1) should not really matter, so long as we are ‘close enough’.

As such, consider a linear approximation to ϕ(α):

ϕ(α) ≈ ϕ(0) + ϕ′(0)α,

where ϕ′(0) = pk ·∇f(xk), which we assume is negative, since pk is supposed to be taking us down

towards the minimum. Thus, ϕ(α) should look something like the graph in Figure 5.1.

35

36 Chapter 5. Line-Search Methods – Stepsize Analysis

Figure 5.1: Idea behind the Wolfe conditions

5.1.1 Upper cutoff

Fix a value c1 ∈ (0, 1). Now, suppose my guess for the stepsize α is too large. Then, the value of

ϕ(α) is above Line 1 in the figure, hence

ϕ(α) > ϕ(0) + c1ϕ
′(0)α,

where here c1 is the slope parameter of Line 1, chosen such that Line 1 has a shallower slope than

the linear approximation ϕ(α) ≈ ϕ(0)+ϕ′(0)α. So clearly, to be anywhere near the local minimum,

I require:

ϕ(α) ≤ ϕ(0) + c1ϕ
′(0)α. (5.2)

5.1.2 Lower cutoff

Notice that even α = 0 will satisfy Equation (5.2). Obviously, α = 0 is no good, because I will

then fail to make any progress with the iterative method. So α = 0 should be exculded – as well

as other ‘very small’ values of α. A way to exclude very small values of α can be reasoned out as

follows. Fix another value c2 ∈ (0, 1), and suppose my guess for the stepsize α is too small. Then,

the value of the slope of ϕ(α) will be less than the slope of Line 2 in the figure, in other words, the

5.1. Strong Wolfe Conditions 37

slope ϕ′(α) is unacceptably steep. Since ϕ′(α) < 0, ‘unacceptably steep’ means:

|ϕ′(α)| > c2|ϕ′(0)|,

so an acceptable slope is thus:

|ϕ′(α)| ≤ c2|ϕ′(0)|.

5.1.3 Combination of both cutoffs

We combine the two cutoff criteria in one place, these are called the Strong Wolfe Conditions

(SWCs). We state these conditions now as follows, these conditions are valid for fixed c1 ∈ (0, 1)

and fixed c2 ∈ (0, 1), actually we require 0 < c1 < c2 < 1.

ϕ(α) ≤ ϕ(0) + c1ϕ
′(0)α, (5.3a)

|ϕ′(α)| ≤ c2|ϕ′(0)|. (5.3b)

We show the necessity for the ordering condition 0 < c1 < c2 < 1 in the next subsection.

Nomenclature: SW1 is also referred to as the Armijo condition.

5.1.4 Existence Criterion

Theorem 5.1 (Strong Wolfe Conditions) Let ϕ(α) be a continuously differentiable function

which is bounded below, ϕ(α) ≥ ϕmin. If 0 < c1 < c2 < 1, then there exists an α > 0 satis-

fying the SWCs.

Fix 0 < c1 < 1, and consider

∆(α) = ℓ(α)− ϕ(α),

= [ϕ(0) + c1αϕ
′(0)]− ϕ(α).

We have ϕ(α) ≥ ϕmin, hence −ϕ(α) ≤ −ϕmin, hence

∆ ≤ ϕ(0) + ϕ′(0)c1α− ϕmin.

38 Chapter 5. Line-Search Methods – Stepsize Analysis

As ϕ′(0) < 0 (by choice of pk), we have ∆→ −∞ as α→∞. Furthermore, ∆(0) = 0, and

∆′(0) = c1ϕ
′(0)− ϕ′(0),

= (c1 − 1)ϕ′(0),

> 0,

since 0 < c1 < 1 and ϕ′(0) < 0. Putting all of this information together, the graph of ∆(α) looks

something like Figure 5.2.

Figure 5.2: The graph of ∆(α) showing the existence of the nonzero root ∆(α0) = 0.

So by continuity of ϕ, there exists α0 > 0 such that ∆(α0) = 0, and ∆(α) ≥ 0 for 0 < α < α0.

Thus, the first SWC is satisfied for any 0 < α < α0.

For the second SWC, we start with α0 from the previous calculation, where

∆(α0) = 0 =⇒ ϕ(α0) = ϕ(0) + α0c1ϕ
′(0).

Recall Taylor’s Theorem,

ϕ(α0) = ϕ(0) + ϕ′(β)α0, β ∈ (0, α0),

Combine these results:

c1ϕ
′(0) = ϕ′(β), β ∈ (0, α0),

These are negative slops, we work with:

|ϕ′(β)| = c1|ϕ′(0)| β ∈ (0, α0).

5.2. Wolfe Conditions 39

Take c2 > c1, hence

|ϕ′(β)| = c1|ϕ′(0)| < c2|ϕ′(0)| β ∈ (0, α0).

Thus, 0 < β < α0 satisfies the two SWC.

5.2 Wolfe Conditions

A slightly less stringent requirement for the step size is given by the Wolfe Conditions:

ϕ(α) ≤ ϕ(0) + c1ϕ
′(0)α, (5.4a)

ϕ′(α) > c2ϕ
′(0). (5.4b)

The SWCs ensure that the magnitude of the slope is always controlled. The Wolfe Conditions ensure

that the slope is always greater than a threshold value c2ϕ
′(0), but allow for slopes that may be too

large and positive.

5.3 Backtracking Line Search

A quick and easy alternative implementation of the SWCs is the Backtracking Line Search algorithm.

The idea here is to start with a step size that is too large, and reduce it so that the first SWC is

satisfied. This actually makes the second SWC redundant.

Algorithm 4 Backtracking Line Search

Choose an initial guess for αk, call it α. Fix ρ ∈ (0, 1) and c ∈ (0, 1).

while f(xk + αpk) > f(xk) + cαpk · ∇f(xk) do

α← ρα.

end while

� Initial step length can be chosen as αk = 1 in Newton and Quasi-Newton methods.

� As there is no ‘good’ guess for the initial step length in SD, this method may not be appropriate

there.

Hence, we look at a more involved implementation of the SWCs in the next section.

5.4 Practical Implementation of the SWCs

In the following code listings, we look at an implementation of the Line Search Algorithm in Matlab.

Two initial guesses for α are chosen: α0 = 0, and α1 ∈ (α0, αmax). The SWC are checked, if the

40 Chapter 5. Line-Search Methods – Stepsize Analysis

SWC conditions are violated, then α1 is updated and the process is repeated. Specifically,

� If SW1 is violated, then we zoom in on an α∗ ∈ (α0, α1) where SW1–SW2 are actually

satisfied.

� If SW2 is violated, we actually increase the value of α1 to a new value ρα0 + (1 − ρ)αmax,

where 0 < ρ < 1.

� In the unusual situation where ϕ′(α1) > 0, we would zoom in on an interval where SW1–2

are satisfied.

The idea is to keep iterating this process until SW1–2 are satisfied. The Matlab code for this is

shown below.

1 f u n c t i o n a l p h a s t a r = l s a (x , p , a l p h a i)

2

3 % The f o l l o w i n g i s an imp l ementa i t on o f A lgo r i thm 3 . 5 , Noceda l and Wright ,

4 % page 60 .

5

6 % Note : Th i s code i s a s imp l e mod i f i e d v e r s i o n o f a code by Davide Tav ian i ,

7 % h t t p s : // g i s t . g i t hub . com/ He l i o sma s t e r /1043132

8

9 % a lpha 1 = a i

10 % a0 = a { i=1}
11

12 % I n i t i a l i z a t i o n o f d e f a u l t pa ramete r s

13 % Here , c1 and c2 a r e the pa ramete r s s recommended by Noceda l and Wright

14 % (p . 62)

15

16 c1 = 1e=4;

17 c2 = 0 . 9 ;

18 maxi t = 100 ;

19

20 a l pha 0 = 0 ; % 0 th s t e p l e n g t h i s 0

21 alpha max = 10* a l p h a i ; % Max s e r c h i n t e r v a l i s 10*(i n i t i a l gue s s)

22

23 [f0 , g0] = fun (x) ; % Funct i on v a l u e s at \a lpha =0.

24 df0=dot (p , g0) ;

25

26 i =1;

27

28 wh i l e 1

29 f o l d = fun (x+a l pha 0*p) ; % Funct i on wi th p r e v i o u s s tep=l e n g t h

30 [f , g] = fun (x+a l p h a i *p) ; % Funct i on wi th c u r r e n t s tep=l e n g t h

31 d f=dot (g , p) ;

32

33 i f ((f > f 0+c1* a l p h a i *df0) | | ((i >1) && (f > f o l d))) % Check f o r SW1: A s u f f i c e n t d e c r e a s e i n f o r a compar i son

between f and f o l d)

34 a l p h a s t a r = zoom w(x , p , a lpha 0 , a l p h a i , c1 , c2) ; % Modify a lpha : a s u i t a b l e v a l u e i s somewhere i n [a lpha 0 ,

a l pha 1]

35 r e t u r n ;

36 end

37

38 i f (abs (d f) <= =c2*df0) % Check f o r SW2 (Curva tu r e c o n d i t i o n)

39 a l p h a s t a r = a l p h a i ; % Cur r en t s tep=l e n g t h s a t i s f i e s SW2

40 r e t u r n ;

41 end

42

43 i f (d f >= 0)

44 a l p h a s t a r = zoom w(x , p , a l p h a i , a lpha 0 , c1 , c2) ; % Find a s u i t a b l e s tep=l e n g t h i n [a lpha 1 , a l pha 0]

45 r e t u r n ;

46 end

47

48 i f (i == maxit) % Break C lause

49 d i s p (’Maximum number o f i t e r a t i o n f o r L i ne Search reached ’) ;

5.4. Practical Implementation of the SWCs 41

50 a l p h a s t a r = a l p h a i ;

51 r e t u r n ;

52 end

53

54 % Update f o r nex t l oop

55 i=i +1;

56 a l pha 0 = a l p h a i ;

57

58 % Here , I am updat i ng a l p h a { i +1} u s i n g l i n e a r i n t e r p l a t i o n based on

59 % rho , rho = 0 . 8 ;

60

61 rho =0.8 ;

62 a l p h a i = rho* a l pha 0+(1=rho)*alpha max ;

63

64 % a l pha 1 = min (alpha max , a l pha 1 *3) ;

65

66 end

67

68 end

42 Chapter 5. Line-Search Methods – Stepsize Analysis

The idea of the Zoom function here is as follows:

� Obtain an interval bounded by αlo and αhi such that there is an α in the interval that satisfies

the SWCs.

� Of all the step lengths generated so far which satisfy SW1, αlo is the one that gives the lowest

value of ϕ(α);

� αhi is chosen such that ϕ′(αlo)(αhi − αlo) < 0.

1 f u n c t i o n a l p h a s t a r = zoom w(x , p , a l p h a l o , a l p h a h i , c1 , c2)

2

3 % The f o l l o w i n g i s an imp l ementa i t on o f A lgo r i thm 3 . 6 , Noceda l and Wright ,

4 % page 61 .

5

6 % Note : Th i s code i s a s imp l e mod i f i e d v e r s i o n o f a code by Davide Tav ian i ,

7 % h t t p s : // g i s t . g i t hub . com/ He l i o sma s t e r /1043132

8

9 maxi t = 20 ;

10

11 [f0 , g0] = fun (x) ;

12 d f0=dot (p , g0) ;

13

14 j = 0 ;

15 wh i l e 1

16 % I use b r a c k e t i n g and b i s e c t i o n to e s t ima t e the b e s t v a l u e o f a lpha ,

17 % meaning the t r i a l s tep=l e n g t h i s the midd le po i n t o f [a l p h a l o , a l p h a h i]

18

19 a l p h a j = (a l p h a l o+a l p h a h i) /2 ;

20

21 [f , g] = fun (x+a l p h a j *p) ;

22 d f=dot (p , g) ;

23

24 [f l o] = fun (x+a l p h a l o *p) ;

25

26 i f ((f > f 0 + c1* a l p h a j *df0) | | (f >= f l o)) % Test f o r s u f f i c i e n t d e c r e a s e or compar i son wi th a l p h a l o .

27 a l p h a h i = a l p h a j ; % Narrow the i n t e r v a l between [a l p h a l o , a l p h a h i]

28 e l s e

29 i f abs (d f) <= =c2*df0 % Curva tu r e c o n d i t i o n (SW2) s a t i s f i e d

30 a l p h a s t a r = a l p h a j ;

31 r e t u r n ;

32 end

33 i f d f *(a l p h a h i=a l p h a l o) >= 0

34 a l p h a h i = a l p h a l o ;

35 end

36 a l p h a l o = a l p h a j ; % The i n t e r v a l i s now [a lpha , a l p h a l o]

37 end

38

39 i f j==maxit

40 a l p h a s t a r = a l p h a j ; % Break C lause

41 r e t u r n ;

42 end

43

44 j = j +1;

45 end

46

47 end

Chapter 6

Linesearch Methods – Convergence

analysis

Overview

6.1 Convergence of Line Search Methods

To study the convergen of Line Search Methods, the specific angle between the descent direction

pk and the steepest-descent direction −∇f(xk)/|∇f(xk)| is of interest. This can be obtained from

the dot product:

cos θk = −
⟨pk,∇f⟩

∥pk∥2∥∇f(xk)∥2
.

We now prove the following theorem:

Theorem 6.1 (Zoutendijk Condition) Consider an iterative line search method of the form xk+1 =

xk + αkpk, where pk is a descent direction, ∇f(x) · pk < 0. Suppose that αk satisfies the SWCs.

Suppose also the following:

1. f is bounded below in Rn;

2. f is continuously differentiable in an open set N containing the level sets

L = {x|f(x) ≤ f(x0)},

where x0 is the starting-value of the iterative method.

3. ∇f is Lipschitz continuous in N , that is, there exists a constant L > 0 such that:

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2, for all x,y ∈ N .

43

44 Chapter 6. Linesearch Methods – Convergence analysis

Then: ∑
k≥0

cos2 θk∥∇f(xk)∥22 <∞.

Proof: We begin by recalling SW2. We have two cases to look at: ∇f(xk + αkpk) · pk > 0 and

∇f(xk + αkpk) · pk ̸= 0. For brevity, we identify xk+1 = xk + αkpk and write ∇f(xk + αkpk) =

∇f(xk+1) = ∇fk+1, etc. In Case 1, ∇fk+1 · pk > 0, and SW2 becomes:

∇fk+1 · pk ≤ −c2∇fk · pk,

since |∇fk · pk| = −∇fk · pk. Hence,

−∇fk+1 · pk ≤ ∇fk+1 · pk ≤ −c2∇fk · pk,

and reversing the sign of the inequalities and multiplying by −1 gives:

∇fk+1 · pk ≥ c2∇fk · pk.

In Case 2, ∇fk+1 · pk < 0, and SW2 gives:

−∇fk+1 · pk < −c2∇fk · pk.

Again reversing the sign of the inequalities and multiplying by −1 gives:

∇fk+1 · pk > c2∇fk · pk.

So whichever case we are in, we have the key result:

∇fk+1 · pk ≥ c2∇fk · pk, All Cases.

Now, I can subtract ∇fk · pk from both sides to obtain:

(∇fk+1 −∇fk) · pk ≥ (c2 − 1)∇fk · pk, All Cases. (6.1)

We also have the Lipschitz condition

∥∇fk+1 −∇fk∥2 ≤ L∥αkpk∥2,

hence

∥∇fk+1 −∇fk∥2∥pk∥ ≤ Lαk∥pk∥22,

6.1. Convergence of Line Search Methods 45

and using CS, this becomes:

|(∥∇fk+1 −∇fk) · pk| ≤ ∥∇fk+1 −∇fk∥2∥pk∥2 ≤ Lαk∥pk∥22,

and more strongly,

(∇fk+1 −∇fk) · pk ≤ Lαk∥pk∥22. (6.2)

Combine inequalities (6.1) and (6.2) to obtain:

(c2 − 1)∇fkpk ≤ Lαk∥pk∥22,

hence

αk ≥
(c2 − 1)∇fk · pk

L∥pk∥22
,

or more transparently,

αk ≥
(1− c2)|∇fk · pk|

L∥pk∥22
, (6.3)

That is all I can do using SW2. So now go back to SW1:

fk+1 ≤ fk + αkc1∇fk · pk,

and sub in for αk:

fk+1 ≤ fk − c1

(
(1− c2)|∇fk · pk|

L∥pk∥22

)
|∇fk · pk|,

= fk −
[
c1(1− c2)

L

]
|∇fk · pk|2

∥pk∥22
,

= fk − c cos2 θk∥∇fk∥22.

I sum over all k here to obtain:

fk+1 ≤ f0 − c

k∑
j=0

cos2 θj∥∇fj∥22.

Since f is bounded below, I have fk+1 ≥ fmin, hence −fk+1 ≤ −fmin, hence

f0 − fk+1 ≤ f0 − fmin = M,

where M is a constant (zero or positive), hence

c
k∑

j=0

cos2 θj∥∇fj∥22 ≤M,

46 Chapter 6. Linesearch Methods – Convergence analysis

thus the sum is bounded. Taking k →∞, I have:

c
∞∑
j=0

cos2 θj∥∇fj∥22 ≤M,

which concludes the proof.

Corollary 6.1 If the conditions in Zoutendijk’s Theorem are satisfied, then

cos2 θj∥∇fj∥22 → 0 as j →∞.

Proof: From Zoutendijk’s Theorem, the series

∞∑
j=0

cos2 θj∥∇fj∥22

is a convergent series, thus the general term goes to zero as j →∞:

cos2 θj∥∇fj∥22 → 0 as j →∞.

As an application of this Corollary, suppose that cos θk can be kept away from zero in the ‘tail’ of

the sequence of terms

cos2 θ0∥∇f0∥22, cos2 θ1∥∇f1∥22, · · · , cos2 θj∥∇fj∥22, · · ·

such that:

cos θk ≥ δ > 0, for all k ≥ k0,

Then,

∥∇fj∥22 → 0 as j →∞,

and in such a case, the iterative method converges.

6.1.1 Example

In the standard steepest-descent method, we have cos θk = −1 for all k, thus the SD method is

guaranteed to converge, provided all of the conditions in Zoutendijk’s Theorem are satisfied.

6.2. Application to Quasi-Newton methods 47

6.2 Application to Quasi-Newton methods

Zoutendijk’s Theorem can also be applied to Quasi-Newton methods, where the descent direction

is defined by:

Bkpk = −∇fk,

provided the matrix Bk satisfies certain sensible conditions. This is made clear in the following

Theorem:

Theorem 6.2 Consider an iterative method where the descent direction is given by

Bkpk = −∇fk,

where Bk is a positive-definite matrix satisfying

∥Bk∥2∥B−1k ∥2 ≤M, M = Const. for all k,

Then cos θk ≥ 1/M .

A word first about κ(Bk) := ∥Bk∥2∥B−1k ∥2: this is the condition number of the matrix Bk. In

this context, ∥ · ∥2 is the L2 matrix norm:

∥Bk∥2 = sup
∥u∥2=1

∥Bku∥2.

If Bk is a positive-definite matrix, then it has all positive eigenvalues, and it can be readily shown

that

∥Bk∥2 = max(λ1, · · · , λn) = λmax,

and also,

∥B−1k ∥2 = max(
1

λ1

, · · · , 1

λn

) =
1

λmin

> 0.,

Thus, for a positive-definite matrix such as Bk, the condition number can be written as

κ(Bk) = ∥Bk∥2∥B−1k ∥2 =
λmax

λmin

.

We now return to the proof of Theorem 6.2. We have:

cos θk =
⟨∇fk, B−1k ∇fk⟩
∥∇fk∥2∥B−1k ∇fk∥2

.

48 Chapter 6. Linesearch Methods – Convergence analysis

As Bk is positive-definite, we can expand ∇fk in terms of the eigenbasis of Bk:

∇fk =
∑
i

xiui, xi = ⟨ui,∇fk⟩, Bkui = λiui,

hence

B−1k ∇fk =
∑
i

1

λi

xiui,

Thus,

cos θk =
⟨∇fk, B−1k ∇fk⟩
∥∇fk∥2∥B−1k ∇fk∥2

,

=

∑
i

1
λi
x2
i

(
∑

i x
2
i)

1/2 [
∑

i(1/λi)2x2
i]

1/2
,

≥
1

λmax

∑
i x

2
i

(
∑

i x
2
i)

1/2 [
∑

i(1/λi)2x2
i]

1/2
,

≥
1

λmax

∑
i x

2
i

(
∑

i x
2
i)

1/2 [(1/λmin)2
∑

i x
2
i]

1/2
,

=
λmin

λmax

,

=
1

κ(Bk)
,

≥ 1/M.

Thus, cos θk ≥ 1/M , as required.

6.3 Convergence Rates – Steepest Descent

Often, it is important to know not only that a particular Line Search method converges but also,

how fast it converges. For the standard Steepest Descent Method, an exact result is known for the

model quadratic problem:

f(x) = c+ ⟨a,x⟩+ 1
2
⟨x, Bx⟩. (6.4)

and the result shows that the convergence is quite poor (linear). We go through the calculation

here.

We start by computing the steepest-descent direction associated with Equation (6.4),

p = −∇f = −Bx,

6.3. Convergence Rates – Steepest Descent 49

and we assume the update step is given as:

xk+1 = xk − αk∇f(xk) := xk − αk∇fk. (6.5)

To choose αk, we solve the sub-problem:

αk = argmin
α>0

f(xk − α∇fk),

for the quadratic cost function this has an exact solution:

αk =
⟨∇fk,∇fk⟩
⟨∇fk, B∇fk⟩

. (6.6)

Consider again the update step (6.5), subtract x∗ from both sides to obtain:

xk+1 − x∗ = xk − x∗ − αk∇fk.

Multiply both sides by B to obtain:

B(xk+1 − x∗) = B(xk − x∗)− αkB∇fk.

Now take the inner product of both sides with xk+1 − x∗:

⟨xk+1 − x∗, B(xk+1 − x∗)⟩ = ⟨xk+1 − x∗, B(xk − x∗)− αkB∇fk⟩,

= ⟨xk − x∗ − αk∇fk, B(xk − x∗)− αkB∇fk⟩,

Expand out to obtain:

⟨xk+1−x∗, B(xk+1−x∗)⟩ = ⟨xk−x∗, B(xk−x∗)⟩−2αk⟨xk−x∗, B∇fk⟩+α2
k⟨∇fk, B∇fk⟩. (6.7)

We identify a weighted norm:

∥v∥2B = ⟨v, Bv⟩, for all v ∈ Rn,

with ∥v∥B ≥ 0 and ∥v∥B = 0 if and only if v = 0. Hence, Equation (6.7) can be re-written as:

∥xk − x∗∥2B − ∥xk+1 − x∗∥2B︸ ︷︷ ︸
=∆

= 2αk⟨xk − x∗, B∇fk⟩ − α2
k⟨∇fk, B∇fk⟩.

50 Chapter 6. Linesearch Methods – Convergence analysis

We now use:

∇fk = a+Bxk,

= −Bx∗ +Bxk,

= B(xk − x∗).

Hence:

∆ = 2αk⟨xk − x∗, B∇fk⟩ − α2
k⟨∇fk, B∇fk⟩,

= 2αk⟨B(xk − x∗),∇fk⟩ − α2
k⟨∇fk, B∇fk⟩,

= 2αk⟨∇fk,∇fk⟩ − α2
k⟨∇fk, B∇fk⟩.

Now fill in for αk:

∆ = 2
⟨∇fk,∇fk⟩
⟨∇fk, B∇fk⟩

× ⟨∇fk,∇fk⟩ −
⟨∇fk,∇fk⟩
⟨∇fk, B∇fk⟩

× ⟨∇fk,∇fk⟩
⟨∇fk, B∇fk⟩

× ⟨∇fk, B∇fk⟩

Carry out the cancellations to obtain:

∆ =
⟨∇fk,∇fk⟩2

⟨∇fk, B∇fk⟩
.

From the definition of ∆ we now have:

∥xk+1 − x∗∥2B = ∥xk − x∗∥2B −
⟨∇fk,∇fk⟩2

⟨∇fk, B∇fk⟩
. (6.8)

But also, xk − x∗ = B−1∇fk, hence

∥xk − x∗∥2B = ⟨∇fk, B−1∇fk⟩.

So now we have:

∥xk+1 − x∗∥2B = ∥xk − x∗∥2B −
⟨∇fk,∇fk⟩2

⟨∇fk, B∇fk⟩
,

= ∥xk − x∗∥2B −
⟨∇fk,∇fk⟩2

⟨∇fk, B∇fk⟩
∥xk − x∗∥2B
⟨∇fk, B−1∇fk⟩

,

=

(
1− ⟨∇fk,∇fk⟩2

⟨∇fk, B∇fk⟩⟨∇fk, B−1∇fk⟩

)
∥xk − x∗∥2B.

6.3. Convergence Rates – Steepest Descent 51

We notice the combination

⟨∇fk, B∇fk⟩⟨∇fk, B−1∇fk⟩
⟨∇fk,∇fk⟩2

≤ ∥B∥2∥B−1∥2,

= κ(B),

=
λmax

λmin

,

where κ(B) is the condition number of the matrix. Thus,

∥xk+1 − x∗∥2B ≤
(
1− 1

κ(B)

)
∥xk − x∗∥2B,

hence

∥xk+1 − x∗∥B ≤
(
λmax − λmin

λmax

)1/2

∥xk − x∗∥B, (6.9)

which establishes a linear rate of convergence of for the SD method.

6.3.1 A Warning about Scaling

Equation (6.9) reveals what happens to the performance of the SD method in the case of ill-

conditioned problems where κ(B) is large – then the λmax ≫ λmin, and the prefactor in Equa-

tion (6.9) is very close to one, in which case:

∥xk+1 − x∗∥B > ∥xk − x∗∥B, (6.10)

in which case the convergence is very poor. Geometrically, the level sets of such an ill-conditioned

cost function look like very elongated ellipses (Figure 6.1), meaning that the steepest-descent method

does not do a very good job at taking us towards the minimum.

6.3.2 A Warning about the SD method

Even for well-conditioned problems, the linear convergence of the SD method is regarded as quite

poor. Geometrically, the level sets of f look like ellipses, the SD method takes us in steps towards

the minimum, each step is orthogonal to a level set, meaning the path to the minimum is a ‘zig-

zag’, which slows convergence (Figure 6.2). For this reason, Newton methods and Quasi-Newton

methods are preferable, because they exhibit quadratic convergence to the minimum.

52 Chapter 6. Linesearch Methods – Convergence analysis

Figure 6.1: Example of a poorly-scaled cost function (top) and a well-scaled cost function (bottom),
taken from Nocedal and Wright.

Figure 6.2: The ‘zig-zag’ SD path is responsible for the linear convergence rate of the SD method.

6.4. Convergence Rates – Newton 53

6.4 Convergence Rates – Newton

In Chapter 3 we sketched out the idea behind the quadratic convergence property for the Newton

method. More specifically, for the update method:

xk+1 = xk + pN
k , B(xk)p

N
k = −∇f(xk), [B(xk)]ij =

(
∂2f

∂xi∂xj

)
xk

we expect (under certain restrictions on the Hessian B) that the rate of convergence of the sequence

xk → x∗ should be quadratic, in the sense that:

∥xk+1 − x∗∥2 ≤ C∥xk − x∗∥22,

where C is a positive constant: it can be problem-specific but is independent of k.

Theorem 6.3 Suppose that f is twice differentiable and that the Hessian B(x) is Lipschitz con-

tinuous in a neighborhood of a solution x∗ at which the sufficient conditions (Theorem 2.7) are

satisfied. Suppose that the starting point x0 is sufficiently close to x∗, and consider the iteration

xk+1 = xk + pN
k . Then,

1. The sequence of iterates {xk}∞k=0 converges to x∗;

2. The rate of convergence of the sequence is quadratic.

Proof: We have xk+1 = xk − B−1∇fk, where the dependence of B−1 and B on xk is assumed.

Subtract x∗ from both sides, and use ∇f(x∗) = 0:

xk+1 − x∗ = xk − x∗ −B−1∇f(xk),

= xk − x∗ −B−1 [∇f(xk)−∇f(x∗)] .

Hence,

xk+1 − x∗ = B−1
{
B(xk − x∗)− [∇f(xk)−∇f(x∗)]

}
. (6.11)

We use the first-order version of Taylor’s theorem for a continuously differentiable function – which

is really just the Fundamental Theorem of Calculus:

g(b) = g(a) +

∫ 1

0

g′(a+ t(b− a))dt

We apply this result to a generic function ϕ(x), between the points xk and x∗:

ϕ(xk) = ϕ(x∗) +

∫ 1

0

ϕ′(xk + t(xk − x∗))dt

54 Chapter 6. Linesearch Methods – Convergence analysis

or

ϕ(xk) = ϕ(x∗) +

∫ 1

0

(xk − x∗) · ∇f(xk + t(xk − x∗))dt

Now set ϕ = ∂f/∂xj:

∂f

∂xj

(xk) =
∂f

∂xj

(x∗) +

∫ 1

0

(xk − x∗)i
∂2f

∂xi∂xj

(xk + t(x∗ − xk))dt,

=
∂f

∂xj

(x∗) +

∫ 1

0

Bij(xk + t(x∗ − xk))(xk − x∗)idt

Hence,

[∇f(xk)−∇f(x∗)]j =
∫ 1

0

Bij(xk + t(xk − x∗))(xk − x∗)idt.

Without index notation, this becomes:

∇f(xk)−∇f(x∗) =
∫ 1

0

B(xk + t(x∗ − xk))(x∗ − xk)dt.

We substitute this result back into Equation (6.11) to obtain:

xk+1 − x∗ = B−1(xk)

{
B(xk)(xk − x∗)− [∇f(xk)−∇f(x∗)]

}
,

= B−1(xk)

{
B(xk)(xk − x∗)−

∫ 1

0

B(xk + t(x∗ − xk))(x∗ − xk)dt

}
,

= B−1(xk)

{∫ 1

0

[B(xk)−B(xk + t(x∗ − xk))] dt

}
(xk − x∗).

Take norms on both sides to obtain:

∥xk+1 − x∗∥2 ≤ ∥B−1(xk)∥2∥xk − x∗∥
∫ 1

0

∥B(xk)−B(xk + t(x∗ − xk))∥2dt.

The Hessian is assumed to be Lipschitz continuous: hence, there exists a positive constant L > 0

such that, for all x and y in the region of interest, we have:

∥B(y)−B(x)∥2 ≤ L∥y − x∥2.

Hence,

∥xk+1 − x∗∥2 ≤ ∥B−1(xk)∥2∥xk − x∗∥
∫ 1

0

t

{
L∥(x∗ − xk))∥2

}
dt,

and so:

∥xk+1 − x∗∥2 ≤ 1
2
L∥B−1(xk)∥2∥(x∗ − xk))∥22. (6.12)

Furthermore, B and B−1 are continuous functions of x, so, given any ϵ > 0, there exist a δ > 0

6.4. Convergence Rates – Newton 55

such that

∥B−1(xk)−B−1(x∗)∥2 < ϵ whenever ∥xk − x∗∥2 < δ,

hence

∥B−1(xk)∥2 < ϵ+ ∥B−1(x∗)∥2.

Hence, for a good choice of ϵ,

∥B−1(xk)∥2 ≤ 2∥B−1(x∗)∥2 whenever ∥xk − x∗∥2 < δ.

So referring back to Equation (6.12), this becomes:

∥xk+1 − x∗∥2 ≤ L∥B−1(x∗)∥2∥x∗ − xk∥22 whenever ∥xk − x∗∥2 < δ.

Hence,

∥xk+1 − x∗∥2 = C∥xk − x∗∥22 whenever ∥xk − x∗∥2 < δ. (6.13)

Let us choose:

∥x0 − x∗∥2 < δ, ∥x0 − x∗∥2 < 1
2C

,

i.e.

∥x0 − x∗∥2 < min
(
δ, 1

2C

)
.

By Equation (6.13), we have:

∥x1 − x∗∥2
∥x0 − x∗∥2

≤ C∥x0 − x∗∥ ≤ 1
2
.

From this, it can be shown (exercises) that

∥xk − x∗∥2
∥x0 − x∗∥2

≤ 1

22k − 1
,

hence

∥xk − x∗∥2 → 0 as k →∞. (6.14)

Thus,

� Result (6.14) establishes convergence of the Newton Method, whenever ∥x0−x∗∥2 < ∥x0−
x∗∥2 < min [δ, 1/(2C)].

� Results (6.13) and (6.14) establish that the convergence rate is quadratic.

56 Chapter 6. Linesearch Methods – Convergence analysis

6.5 Convergence Rates – Quasi-Newton

Quasi-Newton methods also exhibit ‘good’ convergence – in this case, the descent method is com-

puted as

pk = −B−1k ∇fk,

where now Bk is some approximation to the Hessian. Also in this case, the step length is not equal

to one, but is set to αk, where αk is chosen to satisfy the SWCs. Here, by ‘good’ convergence, we

mean ‘more than linear but maybe not as good as quadratic’, specifically,

∥xk+1 − x∗∥2 ≤ C∥xk − x∗∥1+ϵ, (6.15)

where ϵ is a positive constant, and C is also a positive constant that may be problem-specific

but is independent of k. As with the proof of the quadratic convergence of the Newton method,

Equation (6.15) assumes that the function f has various ‘nice’ properties and that the starting-value

x0 is sufficiently close to the solution x∗, where ∇f(x∗) = 0.

We won’t go into this in detail – the approach to the proofs is the same as before, and we already

have learned a lot about the pros and cons of SD, Newton, and Quasi-Newton. We will therefore

just state the theorem for the Quasi-Newton Methods and then move on to new materials.

Theorem 6.4 Suppose that f : Rn → R is twice continuously differentiable. Consider the iteration

xk+1 = xk + αkpk, where pk is a descent direction and αk satisfies the Wolfe Conditions with

c1 ≤ 1/2. If the sequence {xk}∞k=0 converges to a point x∗ such that ∇f(x∗) = 0 and [B(x)]ij =

∂2f(x)/∂xi∂xj is a positive definite matrix, and if the search direction satisfies:

lim
k→∞

∥∇fk +Bpk∥2
∥pk∥2

→ 0,

then:

1. The step length αk = 1 is admissible for all k greater than a certain index k0;

2. If αk = 1 for all k > k0, then the sequence {xk}∞k=0 converges to x∗ superlinearly.

Chapter 7

Trust-Region Methods

Overview

We introduce the general idea of Trust-Region Methods and we formulate the simplest possible such

method – the so-called Cauchy-Point Method.

7.1 Introduction

We begin by recalling the idea behind line search methods – the idea there is to pick a ‘nice’ direction

pk at each iteration, and then to step to the next iteration via the update rule xk+1 = xk + αkpk.

Then, the optimization problem at each iteration step is reduced to solving a 1D sub-problem

αk = argmin
α>0

f(xk + αpk).

Line search methods are good when the Hessian Bij = ∂2f/∂xi∂xj is positive-definite, in which

case Newton or Quasi-Newton methods produce an iterative method with super-linear convergence

to the optimal point ∥∇f(x∗)∥2 = 0. Trust-region methods are another class of iterative method

that can be used to solve optimization problems where the Hessian is positive-definite. However,

the trust-region methods can be ‘tweaked’ in a very intuitive way to accommodate Hessians that

are not positive-definite. Thus, the trust-region methods are slightly more robust.

In this chapter, we introduce the idea behind the trust-region method in the case of positive-definite

Hessians and then outline the extension to non-sign-definite Hessians later on.

57

58 Chapter 7. Trust-Region Methods

7.2 The Idea

The idea behind the trust-region method is that at each iteration, we locally approximate the cost

function by a quadratic:

f(x) = f(xk + p) ≈ fk + ⟨g,p⟩+ 1
2
⟨p, Bp⟩ = mk(p). (7.1)

Now, it makes sense here that the ‘coefficients’ in this Taylor expansion should be g = ∇f(xk)

and Bij = ∂2f(xk)/∂xi∂xj, although strictly speaking that is not necessary, the main thing is that

mk(p) should be a good approximation to f(xk + p) in Equation (7.1).

Equation (7.1) is a quadratic approximation to the cost function, as such, it should be valid in a

small region centred on xk. We therefore introduce a trust region where we expect the quadratic

approximation to be valid:

∥p∥2 ≤ ∆, (7.2)

where ∆ is the size of the trust region.

Once the size of the trust region has been established (we say how to do this in the next section),

we can then solve the reduced problem:

pk = arg min
∥p∥2≤∆

mk(p), (7.3)

and hence, step from xk to xk+1 = xk+pk. As such, line search methods and trust-region methods

are the same in spirit, the difference being that the sub-problem in the trust-region method is more

complicated.

7.3 Size of Trust Region

There is a very simple algorithm for computing the size of the trust region: we compare

� The actual reduction in the cost function between iterations, f(xk)− f(xk + pk);

� The predicted reduction in the cost function between iterations, mk(0)−mk(pk)

Hence, we look at the ratio

ρk =
f(xk)− f(xk + pk)

mk(0)−mk(pk)
(7.4)

and we will use the value of ρk as criterion for determining the size of the trust region, according to

the following ideas:

7.3. Size of Trust Region 59

� As pk is supposed to be the minimum of mk(p) in a region containing p = 0 (see Equa-

tion (7.3)), the denominator here is guaranteed to be positive for all iterations. Furthermore,

if the numerator is negative, it means that our search direction pk is not reducing the cost

function, meaning that we should reject the search direction pk.

On the other hand,

� If ρk is positive and close to one, then there is good agreement between the predicted reduction

in the cost function and the actual reduction in the cost function, in which case it is safe to

expand the trust region at the next iteration.

� If ρk is positive but significantly smaller than one, then the trust region is still okay, but we

leave it unchanged for the next iteration.

� If ρk is negative or much smaller than one, then we reduce the size of the trust region for the

next iteration.

Algorithm 5 Determining Size of Trust Region

Choose a maximum size of the trust region, ∆̂ and an initial guess for the size of the trust region,

∆0. Also, choose a criterion η ∈ [0, 1/4) for a descent direction to be accepted.

for k = 0, 1, 2, · · · do

Obtain pk by (approximately) solving Equation (7.3).

Evaluate ρk from Equation (7.4).

if some condition is true then

∆k+1 = (1/4)∆k

else

if ρk > 3/4 and ∥pk∥2 = ∆k then

∆k+1 = min(2∆k, ∆̂)

else

∆k+1 = ∆k;

end if

end if

if ρk > η then

xk+1 = xk + pk

else

xk+1 = xk

end if

end for

60 Chapter 7. Trust-Region Methods

7.4 The constrained minimization problem

The Trust-Region algorithm requires us to solve a constrained minimization problem at each iter-

ation:

p∗ = argmin
p

[
fk + ⟨gk,p⟩+ 1

2
⟨p, Bkp⟩

]
, subject to ∥p∥2 ≤ ∆. (7.5)

Here, there is a subscript k on gk and Bk to indicate that these are the coefficients in the approxima-

tion to the cost function that are updated at each iteration. However, these indices are suppressed

in what follows, as we seek to focus on the details of the minimization problem. Equation (7.5)

can be solved using the method of Lagrange multipliers, we summarize the main result here. Notice

that the subproblem has a solution for a general symmetric matrix B:

Theorem 7.1 Suppose that B is a symmetric matrix. Then the vector p∗ is a global solution of

the trust-region problem

p∗ = argmin
p

[
f + ⟨g,p⟩+ 1

2
⟨p, Bp⟩

]
, subject to ∥p∥ ≤ ∆, (7.6)

if and only if p∗ is feasible and there is a scalar λ ≥ 0 such that the following conditions hold:

(B + λI)p∗ = −g,

λ (∆− ∥p∗∥2) = 0,

(B + λI) is positive semi-definite.

Theorem 7.1 deals with exact solutions of the quadratic approximation. For now, we are only

interested in approximate solutions (in analogy with the SWCs for Line Search Methods). Therefore,

we can postpone our study of this theorem until a later chapter.

7.5 Approximate solution of the constrained minimization

problem

The solution of Equation (7.6) is a vector p∗ that depends parametrically on ∆, and we denote

the solution by p∗(∆). Knowing the function p∗(∆) is like knowing the exact solution of αk =

argminα>0f(xk +αpk) in line search methods – it is not necessary to know this, a ‘good’ estimate

for αk (such as that given by the SWCs) is sufficient for convergence. The same idea carries over

to the trust-region methods – knowing the solution p∗(∆) is too much, in practice a good estimate

for p∗ suffices.

7.6. Cauchy Point 61

7.6 Cauchy Point

The idea of the Cauchy Point method for solving the sub-problem is to look at the case when ∆ is

small. Then, the quadratic sub-problem can be approximated by

mk(p) ≈ fk + ⟨g,p⟩, ∥p∥2 ≤ ∆

and the solution to the minimizing mk(p) is simply to take p along the steepest-descent path,

p ∝ −g. A first estimate of the solution is a vector which extends to the trust-region boundary:

ptemp = − ∆

∥g∥2
g.

We then refine this solution by taking:

p = τptemp,

where τ is a scalar to be determined. We determine τ by solving the full quadratic problem:

τ = argmin
τ>0

mk(ptempτ).

We further have the restriction ∥τptemp∥2 ≤ ∆, but this is the same as |τ | ≤ 1.

We now solve the minimization problem for τ . We look at mk(τptemp), this becomes:

mk(τptemp) = fk −
τ∆⟨g, g⟩
∥g∥2

+ 1
2
τ 2∆2 ⟨g, Bg⟩

∥g∥22
.

As we we are dealing with the general trust-region method, we make no assumptions about whether

B is a positive-definite matrix, so there are two cases to consider.

1. Case 1. We look at ⟨g, Bg⟩ ≤ 0. Then, the minimum value of mk(τptemp) occurs when

τ = 1, hence, the optimal vector is:

p = 1× ptemp = − ∆

∥g∥2
g.

2. Case 2. We look at ⟨g, Bg⟩ > 0. Then, we must minimize the quadratic function

Q(τ) = fk − τ∆∥g∥2 + 1
2
τ 2∆2 ⟨g, Bg⟩

∥g∥22
.

We find the optimal value of τ by setting Q′(τ) = 0. Hence,

τ =
∥g∥32

∆⟨g, Bg⟩
.

62 Chapter 7. Trust-Region Methods

However, if this value exceeds one it can’t be accepted, so the solution in Case 2 is:

τ = min

(
1,

∥g∥32
∆⟨g, Bg⟩

)
.

We summarize these result in the following theorem:

Theorem 7.2 The Cauchy point is given by:

pCauchy = −τ
(

∆

∥g∥2
g

)
.

where,

τ =

1, if ⟨g, Bg⟩ ≤ 0,

min
(
1,

∥g∥32
∆⟨g,Bg⟩

)
, otherwise.

7.7 Worked Example

In this example, we use the Cauchy Point Algorithm to minimize the Rosenbrock function

f = 10(x2 − x2
1)

2 + (1− x1)
2.

As this function is a simple function of two variables, the gradient and the Hessian can be computed

analytically, these are supplied as part of the code. The global minimum can be found by inspection

to be at (x1, x2) = (1, 1), and our Cauchy algorithm finds this point after a couple of iterations.

The sample code can be found in the listings below.

1 f u n c t i o n [x] = t r u s t r o s ()

2

3 % t o l : s t opp i ng c r i t e r i o n on the norm o f g r a d i e n t at c u r r e n t x :

4 t o l = 1e=5;

5

6 % maxit : maximum number o f i t e r a t i o n s

7 maxi t =10000;

8

9 % x0 : i n i t i a l gue s s f o r the TR method :

10 x0=rand (2 , 1) ;

11 x k=x0 ;

12

13 % Trust=r e g i o n parameter s , s e e A lgo r i thm 4 .1 i n Noceda l and Wright .

14 De l t a h a t =0.01;

15 De l t a 0 =0.5*De l t a h a t ;

16 De l t a k=De l t a 0 ;

17

18 e ta =0.9*0 .25 ;

19

20 f o r k=1:maxi t

21

22 % Ca l c u l a t i o n o f the c o s t f u n c t i o n . Here , fun i s the c o s t f un c t i o n ,

23 % t h i s i s d e f i n e d i n a s e p a r a t e Matlab r o u t i n e and i s c a l l e d he r e .

24 % The Hes s i an i s known f o r t h i s problem , tha t i s why i t i s r e t u r n e d he r e .

7.7. Worked Example 63

25 % The Hes s i an i s s t o r e d i n the a r r a y ”B” .

26

27 [f k , g ,B] = fun (x k) ;

28

29 % I use the Cauchy Po in t method to e s t ima t e the de s c en t d i r e c t i o n p k .

30 % p k=app rox so l v e QP cauchy (g ,B, De l t a k) ;

31 p k=app rox so l v QP dog l e g (g ,B, De l t a k) ;

32

33 % I e v a l u u a t e the co s t f u n c t i o n at the c o r r e c t e d va lue , t h i s w i l l

34 % dete rm ine i f I need to r educe the t r u s t r e g i o n at the next s t e p .

35 f c o r r=fun (x k+p k) ;

36

37 % Now, I e v a u l a t e the q u ad r a t i c app rox imat i on o f f k :

38 m 0=fun QP (f k , g ,B,0* p k) ;

39 m k=fun QP (f k , g ,B, p k) ;

40

41 % I compute rho k f o r imp l ementa i t on o f A lgo r i thm 4 .1 i n Noceda l and

42 % Wright :

43 rho k=(f k=f c o r r) /(m 0=m k) ;

44

45 i f (rho k <1/4)

46 D e l t a k p l u s =(1/4)*De l t a k ;

47 e l s e

48 i f ((rho k >3/4) && (norm (p k)==De l t a k))

49 D e l t a k p l u s=min (2*De l ta k , De l t a h a t) ;

50 e l s e

51 D e l t a k p l u s=De l t a k ;

52 end

53 end

54

55 i f (rho k> e ta)

56 x k p l u s=x k+p k ;

57 e l s e

58 x k p l u s=x k ;

59 end

60

61 i f (mod(k , 1 0)==0)

62 d i s p l a y (s t r c a t (’ I t e r a t i o n=’ , num2str (k) , ’ , |\ nab la f |= ’ , num2str (norm (g))))

63 end

64

65 i f norm (g) < t o l

66 d i s p l a y (s t r c a t (’ Convergence Reached i n k=’ , num2str (k) , ’ i t e r a t i o n s , |\ nab la f |= ’ , num2str (norm (g))))

67 break ;

68 end

69

70 x k=x k p l u s ;

71 De l t a k=De l t a k p l u s ;

72

73 end

74

75 x=x k p l u s ;

76

77 end

78

79 f u n c t i o n y=fun QP (f , g ,B, p)

80 y=f+dot (p , g)+0.5* dot (p ,B*p) ;

81 end

82

83 f u n c t i o n p cauchy=app rox so l v e QP cauchy (g ,B, De l ta)

84

85 p temp==De l ta*g/norm (g) ;

86

87 i f (dot (g ,B*g)<=0)

88 tau=1;

89 e l s e

90 num=norm (g) ˆ3 ;

91 den=De l ta*dot (g ,B*g) ;

92 tau=min (num/den , 1) ;

93 end

The output of the code is printed here: the code successfully finds the minimum of the cost function.

64 Chapter 7. Trust-Region Methods

Figure 7.1: Output from the Trust-Region (Cauchy Point) algorithm

7.8 Drawback of Cauchy-Point Method

The general trust-region method is more complicated than the line search methods. The added

complexity gives us scope to refine the search direction and the size of the search step at each

iteration; it also allows us to extend line search methods to problems where the Hessian is not

always positive-definite. However, the Cauchy Point is an overly simplistic implementation of the

trust-region method: as we have set pk ∝ −g = −∇f(xk) at each iteration, the Cauchy-Point

Method is simply a steepest-descent method in disguise – albeit with a rather fancy method of

choosing the step length.

Thus, the Cauchy-Point Method inherits all of the drawbacks of SD – including the linear rate of

convergence, and the poor scaling. Therefore, in the next chapter we look at a more sophisticated

Trust-Region method that overcomes some of these drawbacks.

Chapter 8

Dog-Leg Method

Overview

In the last chapter we introduced the general idea of Trust-Region Methods and we formulated the

simplest possible such method – the so-called Cauchy-Point Method. The Cauchy-Point Method

suffers from a major drawback in that it is essentially a dressed-up version of the Steepest Descent

Method. It therefore possesses linear convergence and poor scaling. Therefore, in this chapter

we look at more complex Trust-Region Methods that overcome some of these shortcomings. We

look first at quadratic approximations to the cost function where the B-matrix is always positive

definite. This leads to the so-called Dogleg Method. Then, at the end of the chapter we look at an

implementation of the trust-region method where this assumption can be lifted.

8.1 The idea behind the Dogleg Method

Recall, in the Trust Region method, we are technically required to solve the quadratic approximation

at each iteration. This is a constrained optimization problem:

p∗ = argmin
p

[
f + ⟨g,p⟩+ 1

2
⟨p, Bp⟩

]
, subject to ∥p∥2 ≤ ∆. (8.1)

The solution can be found exactly, and it is parametric function of the trust-region size, hence the

solution is written as p∗(∆).

We specialize here to the case where B is positive definite. Imagine for a minute that there is no

constraint. Then, the optimization problem (9.2) has an obvious (unique) solution:

p∗ = −B−1g. (8.2)

65

66 Chapter 8. Dog-Leg Method

Thus, the idea of the Dog-Leg method is to use Equation (8.2) so long as ∥B−1g∥2 ≤ ∆. In this

case, Equation (8.2) is an exact solution of Equation (9.2).

Notation: We can use the notation pNewton = −B−1g in Equation (8.2) as this is just the

Newton step from our earlier study of line search methods.

On the other hand, when ∥B−1g∥2 > ∆, then Equation (8.2) is no longer a solution of Equa-

tion (9.2), and we instead introduce an approximate solution of the sub-problem, which is a linear

combination of the Cauchy point and the Newton step.

p∗ ≈ pCauchy + α (pNewton − pCauchy) , α ∈ (0, 1).

Here, we write the Cauchy step as usual as

pCauchy = −λg = −τ ∆

∥g∥
g,

where τ is chosen as before, hence

∥pCauchy∥2 ≤ ∆,

and the Cauchy step necessarily lies inside the trust region. We then fix α such that p∗ lies on the

trust-region boundary:

∥p∗∥22 = ∥pCauchy + α (pNewton − pCauchy) ∥22 = ∆2. (8.3)

8.2 Analysis of Dogleg Method

To analyse whether the Dogleg Method works, we need to establish that a scalar value of α can be

found such that Equation (8.3) can be solved. As such, we expand out the terms in Equation (8.3)

and check that the conditions are fulfilled for the equation to have a real positive solution in α.

We expand out Equation (8.3) to get:

α2∥pNewton − pCauchy∥22 + 2α⟨pCauchy,pNewton − pCauchy⟩+ ∥pCauchy∥22 −∆2 = 0. (8.4)

Notice that this is a quadratic equation in α:

aα2 + 2bα + c = 0.

8.3. Implementation of the Dogleg Method 67

The solution is:

α =
−b±

√
b2 − ac

a
.

Therefore, we need to determine first if real roots exist.

We look at b2 − ac. However, as c = ∥pCauchy∥22 − ∆2, and as the Cauchy step lies inside the

trust-region boundary, we have c < 0, hence b2 − ac = b2 + a|c| ≥ 0 and hence, real roots exist.

Trial-and-error then suggests to take the positive branch of the solution.

8.3 Implementation of the Dogleg Method

A sample .m code do this is shown in the listings.

1 f u n c t i o n p dog l e g=app rox so l v QP dog l e g (g ,B, De l ta)

2

3 p newton==B\g ;

4

5 i f (norm (p newton)<=De l ta)

6 p dog l e g=p newton ;

7 e l s e

8 p temp==De l ta*g/norm (g) ;

9

10 i f (dot (g ,B*g)<=0)

11 tau=1;

12 e l s e

13 num=norm (g) ˆ3 ;

14 den=De l ta*dot (g ,B*g) ;

15 tau=min (num/den , 1) ;

16 end

17

18 p cauchy=tau*p temp ;

19

20 aa=dot (p newton=p cauchy , p newton=p cauchy) ;

21 bb=dot (p cauchy , p newton=p cauchy) ;

22 cc= dot (p cauchy , p cauchy)=De l ta*De l ta ;

23

24 a lpha=(=bb+s q r t (bb*bb=aa*cc)) /aa

25

26 p dog l e g=p cauchy+a lpha *(p newton=p cauchy) ;

27 end

28

29 end

8.4 Discussion

8.4.1 The reason behind the funny name

The reason for the funny name for the Dogleg method is as follows. Consider the exact solution of

the quadratic approximation, which we label by p∗(∆), to indicate the parametric dependence on

∆. This solution can be regarded as a curve in parameter space. The Dogleg method really seeks

68 Chapter 8. Dog-Leg Method

Figure 8.1: Plot showing the justification of the name of the Dogleg method

to approximate this curve by two parts:

p∗ ≈

−B−1g, ∥B−1g∥2 ≤ ∆,

−τ ∆
∥g∥2g, otherwise.

By plotting even the length of this piecewise curve as a function of ∆ and by comparing it to the

length of the true curve ∥p∗(∆)∥2, a highly imaginative individual may think that the piecewise

approximation looks like the leg of a dog (Figure 8.1).

8.4.2 Convergence of Trust-Region Methods

We have already addressed the linear convergence of the Cauchy-Point method, as this is essentially

the SD method in disguise. We may expect that the Dogleg method is superior, as for sufficiently

large trust regions, it reverts to the Newton method. Furthermore, as we get closer and closer to

the solution ∇f(x∗) = 0, the quadratic approximation becomes closer and closer to the true cost

function, leading us to expect that the Dogleg method may become closer and closer to the Newton

method in fact as well as in spirit – and hence, to exhibit Newton-like superlinear convergence. This

indeed turns out to be the case, and the Dogleg method can be shown to possess such super-linear

convergence, once the cost function has ‘nice’ properties. This is discussed in detail in Nocedal and

Wright (Section 4.4). However, as we have already looked at convergence proofs in a lot of detail,

and are confident in the general techniques involved in such proofs, the reader is referred to Nocedal

and Wright for more details.

8.5. B-matrices that are not positive-definite 69

8.5 B-matrices that are not positive-definite

We look now at the case when the B-matrix in the quadratic approximation m(p) = f + ⟨g,p⟩ +
(1/2)⟨g, Bg⟩ is no longer positive definite. For instance, if B is the Hessian, then B is at least

positive-semi-definite at the optimal point where ∇f(x∗) = 0, however, the Hessian at other

points may be indefinite (e.g. ‘saddle points’). In this case, so-called two-dimensional subspace

minimization can be used to find a minimum (or at least, an approximation to the minimum) of

m(p) at each iteration. The different possibilities for the two-dimensional subspace minimization

are enumerated here.

8.5.1 When B is positive-definite

Then, instead of solving the full sub-problem where we minimize m(p) over all p subject to ∥p∥2 ≤
∆, we perform a two-dimensional subspace minimization:

p∗ = argminm(p), p ∈ Span(g, B−1g), ∥p∥2 ≤ ∆. (8.5)

This is a two-dimensional minimization problem where we minimize over all α and β:

min
α,β

m(αg + βB−1g), ∥αg + βB−1g∥2 ≤ ∆,

which is analytically tractable and has an exact solution for α and β.

8.5.2 When B has zero eigenvalues but no negative eigenvalues

When B has a zero eigenvalue we choose p = pCauchy.

8.5.3 When B has negative eigenvalues

Then, we replace the spanning space in Equation (8.5) with:

Span
[
g, (B + αI)−1 g

]
,

where α is a positive number in (−λ1,−2λ1], and where λ1 denotes the most negative eigenvalue

of B. Thus, B + αI is positive definite. Furthermore, we look at two sub-cases.

Case 1: If ∥(B + αI)−1g∥2 ≤ ∆, then we expect that α should behave as α ? ∥g∥2/∆, in which

case the corrected matrix is ‘too far away’ from the original matrix. We then discard the sub-space

70 Chapter 8. Dog-Leg Method

Figure 8.2: The idea behind Case 1 in the subspace minimization problem, in the case where B has
negative eigenvalues. Here, for illustration, the eigenvalues λ1 and λ2 are taken to be negative, with
λ1 being the most negative eigenvalue.

minimization and define the step to be:

p = −(B + αI)−1g + v, (8.6)

where v is a vector that satisfies ⟨v, (B + αI)−1g⟩ ≤ 0.

This case can be understood better by looking at a particular example where λ1 and λ2 are both

negative, and by considering the function

f(α) = ∥(B + αI)−1g∥2.

Then, the graph of f(α) is as shown in Figure 8.2. Thus, since α is restricted to positive values, if

f(α) ≤ ∆, then α is in the tail of the plot, where

f(α) ∼ ∥g∥2
α

In this case, α is large, and B + αI is not a small perturbation of B, which justifies the alternative

choice of search direction in Equation (8.6).

Case 2: If ∥(B + αI)−1g∥2 > ∆, then we expect that α should behave as α > ∥g∥2/∆
(see Figure 8.2 again), in which case the corrected matrix B + αI is ‘not too far away’ from

the original matrix B, and we proceed with the standard subspace minimization of m(p) over

p ∈ Span
[
g, (B + αI)−1 g

]
, subject to ∥p∥2 ≤ 1.

Chapter 9

Analysis of the Quadratic Approximation

Overview

In trust-region methods, we are required to solve a constrained minimization problem (‘the quadratic

approximation’) at each iteration, specifically,

p∗ = argmin
p

m(p), subject to ∥p∥2 ≤ ∆, (9.1)

where m(p) = ⟨g,p⟩+ 1
2
⟨p, Bp⟩ (we suppress the constant term in m(p) for simplicity). We have

previously stated necessary and sufficient conditions on the matrix B for a solution of Equation (9.1)

to exist (Theorem 7.1), which we recall here as follows:

Theorem: Suppose that B is a symmetric matrix. Then the vector p∗ is a global solution of

the trust-region problem

p∗ = argmin
p

[
⟨g,p⟩+ 1

2
⟨p, Bp⟩

]
subject to ∥p∥ ≤ ∆ (9.2)

if and only if p∗ is feasible and there is a scalar λ such that the following conditions hold:

λ ≥ 0, (9.3a)

(B + λI)p∗ = −g, (9.3b)

λ (∆− ∥p∗∥2) = 0, (9.3c)

(B + λI) is positive semi-definite. (9.3d)

The aim of this section is to prove this Theorem. Then, inspired by some of the techniques used

71

72 Chapter 9. Analysis of the Quadratic Approximation

to prove the Theorem, we will look at numerical methods to solve the constrained minimization

problem for mk(p) in Equation (9.1) numerically.

9.1 Proof of the Theorem

Step 1: We begin by assuming that the conditions (9.3) hold. We introduce the auxiliary quadratic

form m̂(p):

m̂(p) = ⟨g,p⟩+ 1
2
⟨p, (B + λI)p⟩ = m(p) + 1

2
λ⟨p,p⟩.

As (B+λI) is positive semi-definite and as −g can be written as (B+λI)p∗ = −g, by Theorem 2.10

m̂(p) has a global minimizer, which we call p∗:

p∗ = argmin m̂(p),

hence

m̂(p) ≥ m̂(p∗), for all p ∈ Rn.

In other words,

m(p) + 1
2
λ⟨p,p⟩ ≥ m(p∗) +

1
2
λ⟨p∗,p∗⟩, for all p ∈ Rn.

Hence,

m(p) ≥ m(p∗) +
1
2
λ
[
∥p∗∥22 − ∥p∥22

]
. (9.4)

By Equation (9.3)(c), we have λ(∆− ∥p∗∥2) = 0, hence

λ(∆− ∥p∗∥2)(∆ + ∥p∗∥2) = 0,

hence

λ(∆2 − ∥p∗∥22) = 0,

hence λ∆2 = λ∥p∗∥22, hence Equation (9.4) becomes

m(p) ≥ m(p∗) +
1
2
λ
[
∆2 − ∥p∥22

]
.

As we are constrained by ∥p∥2 ≤ ∆, we have ∆2 − ∥p∥22 ≥ 0, hence

m(p) ≥ m(p∗), for all p ∈ Rn,

hence p∗ is a minimizer for the constrained problem (9.2).

9.1. Proof of the Theorem 73

Step 2: We next assume that Equation (9.2) has a solution, and we seek to show that condi-

tions (9.3) hold. Denote the solution by p∗. If ∥p∗∥2 < ∆, then we can treat the optimization

problem (9.2) as effectively an unconstrained problem and hence, by Theorem (2.10), the condi-

tions (9.3) hold with λ = 0.

Otherwise, we take ∥p∗∥2 = ∆ (we can adjust the parameter λ so that this is the case). Then,

Equation (9.3) (Part (c)) is satisfied. To show that the other parts are true, we introduce the

constrained problem

L(p, λ) = m(p) + 1
2
λ
[
∥p∥22 −∆2

]
.

The minimum if this problem is p∗. But by the theory of Lagrange multipliers, the minimum must

satisfy ∇pL = 0, hence:

(B + λI)p∗ = −g,

hence (Part (b)) is satisfied.

Thus, for all vectors p such that ∥p∥2 = ∆, we have:

m(p) + 1
2
λ
[
∥p∥22 −∆2

]
≥ m(p∗) +

1
2
λ
[
∥p∗∥22 −∆2

]
.

or

m(p) ≥ m(p∗) +
1
2
λ
[
∥p∗∥22 − ∥p∥22

]
.

Via repeated algebraic manipulations, this can be reduced to:

⟨p− p∗, (B + λI)(p− p∗)⟩ ≥ 0, for all ∥p∥ = ∆. (9.5)

Consider now the set of vectors

X = {ξ|ξ =
p− p∗
∥p− p∗∥2

, ∥p∥2 = ∆}.

By Equation (9.5), we have:

⟨ξ, (B + λI)ξ⟩ ≥ 0, for all ξ ∈ X.

As the set X is dense in the unit sphere, we have

⟨ξ, (B + λI)ξ⟩ ≥ 0, for all ∥ξ∥2 = 1.

and hence,

⟨ξ, (B + λI)ξ⟩ ≥ 0, for all ξ ∈ Rn,

and thus, (B + λI) is positive semi-definite, which confirms Part (d).

74 Chapter 9. Analysis of the Quadratic Approximation

It remains to show that λ ≥ 0. We look at two sub-cases.

First Sub-Case: B is positive-semi-definite. As we have now established Parts (b)–(d), it (B+λI)
is positive semi-definite, hence λ ≥ 0.

First Sub-Case: B is not positive-semi-definite, so there is at least one non-zero vector ξ such

that ⟨ξ, Bξ⟩ < 0.

Assume for contradiction that λ < 0. As we have now established Parts (b)–(d), it follows that

(B + λI) is positive semi-definite, hence

⟨ξ, Bξ⟩ = −λ⟨ξ, ξ⟩,

= |λ|⟨ξ, ξ⟩,

< 0 , for all ξ ̸= 0.

But this is a contradiction, hence λ ≥ 0. Thus, Parts (a)–(d) are established.

9.2 Numerical Techniques

We now sketch out a numerical technique for the solution of the Equation (9.2), which makes use

of Theorem 7.1. If B−1 exists, and −B−1g is in the trust region, then obviously, the solution to

Equation (9.2) is just

p = −B−1g,

which is just the Newton step. Otherwise, we have to introduce a candididate solution

p(λ) = −(B + Iλ)−1g,

and we adjust λ so that this inverse matrix exists and also, such that

∥p(λ)∥2 = ∆

(this is very much in the spirit of the adjustable parameter α in the approximate Dogleg method, in

Chapter 8). We now outline how λ can be chosen.

At a minimum we assume that B is a symmetric matrix, meaning there is a complete set of mutually

orthogonal eigenvectors ui,

Bui = λiui, ⟨ui,uj⟩ = δij,

hence

p(λ) = −
n∑

i=1

⟨g,ui⟩
λi + λ

ui.

9.2. Numerical Techniques 75

Figure 9.1: Finding the positive root λ∗ of ∥p(λ)∥2 = ∆.

Figure 9.2: Finding the positive root λ∗ of ∥p(λ)∥2 = ∆ without having to evaluate a function with
singularities.

We assume an ordering λ1 ≤ λ2 · · · ≤ λn. Thus,

∥p(λ) =
n∑

i=1

|⟨g,ui⟩|2

(λi + λ)2
. (9.6)

This is a simple equation in λ, however, there are singularities when λ hits minus an eigenvalue, i.e.

whenever λ = −λi. If we let λ denote the most-negative eigenvalue, then by a graphical argument

(e.g. Figure 9.1), the root-finding condition ∥p(λ)∥2 = ∆ has a positive solution λ∗ > −λ1.

In practice, it is not nice to deal with a function with singularities, so when we are doing numerical

root-finding, we look at the roots of

ϕ(λ) =
1

∆
− 1

∥p(λ)∥2
(9.7)

e.g. Figure 9.2. Thus, to find λ∗ we use a Newton method, where the ℓth guess is updated to the

76 Chapter 9. Analysis of the Quadratic Approximation

(ℓ+ 1)th guess via:

λ(ℓ+1) = λ(ℓ) − ϕ(λ(ℓ)

ϕ′(λ(ℓ))
.

In fact, the derivative combination ϕ(λ)/ϕ′(λ) can be computed exactly by performing a Cholsesky

decomposition on the matrix B + λI, which we assume to be symmetric and positive-definite: if

B + λI = RTR, and (B + λI)p = −g, we introduceq = R−Tp, and then:

ϕ(λ

ϕ′(λ)
= −

(
∥p∥2

∥q∥2

)2(∥p∥ −∆

∆

)
.

We then obtain the following Newton–Raphson algorithm for the computation of λ∗:

Algorithm 6 Computing λ∗

Choose an initial guess λ(0) for λ∗ and a trust-region size ∆ > 0.

for ℓ = 0, 1, 2, · · · do

Factor B + λℓI = RTR;

Solve RTRpℓ = −g and RTqℓ = pℓ.

Set

λ(ℓ+1) = λ(ℓ) +

(
∥pℓ∥2

∥qℓ∥2

)2(∥pℓ∥ −∆

∆

)
.

end for

Once a few more details are added to the algorithm to make sure that λ(ℓ) goes not go below

−λ1, the algorithm does converge to a solution of Equation (9.7) (Nocedal and Wright say ‘in most

cases’).

9.2.1 The Hard Case

There is an exceptional ‘hard case’ where the analysis breaks down. By inspection of Equation (9.6),

this occurs when

⟨u1, g⟩ = 0,

furthermore, this ‘hard case’ requires λ1 < 0. Then, there is no λ∗ ∈ (−λ1,∞) such that ∥p(λ∗)∥2 =
∆. But can choose λ = −λ1 and get a solution. The idea here is that

p(λ) = −
n∑

i=2

⟨g,ui⟩
λi + λ

ui.

9.2. Numerical Techniques 77

Figure 9.3: Plot of ∥p(λ)∥2 versus λ showing the extraction of the root λ∗ when ∥p(λ∗)∥2 = ∆.
The hard case is shown in blue in Panel (b).

however, (B − λ1I)u1 = 0, hence

(B − λ1I)

[
τu1 −

n∑
i=2

⟨g,ui⟩
λi − λ1

ui

]
= −

n∑
i=2

⟨g,ui⟩ui = −g,

hence

p(λ) = τu1 −
n∑

i=2

⟨g,ui⟩
λi − λ1

ui,

where τ is an adjustable free parameter. We then choose τ such that ∥p(λ)∥2 = ∆.

The hard case specifically involves λ1 < 0 as then we are concerned with the numerical problem of

telling a numerical algorithm where to search for λ∗, specifically in the range [−λ∗,∞). If, on the

other hand λ1 ≥ 0, then we can immediately apply Algorithm (9.2) to the search region λ∗ ∈ [0,∞)

and search for a solution that way. Figure 9.3 illustrates this idea.

78 Chapter 9. Analysis of the Quadratic Approximation

9.3 Scaling again

Recall, we encountered badly-scaled problems in the context of the convergence analysis of the SD

method. There, we identifyed poorly-scaled problems where the Hessian had eigenvalues such that

λmin ≪ λmax. (9.8)

In that case, we saw that the (linear) convergence of the SD method was severely degraded. There

was no such problem with the Newton method. As it turns out, the trust-region methods exhibit

poor scaling again in cases where the Hessian has the property (9.8). The solution here is to define

a scaled descent direction,

p̃ = Dp,

where D is a diagonal scaling matrix. Thus, p = D−1p̃, which we substitute into the quadratic

approximation: (e.g. Equation (7.5)). We recast this as a problem in terms of the scaled vector p̃:

p̃∗ = arg min
p̃∈Rn

m̃k(p̃),

= arg min
p̃∈Rn

[
fk + ⟨gk, D

−1p̃⟩+ 1
2
p̃, D−1BkD

−1p̃⟩
]
,

which we solve subject to a scaled constraint

∥p̃∥2 ≤ ∆.

Then, when this equation is solved for the scaled descent direction, the unscaled descent direction

can be recovered via p = D−1p̃.

Chapter 10

Least-Squares Problems

Overview

In this section we look at Least-Squares Problems (which arise in Data Science) as a type of

optimization. The numerical solution of such problems can be tackled with variations of the methods

we have discussed previously, such as Line Search and Trust Region methods. In the case of so-called

Linear Least Squares problems, the solution requires a matrix inversion; we show how to do this

using Sinvular Value Decomposition.

10.1 Motivation

Suppose we make observations on a system where a measured quantity y depends on some input

quantity t, through some unknown functional relationship. Suppose we make a large number of

measurements m to yield measured values {y1, · · · , ym} at values {t1, · · · , tn} respectively. We

then try to estimate the functional relationship between the yi’s and the ti’s. Suppose furthermore

that we have some candidate for the relationship,

y(t) = ϕ(t,x),

where ϕ(t;x) is a function that depends on the input variable t but also, on parameters x =

(x1, · · · , xn), where n < m is a relatively small number of parameters.

We would then have a statistical model for the relationship between the yi’s and the ti’s:

yi(ti) = ϕ(ti,x) + ϵi, i = 1, 2, · · · ,m,

where ϵi is some error, usually assumed to be drawn from m independent identical distributions. We

79

80 Chapter 10. Least-Squares Problems

then introduce the cost function which is the deviation of the observations from the model:

f(x) = 1
2

m∑
i=1

[ϕ(ti;x)− yi]
2 . (10.1)

We know that if the error terms ϵi are drawn from a Guassian distribution with mean zero and

variance σ, and distribution

gσ(ϵ) =
1√
2πσ2

e−ϵ
2/2σ2

,

then minimizing the cost function f(x) maximizes the likelihood function

p(y1, · · · , ym;x, σ) =
m∏
j=1

gσ(ϵj) =
m∏
j=1

gσ(ϕ(x; tj) = yj),

and the corresponding minimum x∗ is the maximum likelihood estimate for the parameters x.

10.1.1 How this differs from previous chapters

The point of departure of this chapter is that the cost function in Equation (10.1) has a special

structure, this enables us to apply special cases of the previously-studied optimization techniques

and hence to develop robust and efficient methods to compute the minimum of the cost function.

Specifically, we identify the residual

rj(x) = ϕ(ti;x)− yi, i = 1, 2, · · · ,m

hence, the cost function (10.1) has the structure

f(x) = 1
2

m∑
i=1

[ri(x)]
2. (10.2)

10.2 Linear Least-Squares Problems

In the case where ϕ is a linear function of the parameters x, then

ϕ(ti;x) =
n∑

j=1

Jijxj, i = 1, 2, · · · ,m,

hence J is an m× n matrix (not square!). Thus, the cost function (10.1) becomes:

f(x) = 1
2
∥Jx− y∥22, (10.3)

10.3. Solution of the Normal Equation 81

where y ∈ Rm is an m-dimensional column vector. Thus,

f(x) = 1
2
⟨Jx− y, Jx− y⟩,

= 1
2
⟨Jx, Jx⟩ − ⟨Jx,y⟩+ 1

2
⟨y,y⟩,

= 1
2
⟨x, JTJx⟩ − ⟨JTy,x⟩+ 1

2
⟨y,y⟩.

The first-order optimality condition ∇f = 0 at x = x∗ then gives:

JTJx∗ = JTy (10.4)

Equation (10.4) is called the normal equation.

10.3 Solution of the Normal Equation

If J has full column rank, then Equation (10.4) can be solved numerically via matrix inversion.

However, even the choice of matrix inversion here is not clear, there at least three numerical methods

which can be considered for the purpose of inverting the normal equation:

� Cholesky factorization of JTJ .

� QR factorization JTJ .

� Singular Value Decomposition (SVD).

We look at the third method here briefly, it has an advantage in that it can be used even in the case

where J does not have full column rank.

10.3.1 SVD

We apply the SVD to the matrix J :

J = U︸︷︷︸
m×m



σ1 0 · · · 0,

0 σ2 · · · 0
...

...

0 · · · · · · σn

0 0 ↑
...

... m− n

↓


︸ ︷︷ ︸

=Σ

T

V︸︷︷︸
n×n

.

82 Chapter 10. Least-Squares Problems

where σ1, · · · are the singular values of the matrix J , and U and V are orthogonal matrices such

that UTU = Im×m and V TV = In×n. Furthermore,

JTJ = V ΣTUTUΣV T ,

= V (ΣTΣ)V T .

We call the matrix diag(σ1, · · · , σn) = S, hence

Σ =

[
S

0

]

where the zeros take up m− n rows. Hence, ΣTΣ = S2 and

JTJ = V S2V T . (10.5)

However, JTJ is a symmetric matrix in Rn×n, as such, it can also be written as:

JTJ = V


λ1 0 · · · 0

0 λ2 · · · 0
...

...

0 · · · · · · λn

V T , (10.6)

where we identify:

JTJui = λiui, i = 1, 2, · · · , n, λi ∈ R,

and hence,

V =


↑ · · · ↑
u1 · · · un

↓ ↓


Furthermore, the λi’s are non-negative in view of the structure of the matrix JTJ . Comparing

Equations (10.5) and (10.6), we have

σi =
√

λi.

10.3. Solution of the Normal Equation 83

We now look at the cost function (10.3) in more detail. We have:

2f(x) = ∥Jx− y∥22,

= ∥U

[
S

0

]
V Tx− UUT︸ ︷︷ ︸

=In×n

y∥22,

= ∥U
{[

S

0

]
V Tx− UTy

}
∥22,

Orthogonal
= ∥

[
S

0

]
V Tx− UTy∥22.

Let

Rm×m ∋ U =

[
U1︸︷︷︸

n cols

U2︸︷︷︸
(m−n) cols

]
↕ m rows

Hence,

UT =

[
UT
1

UT
2

]
.

Thus, the cost function becomes:

2f(x) = ∥

[
S

0

]
V Tx−

[
UT
1

UT
2

]
y∥22,

= ∥

[
SV Tx− UT

1 y

−UT
2 y

]
∥22

Just as ⟨(x1, x2), (x1, x2)⟩ = x2
1 + x2

2 for a two-dimensional vector, the same principle applies

in higher-dimensional space where the vector can be partitioned into two blocks. Hence, 2f(x)

becomes:

2f(vecx) = ∥SV Tx− UT
1 y∥22 + ∥UT

2 y∥22. (10.7)

Clearly, to minimize 2f(x) and hence, to solve the normal equation (10.4), we require:

SV Tx∗ = UT
1 y.

We look at two cases.

10.3.2 S has no zero entries on the diagonal

In this case,

x∗ = V S−1UT
1 y,

84 Chapter 10. Least-Squares Problems

hence:

x∗ =

n×n︷ ︸︸ ︷
| · · · |
v1 vn

| |


n×n︷ ︸︸ ︷

1/σ1 · · · 0
...

...

0 · · · 1/σn


n×m︷ ︸︸ ︷

−− u1 −−

−− ... −−
−− un −−


m×1︷ ︸︸ ︷
y1
...

ym


Hence,

x∗ =


| · · · |
v1 vn

| |




1/σ1 · · · 0
...

...

0 · · · 1/σn



⟨u1,y⟩

...

⟨un,y⟩

 ,

=


| · · · |
v1 vn

| |



⟨u1,y⟩/σ1

...

⟨un,y⟩/σn


We perform the remaining matrix multiplication index-wise, and we use v

(j)
i to denote the ith entry

in the jth eigenvector vj:

(x∗)i =
n∑

j=1

v
(j)
i

⟨uj,y⟩
σj

,

hence

x∗ =
n∑

j=1

vj
⟨uj,y⟩
σj

,

which is the required solution of the normal equation (10.4).

10.3.3 S has zero entries on the diagonal

In this case, J is rank-deficient, and a (non-unique) solution of the minimization problem is given

by:

x∗ =
∑
σj ̸=0

vj
⟨uj,y⟩
σj

+
∑
σj=0

τjvj.

� Experience (Nocdeal and Wright, Section 10.2) suggests that the non-unique solution with

the smallest norm is best, hence τj = 0.

� In cases where the σj’s are all nonzero, but one or two of the σj’s are close to zero (hence, a

badly-scaled problem), then the solution x∗ is very sensitive to slight changes in ⟨uj,y⟩.
� In such cases, an approximate solution of the normal equation can be better, in which case

these components are set to zero.

Chapter 11

Nonlinear Least Squares

Overview

We look at Nonlinear Least Squares problems, where the numerical solution requires the use of

trust-region methods. As the cost function is bespoke to nonlienar least-squares problems, the

tailor-made implementation of the trust-region methods is also bespoke, this goes by the name of

the Levenberg–Marquart method.

11.1 The Algebra

We start with the least-squares cost function

2f(x) =
m∑

α=1

[rα(x)]
2, x ∈ Rn.

Hence,

∇xf =
m∑

α=1

rα(x)∇xrα(x),

or
∂f

∂xi

=
m∑

α=1

rα(x)
∂rα
∂xi

.

Consider


↑
∇f
↓

 =

←m→︷ ︸︸ ︷
∂r1
∂x1

∂r2
∂x1

· · · ∂rm
∂x1

∂r1
∂x2

∂r2
∂x2

· · · ∂rm
∂x2

...
...

∂r1
∂xn

∂r2
∂xn

· · · ∂rm
∂xn




r1

· · ·
rm


↑
n

↓

85

86 Chapter 11. Nonlinear Least Squares

We identify J ∈ Rm×n. Hence,

Rn×m = JT =


∂r1
∂x1

∂r2
∂x1

· · · ∂rm
∂x1

∂r1
∂x2

∂r2
∂x2

· · · ∂rm
∂x2

...
...

∂r1
∂xn

∂r2
∂xn

· · · ∂rm
∂xn

 ,

and

J =


∂r1
∂x1

∂r1
∂x2

· · · ∂r1
∂xn

∂r2
∂x1

∂r2
∂x2

· · · ∂r2
∂xn

...
...

∂rm
∂x1

∂rm
∂x2

· · · ∂rm
∂xn


and finally,

Jij =
∂ri
∂xj

, i ∈ {1, 2, · · · ,m}, j ∈ {1, 2, · · · , n}.

Hence,

(∇f)i =
m∑

α=1

rα
∂rα
∂xi

,

=
m∑

α=1

Jαirα,

=
m∑

α=1

(JT)iαrα,

= (JTr),

where r = (r1, · · · , rm)T . Hence,
∇f = JTr.

11.2 The Hesisan Matrix

We have:

∂2f

∂xi∂xj

=
∂

∂xi

m∑
α=1

rα(x)
∂rα
∂xj

,

=
m∑

α=1

rα(x)
∂2rα
∂xi∂xj

+
m∑

α=1

∂rα
∂xi

∂rα
∂xj

.

11.3. Gauss–Newton Method 87

Consider

(JTJ)ij =
m∑

α=1

(JT)iαJαj,

=
m∑

α=1

JαiJαj,

=
m∑

α=1

∂rα
∂xi

∂rα
∂xj

.

Hence,
∂2f

∂xi∂xj

= (JTJ)ij +
m∑

α=1

rα(x)
∂2rα
∂xi∂xj

.

Thus, if the residuals are small, then JTJ is a godo approximation to the Hessian. The approximation

is exact in the case of a linear model.

11.3 Gauss–Newton Method

The Gauss–Newton is a line-search method where the descent direction where the update step is

given by:

xk+1 = xk + αkpGN. (11.1)

The search direction pGN is computed in a way that is inspired by the Newton method, but instead

of Bp = −g, where B is the Hessian matrix, we use the approximate Hessian JTJ to compute:

JT
k JkpGN = −g, gk = Jkrk. (11.2)

Hence,

JT
k JkpGN = −∇fk. (11.3)

We now check that pGN is indeed a descent direction. We suppress the iteration index and we

compute:

⟨∇f,pGN⟩ = ⟨−JTJpGN,pGN⟩,

= −⟨JpGN, JpGN⟩,

= −∥JpGN∥22.

If J has full rank, and if ∇f ̸= 0, then

⟨∇f,pGN⟩ < 0. (11.4)

88 Chapter 11. Nonlinear Least Squares

11.3.1 Convergence Analysis

To make progress here, we introduce some notation. We let x0 be the starting-point of the interative

method (11.1). We define the set

L = {x|f(x) ≤ f(x0)},

and we let N denote an open neighbourhood in L. We say that the matrix J is bounded away from

zero in N if there exists a γ > 0 such that, for all x ∈ N , the following relation holds:

∥J(x)z∥2 ≥ γ∥z∥2, for all z ̸= 0 in Rn. (11.5)

As Equation (11.5) is true for all z ∈ Rn, it follows that

λmin ≥ γ,

hence where λmin is the minimum eigenvalue of JTJ . Thus, JTJ is positive definite and it follows

that J itself has full rank. Thus, Equation (11.5) is also called the full-rank condition.

We now prove the following theorem.

Theorem 11.1 Suppose that each residual function rα(x) in the cost function

f(x) = 1
2

m∑
α=1

[rα(x)]
2

is Lipschitz continuously differentiable in a neighbourhood N of the bounded set L. Suppose also

that the Jacobians J(x) satisfy the uniform full-rank condition (11.5) on N . Then, if the iterative

method is given by

xk+1 = xk + αkpGN,

where each stepsize αk satisfies the SWCS, we have:

lim
k→∞

JT
k rk = 0.

Proof: By construction of the set L, f(x) is bounded for all x ∈ L. Thus, for the subset N ⊂ L,
there exists a constant B1 such that

|rα(x)| ≤ B1 for all x ∈ L.

By the Lipschitz property on rα, it is easy to show that ∥∇xrα(x)∥2 ≤ B2 for all x ∈ N . Hence,

11.3. Gauss–Newton Method 89

by taking β = max(B1, B2), we have:

|rα(x)| ≤ β, ∥∇xrα∥2 ≤ β, for all x ∈ N .

Furthermore, by the Lipschitz property on rα and its derivatives, there exists a constant L > 0 such

that:

|rα(x)−rα(x̃)| ≤ L∥x−x̃∥2, ∥∇xrα(x)−∇xrα(x̃)∥2 ≤ L∥x−x̃∥2, for all x and x̃ ∈ N .

As Jij = ∂ri/∂xj, it follows that Jij(x) is bounded on N and hence, ∥J(x)∥2 is bounded as well.

Thus, there exists a constant β̃ such that:

∥J(x)∥2 ≤ β̃ for all x ∈ N .

Furthermore, as

(∇f)i =
m∑

α=1

rα(x)
∂rα
∂xi

(11.6)

is the product of Lipschitz functions, ∇f itself is Lipschitz (on L). We review:

� f is bounded below... by zero;

� f is continously differentiable on N ... because its derivatives are Lipschitz.

� ∇f is Lipschitz on N ... by Equation (11.6).

Thus, Theorem 6.1 applies: we have

cos θk =
−⟨∇fk,pGN⟩
∥∇fk∥2∥pGN∥2

,

and ∑
k≥0

cos2 θk∥∇fk∥22 <∞. (11.7)

Furthermore,

cos θk =
∥JpGN∥22

∥pGN∥2∥JTJpGN∥2
,

Eq. (11.5)

≥ γ2∥pGN∥22
β̃∥pGN∥22

,

=
γ2

β̃2
,

> 0.

Hence, referring back to Equation (11.7), ∥∇fk∥2 → 0 as k →∞.

90 Chapter 11. Nonlinear Least Squares

11.4 Levenberg–Marquardt Method

The Levenberg–Marquardt method is an iterative method to solve the nonlinear least squares problem

x∗ = argminf(x), f(x) = 1
2

m∑
α=1

[rα(x)]
2. (11.8)

At a typical iteration xk, the nonlinear problem (11.8) is approximated using the quadratic approx-

imation:

f(x) = f(xk + p),

≈ f(xk) + ⟨∇f,p⟩+ 1
2

∑
i,j

pipj
∂2f

∂xi∂xj

,

≈ f(xk) + ⟨∇f,p⟩+ 1
2

∑
i,j

pipj[J
TJ](xk),

= f(x) + ⟨JTr,p⟩+ 1
2
⟨p, JTJp⟩,

= 1
2
⟨rk, rk⟩+ ⟨JTr,p⟩+ 1

2
⟨p, JTJp⟩,

= 1
2
⟨Jkp+ rk, Jkp+ rk⟩,

= 1
2
∥Jkp+ rk∥22,

= mk(p).

The descent direction is then extracted via the trust-region method:

pk = arg min
∥p∥2≤∆

mk(p). (11.9)

As in Chapter 9, the solution of the constrained minimization problem 11.9 splits into two possi-

bilities. First of all, the Gauss–Newton descent direction is computed, as the solution of JTJpGN =

−JTr. Then,

1. If ∥pGN∥2 ≤ ∆, then pk = pGN.

2. Otherwise, if ∥pGN∥2 > ∆, we solve

(JTJ + λI)p = −JTr, (11.10)

and adjust the non-negative parameter λ such that ∥p∥2 = ∆.

In Case 2, there are a couple of comments:

� Solving Equation (11.10) is somewhat easier than the previous, analogous problem in Chap-

ter 9, as JTJ is already positive semi-definite.

11.4. Levenberg–Marquardt Method 91

� Equation (11.10) is solved numerically using Algorithm 9.2; now, however, ‘fast methods’ can

be used for the Cholesky factorization JTJ + λI = RTR, where R is an upper-triangular

matrix.

Chapter 12

Introduction to Constrained Optimization

Overview

We outline some of the basic ideas in constrained optimization.

12.1 Introduction

In this part of the course, we seek solutions of the constrained optimization problem: Using this

notation, the generic optimization problem to be studied in this module is:

min
x∈Rn

f(x) subject to

ci(x) = 0, i ∈ E ,

ci(x) ≥ 0, i ∈ I.
(12.1)

We recall the definition of the feasible set from Chapter 2:

Ω = {x ∈ Rn|ci(x) = 0, i ∈ E , ci(x) ≥ 0 i ∈ I}. (12.2)

The solution to the OP (12.1) is denoted by x∗.

Constrained optimization is a detailed, technical subject. As such, in this part of the course, we

only have time to derive a set of necessary conditions, such that x∗ is a solution to the OP; these

conditions will be called the Kurush–Kuhn–Tucker conditions.

We recall first of all the constrained case: if x∗ is a local minimizer of the unconstrained optimization

problem minx∈Rn f(x), then ∇f(x∗) = 0 and Bij = (∂2f/∂xi∂xj))x∗ is a positive semi-definite

matrix. Furthermore, if

∇f(x∗) = 0, B positive definite (12.3)

92

12.1. Introduction 93

then x∗ is a strong local minimizer of the unconstrained OP; the conditions (12.3) are then sufficient

conditions for the existence of the strong local minimizer. Summarizing, and for the present purposes,

the first-order necessary condition for x∗ to be a local minimizer is simply:

∇f = 0, at x = x∗. (12.4)

The aim of this part of the course is to obtain analogous conditions in the constrained case, for the

OP (12.1).

12.1.1 Review of the different types of minimum

We first of all review the different types of minimum for an optimization problem, starting with a

motivating example:

min f(x) =
(
y + 1

100

)2
+ 1

100
x2 (12.5a)

subject to

y − cos(x) ≥ 0. (12.5b)

The feasible set is shown in Figure 12.1. By inspection of f(x) in Equation (12.5), the global

minimum is at x = 0 and y = −100, but this is not in the feasible set. However, by ‘making y as

small as possible within a neighbourhood’, we can find local solutions of the constrained optimization

problem. Referring to the figure, we see that the local solutions occur at:

xk = (kπ,−1), k = ±1,±3, · · ·

This is for sure a pathological example where the addition of a constraint introduces a multiplicity

of local minimizers. A more ‘usual’ occurrence is for the constraints to ‘weed out’ certain local

minimizers of the unconstrained problem, this often makes the search for a global minimizer of the

constrained problem that bit easier.

Motivated by this example, we classify the possible feasible solutions of the constrained OP as

follows:

1. x∗ is a local solution of the OP if:

� x∗ ∈ Ω,

� There exists a neighbourhood x∗ ⊃ N such that:

f(x∗) ≤ f(x) for all x ∈ N ∩ Ω.

2. x∗ is a strict local solution of the OP if:

94 Chapter 12. Introduction to Constrained Optimization

Figure 12.1: The feasible set for the OP (12.5)

� x∗ ∈ Ω,

� There exists a neighbourhood x∗ ⊃ N such that:

f(x∗) < f(x) for all x ∈ N ∩ Ω with x ̸= x∗.

3. x∗ is an isolated local solution of the OP if:

� x∗ ∈ Ω,

� There exists a neighbourhood x∗ ⊃ N such that x∗ is the only local solution in N ∩Ω.

12.1.2 Smoothness

The cost function f(x) should be a smooth function as otherwise we can’t compute∇f etc. But the

constraint function can have ‘kinks’, so long as the boundary of the feasible set can be described by

a surface that is continuous and also, made up of parts that are smooth (‘continuous and piecewise

smooth’).

Example: Consider an OP where the feasible set is:

Ω = {x ∈ R2|∥x∥1 ≤ 1}.

Hence,

|x|+ |y| ≤ 1.

The boundary of the region Ω is |x|+ |y| = 1, this can be broken up into four curves:

� First Quadrant: x and y both positive, hence x+ y = 1, hence y = 1− x.

� Second Quadrant: x < 0 and y > 0, hence −x+ y = 1, hence y = 1 + x.

12.1. Introduction 95

Figure 12.2: The feasible region |x|+ |y| ≤ 1

� Third Quadrant: y = −1− x.

� Fourth Quadrant: y = −1 + x.

The feasible region is shown in Figure 12.2.

Non-smooth unconstrained optimization problems can often be recast as a smooth constrained

OP, e.g. Figure 12.3.

Figure 12.3: Example of an OP with a non-smooth cost function

96 Chapter 12. Introduction to Constrained Optimization

From the figure, it is clear that there is a minimum at x∗ = 0. However, for |x| < 1, we have:

f ′(x) =

2x, x < 0,

1, x > 0.

Thus, f ′(x) has a jump discontinuity at x∗ = 0. But consider instead the region

Ω = {(x, y)|y ≥ x, y ≥ x2},

shown in Figure 12.4. By inspection of the figure,

0 = x∗ = min
x∈R2

y, subject to x ∈ Ω.

The cost function is now f(x) = y, which is smooth, and the boundary of Ω is a continuous,

piecewise differentiable curve.

Figure 12.4: Converting the unconstrained OP with a non-smooth cost function to a constrained
OP with a smooth cost function

This trick (replacing a non-smooth unconstrained OP with an equivalent smooth, constrained OP)

is often employed in more complicated unconstrained OPs where the cost function is non-smooth.

For instance, the trick (or a variation on the trick) can be used to reformulate

min
x∈Rn

∥x∥1, min
x∈Rn

∥x∥∞

as smooth, constrained OPs.

12.2. Worked Example – a single equality constraint 97

12.1.3 Key Definition – the Active Set

Definition 12.1 The active set A(x) at any feasible point x ∈ Ω consists of:

� The indices i of the equality constraints;

� The indices i of those inequality constraints satisfying ci(x) = 0.

In symbols,

A(x) = E ∪ {i ∈ I|ci(x) = 0}.

Furthermore, we say that at a feasible point x ∈ Ω, the inequality constraint ci(x) (with i ∈ I) is
active if ci(x) = 0; the constraint is inactive if ci(x) > 0.

12.2 Worked Example – a single equality constraint

Consider the OP

min f(x) = x+ y, (12.6a)

subject to

c1(x) = 0, c1(x) = 2− x2 − y2. (12.6b)

Hence, I = ∅ and E = {1}.

We first of all compute a solution by direction computation as this will be a reference point. The

solution can be found by going over to polar coordinates, noting that x2 + y2 = 1, hence

x =
√
2 cos θ, y =

√
2 sin θ, 0 ≤ θ < 2π.

Thus, f(x) = f̃(θ) =
√
2(cos θ + sin θ). To compute the minimum, we solve for θ in

df̃

dθ
= 0,

hence − sin θ + cos θ = 0, hence tan θ = 1, hence θ = π/4 (Q1) or θ = 5π/4 (Q3). We check:

� f̃(θ = π/4) =
√
2
(

1√
2
+ 1√

2

)
= 2... MAX

� f̃(θ = 5π/4) = −2... MIN

Hence,

x∗ = (−1,−1).

98 Chapter 12. Introduction to Constrained Optimization

Consider also,

∇f(x) = (1, 1),

∇c1(x) = (2x, 2x)

(we momentarily go over to the row-vector representation of vectors). Hence,

∇f(x∗) = (1, 1),

∇c1(x∗) = (−2,−2)

So ∇f ∥ ∇c1 at x = x∗. Hence, at x = x∗, there exists a constant λ∗1 such that:

∇f(x∗) = λ∗1∇c1(x∗), (12.7)

and in this specific example, λ∗1 = −1/2. We now present a general derivation of Equation (12.7).

12.3 A General Derivation

We present a general derivation of the result (12.7), valid for any smooth cost function f(x) and

also for a single smooth equality constraint c1(x).

The idea is to take any feasible point x ∈ Ω such that c1(x) = 0. We then move to a neighbouring

feasible point x+ δ, where δ is small:

���c1(x) + ⟨δ,∇c1(x)⟩ = 0 (Taylor Expansion).

Thus,

⟨δ,∇c1(x)⟩ = 0 (12.8)

If x = x∗ (the local minimum), then:

⟨n̂,∇c1(x)⟩ = ⟨n̂,∇f(x)⟩ = 0.

Note that this is different from unconstrained optimization, where we have ∇f(x) = 0 at x∗; here

we can only approach the minimum – and hence compute gradients of f – in feasible directions.

Refer now to Figure 12.5.

The vector δ must be in a hyperplane orthogonal to ∇c(x∗). The hyperplane is m = n − 1-

dimensional, and hence, spanned by m linearly independent vectors δ(1), · · · , δ(m). For each of

these basis vectors we have δ(j) ·∇f(x∗) = 0. Hence, the only direction in which ∇f(x∗) can point

12.4. The projection operator 99

Figure 12.5:

is back in the direction of ∇c(x∗). Hence, there exists a scalar λ∗1 ∈ R such that:

∇f(x∗) = λ∗1∇c1(x∗), (12.9)

Notice however that Equation (12.9) holds not only at a local minimum (as desired) but also, at a

local maximum.

12.4 The projection operator

Note that δ is like a ‘search direction’ in an SD algorithm – albeit now that there are constraints

on which direction we can search in. Here, we introduce a theoretical method for working out

allowed search directions n̂ = δ/∥δ∥2. For this purpose, we introduce a projection operator. This

description is valid only when the point of interest x is not a local minimizer or maximizer, since

otherwise there is no direction in which further decrease of the cost function is possible.

As such, we introduce the operator

P = I− ∇c1 ⊗∇c1
∥∇c1∥22

100 Chapter 12. Introduction to Constrained Optimization

It can be verified that P projects a vector v ∈ R2 on to a direction perpendicular to ∇c1:

⟨Pv,∇c1⟩ =
∑
i,j

Pijvj
∂c1
∂xi

,

=
∑
ij

(δij − m̂im̂j) vjm̂i∥∇c1∥2,

= [v · m̂− v · m̂ (m̂ · m̂)] |∇c1∥2,

= 0.

Here, we have used the unit vector

m̂ =
∇c1
∥∇c1∥2

,

and have used the old-fashioned dot-product notation:

⟨v, m̂⟩ ≡ v ·m =
∑
i

vim̂i.

This calculation therefore shows that Pv ⊥ ∇c1.

As such, we further investigate the search direction n̂, given by:

n̂ =
s

∥s∥2
, s = −P∇f(x).

We have:

� n̂ · ∇c1 = 0, by construction.

� Furthermore,

n̂ · ∇f ∝ −⟨P∇f,∇f⟩,

= −
∑
ij

Pijgigj,

= −
∑
ij

(δij − m̂im̂j) gigj,

= −
[
∥g∥22 − (g · n̂)2

]
,

= −∥g∥22
(
1− cos2 θ

)
,

≤ 0.

We look at two cases here:

Strict inequality: We have: n̂ · ∇c1 = 0,

n̂ · ∇f < 0,

12.5. The Lagrangian 101

hence n̂ is a good search direction.

Strict equality: We have: n̂ · ∇c1 = 0,

n̂ · ∇f = 0,

in which case a candidate for the local minimum has been found.

12.5 The Lagrangian

We can make these calculations more precise by introducing the Lagrangian function,

L(x, λ) = f(x)− λ1c1(x).

We note that ∇xL = ∇f − λ1∇c1. A necessary condition for x∗ to be a local minimum of the

general equality constraint problem

min f(x), subject to c1(x) = 0

is thus that there exists a scalar λ∗1 such that:

∇xf(x∗) = λ∗1∇c1(x∗), (12.10a)

c1(x∗) = 0. (12.10b)

Remark: Equation (13.5) is necessary for a minimum (i.e. if x∗ is a minimum, then Equation (13.5)

holds). But it is not sufficient. For example, in the OP (12.6), Equation (13.5) is satisfied at the

minimum:

MIN: x∗ = (−1,−1)T , λ∗1 = −1/2,

but also at the maximum:

MAX: x∗ = (1, 1)T , λ∗1 = 1/2.

Obviously, we require necessary and sufficient conditions to nail down a minimum (like for uncon-

strained optimization).

Chapter 13

Constrained Optimization: Inequality

Constraints

Overview

In this Chapter we look at some examples involving inequality constraints, this will help us to ‘guess’

how to set up a general constrained optimization problem using Lagrange Multipliers, in the case of

inequality constraints.

13.1 A Single Inequality Constraint

We look at an example involving a single inequality constraint:

min f(x) = x+ y, (13.1a)

subject to

c1(x) ≥ 0, c1(x) = 2− x2 − y2. (13.1b)

The solution is still clearly x∗ = (−1,−1), which occurs on the constraint boundary c1(x) = 0.

Thus, the inequality constraint (13.1b) is active at the minimizer.

13.2 Feasible Descent Directions – General Description

We consider a feasible point

x ∈ Ω = {x ∈ R2|c1(x) ≥ 0}.

102

13.2. Feasible Descent Directions – General Description 103

We look at a neighbouring feasible point x→ x+ δ, we then derive the conditions on δ such that

x+ δ remains feasible. Clearly, we require:

c1(x+ δ) ≥ 0.

By Taylor expansion, we have, for δ ‘small’,

c1(x) + ⟨δ,∇c1(x)⟩ ≥ 0, ∥δ∥2 ’small’. (13.2)

Now, however, we can’t just set c1(x) = 0 and conclude that ⟨δ,∇c1(x)⟩ ≥ 0. Instead, we have to

look at two cases. When doing this, it will be helpful to switch to the familiar dot-product notation

for ⟨δ,∇c1(x)⟩ as this is based on geometric intuition rather than duality.

13.2.1 Case 1 – The minimizer is in the interior

In this case x∗ is in the interior of Ω, hence c1(x∗) > 0, and we require c1(x∗) + δ · ∇c1(x∗) ≥ 0.

This holds for any δ, provided ∥δ∥2 is made sufficiently small. Furthermore, at x = x∗, by first-order

optimality, we require:

δ · ∇f(x∗) ≤ 0.

However, since δ is now arbitrary, we can take δ ∝ ∇f(x∗), which gives ∥∇f(x∗)∥2 ≤ 0, hence:

∇f(x∗) = 0, Case 1.

This case is virtually the same as unconstrained optimization.

13.2.2 Case 2 – The minimizer is on the boundary

In this case, x∗ is on the constraint boundary, x∗ ∈ ∂Ω, such that c1(x∗) = 0. Referring back to

Equation (13.2), we require:

δ · ∇c1(x∗) ≥ 0.

Thus, the set of all allowed vectors δ is a half-space:

H = {δ ∈ Rn|δ · ∇c1(x∗) ≥ 0}

104 Chapter 13. Constrained Optimization: Inequality Constraints

(the angle between fixed ∇c1(x) and δ needs to be less than or equal to 90◦). Vectors in the space

can be decomposed as:

δ =
n−1∑
i=1

αiδ
(i) + β∇c(x∗), αi ∈ R, β ∈ R+.

Here, the δ(i)’s span the hyperplane δ · ∇c1(x∗) = 0 – the notation is the same as Chapter 12. At

the local minimum, we have:

f(x∗ + δ) ≥ f(x∗),

for all feasible directions δ ∈ H. Thus:

δ · ∇f(x∗) ≥ 0, δ ∈ H.

In particular:

αiδ
(i) · ∇f(x∗) ≥ 0 , for all αi ∈ R,

β∇c(x∗) · ∇f(x∗) ≥ 0 , for all β ∈ R+.

The first set of conditions forces ∇f(x∗) ∝ ∇c1(x∗). The second condition further requires the

existence of a non-negative scalar λ∗1 such that:

∇f(x∗) = λ∗1∇c1(x∗). (13.3)

Caution: Unlike in equality-constrained problems, the solution of the constrained problem requires

a particular sign on λ∗1, λ
∗
1 ≥ 0.

13.2.3 Cases 1 and 2 combined

Cases 1 and 2 can be combined together to give:

Case 1:

∇f(x∗) = 0,

c1(x∗) > 0.

Case 2:

∇f(x∗) = λ∗1∇c1, λ∗1 ≥ 0

c1(x∗) = 0.

Indeed, we can introduce the Lagrangian

L(x, λ1) = f(x)− λ1c1(x).

13.3. Two Inequality Constraints 105

Hence, at the local minimum x = x∗, there exists a constant λ∗1 ≥ 0 such that:

∇xL(x∗, λ∗1) = 0, (13.4)

λ∗1c1(x∗) = 0. (13.5)

The condition λ∗1c1(x∗) = 0 is called the complementarity condition. It is a way of merging

Cases 1 and 2.

Remark: The constraint c1(x) is active when λ∗1 > 0, then we require c1(x∗) = 0 to satisfy the

complementarity condition.

13.3 Two Inequality Constraints

We look at the following OP:

min f(x) = x+ y, (13.6a)

subject to

c1(x) ≥ 0, c1(x) = 2− x2 − y2. (13.6b)

and

c2(x) ≥ 0, c2(x) = y. (13.6c)

The feasible set here is a half-disc, and the minimum can be worked out by direct computation: the

minimum is on the boundary of the feasible set:

x∗ = (−
√
2, 0)T .

We now show theoretically why x∗ is a local critical point (max or min).

At this point, both constraints are active, this would be ‘Case 2’ as considered in Section 13.2. We

have:

∇c1 = (−2x,−2y)T =
Notation
= −2xi− 2yj.

We look for feasible search directions d = d1i+ d2j, hence

d · ∇c1 = −2xd1 − 2yd2.

At x∗ = (−
√
2, 0), we have:

d · ∇c1(x∗)︸ ︷︷ ︸
≥0

= 2
√
2d1.

Hence, feasible search directions satisfy d1 ≥ 0.

106 Chapter 13. Constrained Optimization: Inequality Constraints

We also have:

∇c2 = j.

For feasible search directions, we require d · ∇c2 ≥ 0, hence d2 ≥ 0. Thus, we require:

d1 ≥ 0, d2 ≥ 0.

However, we also require that d · ∇f(x∗) ≤ 0. At x∗, we have:

d · ∇f(x∗) = (d1i+ d2j) · (i+ j) ,

= d1 + d2

Summarizing, we require:

d1 ≥ 0, d2 ≥ 0, d1 + d2 < 0,

but these conditions are inconsistent. Thus, no feasible search direction exists at x∗, which suggests

that we are already at an extreme point.

We verify that this is indeed a critical point by finding scalars λ∗1 ≥ 0 and λ∗2 ≥ 0, such that:

∇xL(x∗, λ∗1, λ∗2) = 0, (13.7)

λ∗1c1(x∗) = 0, (13.8)

λ∗2c2(x) = 0, (13.9)

(13.10)

and we further show the reasoning behind why these equations are satisfied at the critical point

(actually, the minimum).

13.3.1 Lagrange Multipliers

We now reformulate this problem in terms of Lagrange multipliers. We introduce:

L = f(x)− λ1c1(x)− λ2c2(x).

We seek solutions to

∇L(x,λ) = 0,

where λ is a two-dimensional vector with components λ1 and λ2. We denote the solution by x∗

and λ∗, and we further insist:

λ∗i ≥ 0, i = 1, 2,

13.3. Two Inequality Constraints 107

as well as specifying the complementarity conditions:

λ∗1c1(x∗) = 0, λ∗2c2(x∗) = 0.

We compute:

∇xL = (i+ j)− λ1(−2xi− 2yj)− λ2(0i+ j).

At ∇xL = 0, we have:

1 + 2λ1x = 0, (13.11a)

1 + 2λ1y = λ2. (13.11b)

Furthermore, the complementarity conditions read:

λ1(2− x2 − y2) = 0, (13.12a)

λ2y = 0. (13.12b)

Take (λ2)× (Eq. (13.11)(b)):

λ2 + 2λ1 (λ2y)︸ ︷︷ ︸
=0

= λ2
2,

hence

λ2 = 0 or λ2 = 1.

There are therefore two possibilities to consider.

� Case 1. Take λ2 = 0. Then, by Equation (13.11)(b), we have λ1y = −1. But y ≥ 0 in the

feasible set, hence λ1 ≤ 0. This possibility is rejected.

� Case 2. Take λ1 = 1. Thus, by Equation (13.11)(b), we have λ1y = 0. We require that

λ1 ̸= 0, otherwise Equation (13.11)(a) is inconsistent. Hence, y = 0.

So we continue with Case 2. From the active constraint c1(x) = 0, we have x = ±
√
2. By

inspection, we see that x = (−
√
2, 0) is the minimum, hence:

x∗ = (−
√
2, 0),

as suspected.

108 Chapter 13. Constrained Optimization: Inequality Constraints

13.4 Summary

The overall point of these exercises is to ‘hint’ at a kind of first-order optimality condition for

inequality constraints:

L = f(x)−
∑
i∈I

λici(x),

∇xL(x∗,λ∗) = 0,

ci(x∗) ≥ 0,

λ∗i ≥ 0, i ∈ I,

λ∗i ci(x∗) = 0, i ∈ I.

But we don’t know this yet! The examples only show that these conditions are ‘plausible’. It will take

another few lectures before we can actually prove that these are the first-order necessary conditions

for optimality.

Chapter 14

The Tangent Cone and the Set of

Linearized Feasible Descent Directions

Overview

In order to derive first-order necessary conditions for optimality in an OP with a mixture of equality

and inequality constraints, we need to know about two key concepts called the Tangent Cone and

the set of Linearized Feasible Descent Directions (LFDDs). It will make our life easier if these are

always one and the same, they often are but that is not guaranteed. We therefore derive a condition

on the constraints which outlines when these two sets coincide.

14.1 Definition of a Cone in Rn

Definition 14.1 A set C is a cone, if for each x ∈ C, the vector ax is also in C, where a is any

positive constant.

Example: Let a1, · · · ,am be vectors in Rn. Then the set:

C = {a1x1 + a2x2 + · · ·+ amxm|xi ≥ 0, i = 1, 2, · · · ,m}

is a cone (See Figure 14.1).

Introduce the matrix

A =

↑
n

↓


| | |
a1 a2 · · · am

| | |


︸ ︷︷ ︸

←m→

∈ Rn×m

109

110 Chapter 14. The Tangent Cone and the Set of Linearized Feasible Descent Directions

Figure 14.1: A cone in Rn

Thus,

C = {a1x1 + a2x2 + · · ·+ amxm|xi ≥ 0, i = 1, 2, · · · ,m}

= {Ax|x ∈ Rm, xi ≥ 0, i = 1, 2, · · · ,m},

:= C(A).

14.2 The tangent cone and the Linearized Feasible Descent

Directions

We recall the fundamental OP in constrained optimization:

min
x∈Rn

f(x) subject to

ci(x) = 0, i ∈ E ,

ci(x) ≥ 0, i ∈ I;
(14.1)

the feasible set is

Ω = {x ∈ Rn|ci(x) = 0, i ∈ E , ci(x) ≥ 0 i ∈ I}. (14.2)

Definition 14.2 The vector d is a tangent vector to Ω at the point x ∈ Ω if there is a feasible

sequence {zk}∞k=0 approaching x and a sequence of positive scalars {tk}∞k=0 with tk → 0 as k →∞,

such that:

d = lim
k→∞

zk − x

tk
. (14.3)

The set of all such tangent vectors at x is called the tangent cone, TΩ(x).

14.2. The tangent cone and the Linearized Feasible Descent Directions 111

Figure 14.2:

It is straightforward to see that TΩ(x) is indeed a cone, as per Section 14.1. For take d from

Equation (14.3) and multiply by α > 0. We have:

αd = lim
k→∞

αzk − αx

tk
,

= lim
k→∞

zk − x
1
α
tk

,

from which we identify the feasible sequence {zk}∞k=0, and the sequence of positive scalars {α−1tk}∞k=0

satisfying Definition 14.2. Thus, αd ∈ TΩ(x), hence TΩ(x) is a cone.

Definition 14.3 The set of Linearized Feasible Descent Directions at x is given by:

F(x) =
{
d ∈ Rn|

⟨d,∇ci(x)⟩ = 0, i ∈ E ,
⟨d,∇ci(x)⟩ ≥ 0, i ∈ I

}
.

We abbreviate this term as LFDD.

Example: Consider the OP

min f(x) = x+ y, subject to c1(x) = 0,

where c1(x) = 2− x2 − y2.

112 Chapter 14. The Tangent Cone and the Set of Linearized Feasible Descent Directions

The set of LFDDs at x = (−
√
2, 0)T consists of all vectors in the line shown in Figure —ref-

fig:feasible1. Hence,

F(x) = {(0, d2)T |d2 ∈ R}.

Similarly, to construct feasible sequences which tend to x = (−
√
2, 0)T , we take:

xk = (
√
2 cos(π − θk),±

√
2 sin(π − θk))

T ,

and we take θk → 0. We have:

d = lim
θk→0

(
√
2 cos(π − θk)−

√
2,±
√
2 sin(π − θk))

T

θk
,

= lim
θk→0

(
1
2
θk +O(θ2k),±

√
2 +O(θk)

)T
,

= (0,±
√
2)T .

This exhausts all the possible tangent directions, hence:

FΩ(x) = {αy|y = (0, 1)T or y = (0,−1)T , α > 0},

= {(0, d2)T |d2 ∈ R}.

Thus, in this example,

FΩ(x) = TΩ(x).

Example: If, in the previous example, we replace the constraint function with c1(x) = (2−x2−y2)2,
then we have:

∂c1
∂x

= (2− x2 − y2)(−2x),

∂c1
∂y

= (2− x2 − y2)(−2y),

hence ∇c1(x) = 0 at x = (−
√
2, 0)T and indeed, ∇c1 = 0 for all x ∈ Ω. Thus,

⟨d,∇c1⟩ = ⟨d, 0⟩ = 0,

for all d ∈ R2, hence,

FΩ(x) = R2.

The tangent cone stays the same, hence for this example, FΩ(x) ̸= TΩ(x). Thus, it is not always

the case that FΩ(x) = TΩ(x).

14.2. The tangent cone and the Linearized Feasible Descent Directions 113

Example: Let us revisit the OP:

min f(x) = x+ y, subject to c1(x) ≥ 0, c1(x) = 2− x2 − y2.

We previously computed the minimum at x∗ = (−1,−1)T and hence, min f(x∗) = −2. Here, we

look at the tangent cone and the set of LFDDs at the point x = (−
√
2, 0)T .

To construct the tangent cone, we look for feasible sequences. These can be got by re-arranging

Equation (14.3):

zk = x+ dtk + ϵk,

where ϵk is an error term that goes to zero as k → ∞. Thus, the tail of all possible feasible

sequences resemble rays pointing from the feasible set, into the point x. The tangent vectors d are

precisely the direction of these rays. From Figure 14.3, we see that any d with d1 ≥ 0 will do, hence

TΩ(x) = {d ∈ R2|d1 ≥ 0}.

Figure 14.3: Feasible sequences zk tending to the point of interest x∗ = (−
√
2, 0)T

We also look at the set of LFDDs. We require ⟨d,∇c1(x)⟩ ≥ 0 at x = (−
√
2, 0), hence

(d1i+ d2j) ·
[
−2(−

√
2)i− 2(y = 0)j

]
≥ 0,

hence d1 ≥ 0, hence

FΩ(x) = {d ∈ R2|d1 ≥ 0}.

114 Chapter 14. The Tangent Cone and the Set of Linearized Feasible Descent Directions

so in this case, TΩ(x) = FΩ(x).

Example: We look at a rather strange OP where TΩ(x) ̸= FΩ(x). As such, consider:

min f(x) = xy, subject to

c1(x) ≥ 0, c1(x) = 1− x2 − (y − 1)2,

c2(x) ≥ 0, c2(x) = −y.

We first look at the feasible set in detail:

� Feasible points are in a disc centred at (0, 1) of radius 1;

� Feasible points are in the lower half-plane y ≥ 0.

Hence, the feasible set is precisely one point, x = (0, 0)T (see Figure 14.4).

Figure 14.4: Pathological example where the feasible set consists only of a single point

We compute the tangent cone at this point. Again, we do this by taking feasible sequences whose

tails have the form:

zk = x+ dtk + ϵk,

where ϵk is an error term that goes to zero as k → ∞. The only way for this to hold in the limit

as tk →∞ is to take d = {(0, 0)T}, thus, the tangent cone is a single point:

TΩ(s) = {(0, 0)T}.

We now look at F(x). From constraint 1 we require:

d · ∇c1(x) ≥ 0,

14.3. LICQ 115

We compute:

(d1i+ d2j) · (−2xi− 2(y − 1)j)(x=0,y=0) ≥ 0,

hence d2 ≥ 0.

From constraint 2, we require:

d · ∇c2(x) ≥ 0,

We compute:

(d1i+ d2j) · (−j) ≥ 0,

hence d2 ≤ 0.

Putting the conditions from Constraints 1 and 2 together, we require d2 = 0, hence

FΩ(x) = {(d1, 0)T |d1 ∈ R}.

But TΩ(x) is just a single point. Hence,

F(x) ̸= TΩ(x).

14.3 LICQ

In general, we require an extra condition on the constraints for FΩ(x) and TΩ(x) to be the same.

On such condition is the Linear Independence Constraint Qualification (LICQ):

Definition 14.4 (LICQ) Givne the point x and the active set A(x), we say that the LICQ holds

at x if the active constraints ∇ci(x), with i ∈ A(x) are linearly independent.

Example: From the previous example (Figure 14.4):

∇c1(0, 0) = (0, 2),

∇c2(0, 0) = (0,−1).

Thus, ∇c1 and ∇c2 are co-linear, so the LICQ does not hold.

Remark: If the LICQ holds, then none of the active constraint gradients can be zero.

Chapter 15

First-Order Necessary Conditions:

Background

Overview

We state the necessary conditions for a vector x∗ to be the minimizer of the canonical constrained

optimization problem.

15.1 Introduction

Having looked through many specific examples of constrained optimization problems, we now for-

mulate some general principles. The aim here is to state the first-order necessary conditions for

optimality. We work with the canonical constrained OP:

min
x∈Rn

f(x) subject to

ci(x) = 0, i ∈ E ,

ci(x) ≥ 0, i ∈ I.
(15.1)

The formulation we develop here is worthy of deep study, as it is the basis of many of the numerical

algorithms for constrained optimization. Motivated by the previous examples, we introduce:

L(x,λ) = f(x)−
∑
i∈E∪I

λici(x) (15.2)

We have the following theorem:

Theorem 15.1 Suppose that x∗ is a minimizer of the OP (15.1). Furthermore, suppose that f

and the ci’s are continuously differentiable, and that the LICQ holds at x∗. Then, there exists a

116

15.1. Introduction 117

vector λ∗ with components λ∗i , with i ∈ E ∪ I, such that the following conditions hold:

∇xL(x∗,λ∗) = 0, (15.3a)

ci(x∗) = 0, i ∈ E , (15.3b)

ci(x∗) ≥ 0, i ∈ I, (15.3c)

λi ≥ 0, i ∈ I, (15.3d)

λ∗i ci(x∗) ≥ 0, i ∈ I ∪ E . (15.3e)

Some observations:

� Equations (15.3) are called the Karush–Kuhn–Tucker conditions (KKT). In particular, Equa-

tion (15.3)(e) is called the complementary condition, this condition imples that either the

constraint i is active, or that λ∗i = 0, or possibly, both.

� As the Lagrange multipliers corresponding to the inactive constraints are zero, we can re-write

Equation (15.3)(a) as:

0 = ∇xL(x∗,λ∗) = ∇xf(x∗)−
∑

i∈A(x∗)

λ∗i ci(x∗), (15.4)

where the sum here is over active constraints only.

We furthermore have the following definition:

Definition 15.1 (Strict Complementarity) Given a local solution x∗ of the OP (15.1) and a

vector λ∗ satisfying the KKT conditions (15.3), we say that strict complementarity holds if exactly

one of λ∗i or ci(x∗) is zero for each i ∈ I. In other words, we have λ∗i > 0 for i ∈ A(x∗) ∩ I.

Some more observations:

� Satisfaction of the strict complementarity conditions often makes it easier for a numerical

algorithm to determine the active set and hence, to converge rapidly to x∗.

� For a given OP and a solution point x∗, there may be many vectors λ∗ which satisfy the KKT

conditions. HOwever, by imposing the LICQ, the vector λ∗ is unique.

Having stated the first-order necessary conditions for optimality, the aim of the rest of this chapter

is twofold:

� Provide yet more examples to help us to understand the KKT conditions.

118 Chapter 15. First-Order Necessary Conditions: Background

� Prove some preliminary (but highly nontrivial results) which will enable us to prove the KKT

conditions in a later chapter.

As a first step, we will check that the LICQ makes the λ∗i ’s unique.

15.1.1 LICQs

Theorem 15.2 If the ci’s satisfy the LICQ at x∗, then the Lagrange multipliers in the KKT con-

ditions are unique.

Proof: Suppose that there is a set of Lagrange multipliers λ∗i (with i ∈ E ∪ I satisfying the KKT

conditions, and another set µ∗i with i ∈ E ∪ I satisfying the same. We have:

0 = 0 = ∇xL(x∗,λ∗) = ∇xf(x∗)−
∑
i∈E∪I

λ∗i ci(x∗) = ∇xf(x∗)−
∑
i∈E∪I

µ∗i ci(x∗).

Thus, ∑
i∈E∪I

∇ci(x∗) (λ∗i − µ∗i) = 0. (15.5)

As the gradients ∇ci(x∗) are all linearly independent, the only way for Equation (15.5) to be zero

is if λ∗i = µ∗i , for all i ∈ E ∪ I. This establishes the uniqueness of the λ∗i ’s under the LICQ.

15.1.2 Example

Consider the OP

min f(x) =
(
x− 3

2

)2
+
(
y − 1

2

)2
,

subject to: 
c1

c2

c3

c4

 =


1− x− y

1− x+ y

1 + x− y

1 + x+ y

 ≥ 0.

Solution: We first of all do a solution by direct computation, this is possible here because the

example is relatively simple. The feasible region is shown in Figure 15.1, from the figure it is clear

that the minimizer x∗ satisfies

(x∗, y∗) ∈ L1, L1 : y = 1− x.

15.1. Introduction 119

We introduce

f̃(x) =
(
x− 3

2

)2
+
[
(y = 1− x)− 1

2

]2
,

= 2
(
x− 3

2

)2
.

We therefore need to minimize f̃(x) subject to x ∈ [0, 1], from which we obtain:

x∗ = arg min
[0,1]

2
(
x− 3

2

)2
,

hence x∗ = 1. The solution of the OP is thus:

x∗ = (1, 0)T .

From the figure, it is clear that the constraints c1 and c2 are both active at this point.

Figure 15.1: Simple example of constrained optimization with validation of the KKT conditions

We now check that the LICQ holds at x∗. We have:

∇f(x∗) =

(
−1
−1

)
, ∇c1(x∗) =

(
−1
−1

)
, ∇c2(x∗) =

(
−1
1

)
.

120 Chapter 15. First-Order Necessary Conditions: Background

We check the LICQ by looking at the matrix formed by the columns of ∇c1 and ∇c2:

A =

(
−1 −1
−1 1

)
.

As det(A) = −2, A has full rank, hence, ∇c1 and ∇c2 are linearly independent, hence the LICQ

holds.

We next compute the Lagrange multipliers for the active constraints. Hence, we set

∇f(x)−
∑

i∈A(x∗)

λ∗i∇c∗i (x∗) = 0,

hence (
−1
−1

)
− λ∗1

(
−1
−1

)
− λ∗2

(
−1
1

)
= 0

or

λ∗1 + λ∗2 = 1,

λ∗1 − λ∗2 = 1,

hence finally, λ∗1 = 1 and λ∗2 = 0. Notice that the compatibility conditions are not strictly comple-

mentary, since we have:

c1(x∗) = 0 , λ∗1 = 1,

c2(x∗) = 0 , λ∗1 = 0.

If, instead, the cost function is:

f(x) =
(
x− 3

2

)2
+
(
y − 1

2

)4
,

(note the power on (y − 1/2)), with the same constraints as before, the compatibility conditions

become strictly complementary. WE check this as follows. WE have:

∇f(x) =
(
2(x− 3

2
), 4
(
y − 1

2

)3)T

15.2. Condition for the Tangent cone and the set of LFDDs to coincide 121

hence

∇f(x∗) =
(
−1, 4

(
−1

2

) (
−1

2

) (
−1

2

))T
,

=
(
−1,

(
−1

2

))T
.

The equation ∇f(x∗)−
∑

i∈A(x∗)
λ∗i∇ci(x∗) = 0 now becomes:

(
−1
−1/2

)
− λ∗1

(
−1
−1

)
− λ∗2

(
−1
1

)
= 0

with solution λ∗1 = 1 and λ∗2 = 1/4. Thus:

c1(x∗) = 0 , λ∗1 = 1,

c2(x∗) = 0 , λ∗1 = 1/4.

Hence, the complementarity conditions

λ∗i ci(x∗) = 0, i ∈ A(x∗) ∩ I

hold strictly.

15.2 Condition for the Tangent cone and the set of LFDDs

to coincide

We now build up to a proof of the KKT conditions. We are going to show first of all that:

TΩ(x∗) = FΩ(x∗),

provided the LICQ is satisfied at a feasible point x∗. We first of all introduce some notation. Recall,

A(x∗) is the active set: if

ci1(x∗) = 0, ci2(x∗) = 0, cim(x∗) = 0,

are the active constraints, then the active set at x∗ is:

A(x∗) = {i1, i2, · · · , im}.

122 Chapter 15. First-Order Necessary Conditions: Background

We now introduce the matrix A ∈ Rm×n:

A(x∗) =


∂ci1
∂x1

∂ci1
∂x1

· · · ∂ci1
∂x1

,
...

∂cim
∂x1

∂cim
∂x1

· · · ∂cim
∂x1


x∗

∈ Rm×n.

We now have the following lemma.

Lemma 15.1 Let x∗ be a feasible point. Then the following statements are true:

� TΩ(x∗) ⊂ FΩ(x∗),

� If the LICQ holds, then TΩ(x∗) = FΩ(x∗).

Remark: We use x∗ here for any feasible point, it doesn’t have to be a minimizer.

We now prove the lemma, starting with the first part. We assume without loss of generality that all

the constraints are active, this just helps with indexing. Let d ∈ TΩ(x∗). Hence, we seek to show

that d ∈ F(x∗). As suhc, there exists a sequence {zk}∞k=0 (with the ‘tail’ of the sequence in Ω),

and a sequence of positive scalars {tk}∞k=0, with tk → 0 as k →∞, such that:

lim
k→∞

zk − x∗
tk

= d. (15.6)

Hence, for k sufficiently large,

zk = dtk + x∗ + ϵk, (15.7)

where ∥ϵk∥ → 0 as k →∞. Furthermore,

zk − x∗
tk

− d =
ϵ

tk
→ 0 as k →∞.

Hence, ϵk is ‘little-o of t− k’:

lim
k→∞

∥ϵ∥
tk
→ 0,

so we can re-write Equation (15.7) as:

zk = dtk + x∗ + o(tk). (15.8)

We first of all take i ∈ E . We have:

0 =
1

tk
ci(zk), (15.9)

since zk is feasible for k sufficiently large. Compare Equations (15.8) and (15.9):

0 =
1

tk
[ci(x∗) + tk⟨d,∇ci(x∗)⟩+ o(tk)] ,

15.2. Condition for the Tangent cone and the set of LFDDs to coincide 123

But ci(x∗)0 =, hence

0 = ⟨d,∇ci(x∗)⟩+
o(tk)

tk
.

Also, o(tk)/tk → 0 as k →∞, hence:

0 = ⟨d,∇ci(x∗)⟩, i ∈ E . (15.10a)

Now take i ∈ I and repeat the same calculation:

0 ≤ 1

tk
[ci(x∗) + tk⟨d,∇ci(x∗)⟩+ o(tk)] ,

Since i is an active index, we have ci(x∗) = 0, hence

0 ≤ ⟨d,∇ci(x∗)⟩+
o(tk)

tk
.

Take tk →∞, hence:

0 ≤ ⟨d,∇ci(x∗)⟩, i ∈ I. (15.10b)

From Equation (15.10)(a) and (b), we see that d ∈ FΩ(x∗), hence TΩ(x∗) ⊂ FΩ(x∗).

For the second part, we require some preliminary work. As such, we look at the kernel of A:

↑
m

↓


a11 · · · a1n

a21 · · · a2n
...

am1 · · · amn


︸ ︷︷ ︸

←n→


z1

z2
...

zn

 =


a11z1 + · · · a1nzn

...

am1z1 + · · · amnzn



Hence:
n∑

i=1

ajizi = 0, j ∈ {1, 2, · · · ,m}. (15.11)

In general:

� z = (z1, · · · , zn)T is a vector with n variables.

� But there are m constraints (from Equation (15.11)).

� So there are only n−m free variables in the vector z.

Hence, the kernel of A is (n − m)-dimensional. Let the basis of ker(A) be {z(1), · · · , z(n−m)}.

124 Chapter 15. First-Order Necessary Conditions: Background

Form the matrix:

Z =

↑
n

↓


| · · · |

z(1) · · · z(n−m)

| · · · |


︸ ︷︷ ︸

←(n−m)→

∈ Rn×(n−m).

Hence, AZ = 0. The claim now is that the matrix

(
A

ZT

)
=



a11 · · · a1n

a21 · · · a2n
...

am1 · · · amn

z
(1)
1 z

(1)
n

· · ·
z
(n−m)
1 z

(n−m)
n


∈ Rn×n (15.12)

has full row rank.

Notice:

� The first m rows are linearly independent, by the LICQ.

� The last n−m rows are linearly independent, by construction of Z.

So it remains to check that the first m rows are linearly independent of the last n−m rows. Assume

for contradiction that they are not. Then we can write (for example):

(
z
(1)
1 , · · · , z(1)n

)T
=

m∑
j=1

µj (aji, · · · ajn)T . (15.13)

But
n∑

i=1

ajiz
(1)
i = 0,

by definition of z(1) as being in the kernel of A. Combine these two results to get:

n∑
i=1

m∑
k=1

µkaki = 0.

Hence, ∑
ik

(A)ki(A
T)ijµk = 0.

Hence,

AATµ = 0, µ = (µ1, · · · , µm)
T .

15.2. Condition for the Tangent cone and the set of LFDDs to coincide 125

Hence, ⟨µ, AATµ⟩ = 0, hence ⟨ATµ, ATµ⟩ = 0, hence ATµ = 0. In index form this is:

µ1(a11, a12, · · · , a1n) + · · ·µn(am1, am2, · · · amn) = 0.

But A has full row rank, hence µ1, µ2, · · · , µn = 0, hence z(1) = 0, which is a contradiction, since

z(1) is a basis vector. Hence, Equation (15.13) is false. Thus, all of the rows in Equation (15.12)

are linearly independent.

We now move on to the last part of the proof. We introduce d ∈ FΩ(x∗). We further introduce a

map:

R : Rn × R → R,

(z, t) 7→ R(z, t),

such that

R(z, t) =

(
c(z)− tA(x∗)d

ZT (z − x∗ − tx)

)
.

Notice that:

R(x∗, 0) = 0, ∇zR(x∗) =

(
A

ZT

)
is invertible.

So, by the implicit function theorem, given the constraint

R(z, t) = 0,

there exists a curve z(t) such that R(z(t), t) = 0. Hence, points on the curve z(t) are candidates

for constructing a tangent sequence.

Pick out a sequence zk along the curve z(t), and a sequence of positive scalars tk. We have:

0 = R(zk, tk),

= �����R(x∗, 0) +

(
∂Ri

∂zj

)
(x∗,0)

(zk − x∗)j +

(
∂Ri

∂t

)
t=0)

tk +O(t2k),

=

(
A(x∗)

ZT

)
(zk − x∗) +

(
−A(x∗)x
−ZTd

)
tk +O(t2k),

hence

0 =

(
A(x∗)

ZT

)(
zk − x∗

tk
− d

)
+O(tk),

126 Chapter 15. First-Order Necessary Conditions: Background

hence

0 =

(
A(x∗)

ZT

)
︸ ︷︷ ︸

Invertible

(
zk − x∗

tk
− d

)
as tk → 0.

But the matrix here is invertible, hence,

zk − x∗
tk

→ d as tk → 0.

We check the feasibility of the sequence. As R(zk, tk) = 0, we have:

ci(zk) = tk[A(x∗)d]i, i ∈ E ∪ I = A(x)∗).

For equality constraints, we have:

ci(zk) = tk[A(x∗)d]i = tk⟨d,∇ci⟩
Eq. Const.

= 0.

hence ci(zk) = 0. For equality constraints, we have:

ci(zk) = tk[A(x∗)d]i = tk⟨d,∇ci⟩
Ineq. Const.

≥ 0,

hence ci(zk) ≥ 0. Thus, the sequence zk is feasible. Summarizing, we have started with a given

LFDD d and have constructed a sequence of points zk and a sequence of scalars tk such that:

� The sequence zk is feasible;

� The sequences zk and tk satisfy:

zk − x∗
tk

→ d as tk → 0.

Hence, d ∈ TΩ(x∗), as required.

Chapter 16

First-Order Necessary Conditions: Proof

Overview

We prove the necessary conditions for a vector x∗ to be the minimizer of the canonical constrained

optimization problem.

16.1 Introduction

We again work with the canonical constrained OP:

min
x∈Rn

f(x) subject to

ci(x) = 0, i ∈ E ,

ci(x) ≥ 0, i ∈ I.
(16.1)

The formulation we develop here is worthy of deep study, as it is the basis of many of the numerical

algorithms for constrained optimization. Motivated by the previous examples, we introduce:

L(x,λ) = f(x)−
∑
i∈E∪I

λici(x) (16.2)

We have the following theorem (KKT conditions):

Theorem 16.1 Suppose that x∗ is a minimizer of the OP (16.1). Furthermore, suppose that f

and the ci’s are continuously differentiable, and that the LICQ holds at x∗. Then, there exists a

127

128 Chapter 16. First-Order Necessary Conditions: Proof

vector λ∗ with components λ∗i , with i ∈ E ∪ I, such that the following conditions hold:

∇xL(x∗,λ∗) = 0, (16.3a)

ci(x∗) = 0, i ∈ E , (16.3b)

ci(x∗) ≥ 0, i ∈ I, (16.3c)

λi ≥ 0, i ∈ I, (16.3d)

λ∗i ci(x∗) ≥ 0, i ∈ I ∪ E . (16.3e)

The aim of this Chapter is to prove this theorem, however, we have to begin with preliminary results.

16.2 Fundamental Necessary Condition

We prove teh following lemma:

Lemma 16.1 (Fundamental Necessary Condition) If x∗ is a local minimizer of the generic

constrained OP —eqrefeq:OPcon05, then:

⟨d,∇f(x∗)⟩ ≥ 0, for all d ∈ TΩ(x∗). (16.4)

We produce a proof by contradiction. Suppose there is some x ∈ TΩ(x∗) such that:

⟨d,∇f(x∗)⟩ < 0. (16.5)

Let a corresponding feasible sequence be {zk}∞k=0, such that:

lim
k→∞

zk − x∗
tk

= d.

We have:

f(zk) = f(x∗) + tk ⟨d,∇f(x∗)⟩︸ ︷︷ ︸
Negative

+O(t2k).

For tk sufficiently small, we therefore have:

f(zk) < f(x∗),

which contradicts the fact that x∗ is a minimizer:

f(x∗) ≤ f(z), for all z in a neighborhood of x∗.

16.2. Fundamental Necessary Condition 129

Hence, the assumption (16.5) is false, there is no such d, so we conclude:

⟨d,∇f(x∗)⟩ ≥ 0, for all d ∈ TΩ(x∗).

16.2.1 Caution

The converse is not true. We can have ⟨d,∇f(x∗)⟩ ≥ 0 without x∗ being a local minimizer. For

instance, consider:

min f(x) = y, subject to y ≥ −x2.

See Figure 16.1. The solution to the OP is unbounded, with y∗ = −∞.

Figure 16.1: Counter-example showing ⟨d,∇f(x∗)⟩ ≥ 0 but x∗ = (0, 0)T is not a minimizer.

We compute the tangent cone at e.g. x∗ = (0, 0)T :

TΩ(x∗) = {(d1, d2)|d2 ≥ 0}.

Also, ∇f(x∗) = j, and for d in the tangent cone we have ⟨d,∇f(x∗) = d2 ≥ 0.

But x∗ = (0, 0)T is not a minimum, it is not even a local minimum. For consider a point xα =

(α,−α2)T on ∂Ω. We have f(xα) = −α2, thus:

f(xα) < f(x∗).

Also, x∗ is in the neighborhood of x∗, as xα can be made ‘close’ to x∗ by taking α sufficiently

small. But f(xα) < f(x∗), so x∗ is not a local minimizer.

130 Chapter 16. First-Order Necessary Conditions: Proof

16.3 Farkas’s Lemma and the Hyperplane Separation Theo-

rem

We next look at Farkas’s Lemma. We work with a modified veriosn of the lemma, this is to enable

us to prove the KKT theorem. We will furthermore present a different proof of the lemma, different to

what is in Nocedal and Wright. The motivation here is to explore some of the geometric reasoning

behind constrained optimization. For these purposes, we introduce the Hyperplane Separation

Theorem:

Theorem 16.2 (Hyperplane Separation Theorem) Let A and B be two disjoint nonempty con-

vex subsets of Rn. Then there exists a plane which separates A and B. Mathematically, there exists

a non-zero vector n and a constant c such that:

⟨x,n⟩ ≥ c, ⟨y,n⟩ ≤ c,

for all x ∈ A and y ∈ B.

There is no proof in this module, but the idea is shown in Figure 16.2. The Hyperplane Separation

Theorem comes in many different flavours, the reader can check the reference

http://aaa.princeton.edu/orf523

for an enumeration. The following variation will be useful to us:

Theorem 16.3 (Hyperplane Separation Theorem, Special Case) Let A and B be two dis-

joint nonempty convex subsets of Rn, such that:

� A and B are closed;

� At least one of A and B is bounded.

Then there exists a non-zero vector n and a constant c such that:

⟨x,n⟩ > c, ⟨y,n⟩ < c,

for all x ∈ A and y ∈ B.

We are now in a position to state and prove Farkas’s Lemma.

Lemma 16.2 (Farkas) Let

C = {By|yi ≥ 0, i = 1, 2, · · · ,m}

16.3. Farkas’s Lemma and the Hyperplane Separation Theorem 131

be a cone, where B ∈ Rm×n. Given any vector g ∈ Rn,

� Either

g ∈ C (16.6a)

� Or, there exists a vector d ∈ Rn such that:

⟨g,d⟩ < 0, and [BTd]i ≥ 0, i = 1, 2, · · · ,m. (16.6b)

Proof: We show first that Equation (16.6a) and (16.6b) can’t hold simultaneously. Let g ∈ C.
Hence,

g = By, yi ≥ 0.

If there exists a vector d with property (16.6b), then:

⟨g,d⟩ < 0,

⟨g,d⟩ = ⟨By,d⟩,

=
m∑
i=1

yi[B
Td]i.

But [BTd]i > 0 and yi ≥ 0, giving ⟨g,d⟩ < 0 and ⟨g,d⟩ ≥ 0 simultaneously, which is a contradic-

tion. So Options #1 and #2 in Farkas’s Lemma can’t hold simultaneously.

We now show that at least one of the options always holds. If g ∈ C we are done. So assume that

g /∈ C. Then we have two disjoint convex sets:

� B = {g}, which is closed, bounded, and convex.

� A = C = {By ∈ Rn|yi ≥ 0, i = 1, 2, · · · ,m}; as a cone, this set is is closed and convex.

By the Hyperplane Separation Theorem (Special Case), there exist a c such that:

⟨d, g⟩ < c

and

⟨d, s⟩ > c for all s ∈ C.

Now, the zero vector is in the cone C, hence ⟨d, 0⟩ > c, hence c < 0. Hence,

⟨d, g⟩ < 0.

132 Chapter 16. First-Order Necessary Conditions: Proof

Furthermore, ⟨d,d⟩ > c for all s ∈ C, hence ⟨d, By⟩ > c, hence

m∑
i=1

yi[B
Td]i > c.

This is true for all yi ≥ 0. So replace yi with yiλ, where λ is positive:

m∑
i=1

λyi[B
Td]i > c,

or
m∑
i=1

yi[B
Td]i > c/λ.

Now take λ→∞ to get:
m∑
i=1

yi[B
Td]i > 0.

This is true fora ll yi ≥ 0, hence

[BTd]i ≥ 0.

16.3.1 Application

We now apply Farkas’s lemma to the cone:

N = {
∑

i∈A(x∗)

λi∇ci(x∗)|λi ≥ 0, i ∈ A(x∗) ∩ I},

= {ATλ|λi ≥ 0, i ∈ A(x∗) ∩ I}.

Set g = ∇f(x∗). Then,

� Either g ∈ N , g = ATλ,

� Or there is a direction d such that

⟨d,∇f(x∗)⟩ < 0, [Ad]i ≥ 0,

hence ⟨d,∇f(x∗)⟩ < 0 and d ∈ FΩ(x∗).

16.4 Proof of KKT

We now prove the first-order necessary conditions for x∗ to be a minimizer, the KKT conditions, or

Theorem 16.1.

16.4. Proof of KKT 133

Let x∗ be a local minimizer. We first of all show that there exist multipliers λi, i ∈ A(x∗), such
that:

∇f(x∗) =
∑

i∈A(x∗)

λi∇ci(x∗).

Lemma 16.1 tells us that

⟨d,∇f(x∗) ≥ 0, for all d ∈ TΩ(x∗).

But the LICQ holds, hence

⟨d,∇f(x∗) ≥ 0, for all d ∈ FΩ(x∗).

Hence, Option #1 holds in Farkas’s Lemma, hence there exist λi ≥ 0, such that:

∇f(x∗) =
∑

i∈A(x∗)

λi∇ci(x∗).

We now define:

λ∗i

λi, i ∈ A(x− ∗),

0, i ∈ I \ A(x∗).

Hence,

� KKT(i) follows immediately:

∇f(x∗) =
∑

i∈A(x∗)

λi∇ci(x∗).

� Since x∗ is feasible, KKT(ii)–(iii) are satisfied.

� We have:

λ∗i

λi, i ∈ A(x− ∗),

0, i ∈ I \ A(x∗).

Here, the λi’s are positive or zero, since Option #1 holds in Farkas’s lemma. Hence, λ∗i ≥ 0,

for all i ∈ I.
� We have: i ∈ A(x∗) ∩ I : ci(x∗) = 0,

i ∈ I \ A(x∗) : λ∗i = 0

hence λ∗i ci(x∗) = 0, for all i ∈ E ∪ I, and KKT(v) is satisfied.

134 Chapter 16. First-Order Necessary Conditions: Proof

Figure 16.2: The idea behind the Hyperplane Separation Theorem

Chapter 17

Global Optimization via Simulated

Annealing

Overview

So far – when looking at solutions of the unconstrained OP, x∗ = arg min f(x), we have been

concerned with iterative methods that stop when a local solution is found. Such methods do not

distinguish between a local minimum and the global minimum. Therefore, in this Chapter, we look

at one particular method that can find a global minimum. This is called Simulated Annealing,

and is inspired by ideas from Physics.

17.1 Physics

Imagine a system with n continuous degrees of freedom. The ‘phase space’ of the system is Rn.

Suppose that the system’s energy is E(x), this is a function that maps states in the system (vectors

in Rn) to real numbers. The probability that the state of the system is to be found in a small region

of phase space of volume dnx, centred at x is:

dP = p(x)dnx,

hence, p(x) is a probability distribution function, with unit normalization:∫
Rn

p(x)dnx = 1.

135

136 Chapter 17. Global Optimization via Simulated Annealing

The energy of the system is therefore:

E =

∫
Rn

E(x)p(x)dnx.

The entropy of the system is given by the Botlzmann formula:

S = −
∫
Rn

p(x) log p(x)dnx.

17.1.1 The Boltzmann Distribution

W seek to maximize the entropy while maintaining the average value of the energy at a constant

value, E =
∫
E(x)p(x)dnx. Hence, we maximize the function

S̃ = −
∫

p(x) log p(x)dnx− β

(∫
E(x)p(x)dnx− E

)
+ α

(∫
Rn

p(x)dnx− 1

)
(we omit the subscript on the integral from now on, as the region of integration is clear). We

compute δS̃:

δS̃ = −
∫

[log p(x) + 1] δp− β

∫
E(x)δp dnx+ α

∫
δp dnx.

We require:
δS̃

δp
= 0.

Hence:

log p = −βE + α− 1,

or p(x) = eα−1e−βE(x). The Lagrange multiplier α can be eliminated by imposing that
∫
p(x)dnx =

1, hence:

p(x) =
e−βE(x)∫
e−βE(x)dnx

We identify:

Z =

∫
e−βE(x)dnx.

Hence,

p(x) =
e−βE(x)

Z
= pT (E(x)). (17.1)

Equation (17.1) describes the Boltzmann Distribution. The parameter β is the Lagrange multiplier

that enforces the constant average energy. We further identify T = 1/β as the temperature, hence:

p(x) =
e−E(x)/T

Z
= pT (E(x)), (17.2)

17.1. Physics 137

where pT (E) = e−βE/Z.

Furthermore, we have:

Smax = −
∫

p(x) log p(x)dx+ 0,

= −
∫

e−βE(x)

Z
[−βE(x)− logZ] ,

= βE + logZ.

Also,

E = −∂ logZ

∂β
,

and

∂Smax

∂E
= β + E

∂β

∂E
+

∂

∂E
logZ,

= β + E
∂β

∂E
+

∂ logZ

∂β

∂β

∂E
,

= β + E
∂β

∂E
+ (−E)

∂β

∂E
,

= β,

which gives the fundamental temperature-entropy relationship:

1

T
=

∂Smax

∂E
.

17.1.2 The Quench

As the system is cooled to zero absolute temperature (the ‘quench’), the Boltzman distribution tends

to a delta function centred at the minimum energy. Assuming a unique global minimum, there is

therefore only one allowed state at zero temperature (the minimizer). Hence, the system entropy

also tends to zero. Furthermore, the mean energy E tends to the minimum value:

E → Emin, as T → 0.

The idea of simulated annealing therefore is to view optimization of a cost function E(x) as equiv-

alent to the process of quenching a physical system to absolute zero temperature. The physical

energy tends to zero if and only if the cost function E(x) attains the global minimum. Thus, the

challenge for a simulated-annealing algorithm is to simulate the quench of the physical system to

absolute zero.

138 Chapter 17. Global Optimization via Simulated Annealing

17.2 Simulated Annealing – Algorithm

The idea in Simulated Annealing is to start with an initial ‘temperature’ T0 and an initial guess for

the state of the system x(0). A proposal to move the system into a new x(1) is generated, using

random-number generation. This mimics the stochastic nature of real physical systems (‘Brownian

Motion’). If the proposed new state reduces the cost function, it is accepted with probability 1.

Thus, let:

E(1) = E(x(1)), E(0) = E(x(0)), ∆E = E(1) − E(0).

If ∆E < 0, the updated guess decreases energy (cost function), and is accepted. However, to stop

the system from getting stuck in a local minimum, a proposal that increases the energy will from

time to time be accepted. Hence, if ∆E > 0, we accept the proposal (which increases the energy)

with a probability given by the Boltzmann distribution:

P
(
Accept x(0) → x(1)

)
=

1, if ∆E < 0,

e−∆E/T0 , if ∆E > 0.

We also denote this transition function by h(∆E). We continue thus, for a certain number

of iterations, whereupon the temperature is lowered to T1, and the algorithm continues again.

The method for lowering the temperature after a set number of iterations is called the annealing

schedule.

17.2.1 Detailed balance

The SA schedule satisfies detailed balance, in the sense that:

pT (E
(k))P

(
x(k) → x(k+1)

)
= pT (E

(k+1))P
(
x(k+1) → x(k)

)
.

Without the change of temperature, detailed balance is sufficient to establish that all states of the

system can be sampled. With the change of temperature, all states of the system can still be

sampled, however, this must be done carefully and gradually.

17.3. Statement of Algorithm 139

17.3 Statement of Algorithm

Algorithm 7 Simulated Annealing Algorithm

Choose an initial guess x(0). Initialize x = x(0).

Select the temperature change counter k = 0

Select a cooling schedule Tk

Select an initial temperature T = T0 ≥ 0

Select a repetition schedule Mk, that defines the number of iterations executed at each temper-

ature Tk

while Stopping criterion is not met do

Set repetition counter m = 0

while m < Mk do

Generate a new state x′

Calculate ∆E = E(x′)− E(x).

If ∆E ≤ 0, accept the new state, x← x′ with probability 1.

If ∆E > 0, accept the new state, x← x′, with probability e−∆E/Tk .

m← m+ 1

end while

end while

The algorithm results in M0+M1+ · · ·+Mk total iterations being executed, where k corresponds to

the value for Tk at which some stopping criterion is met – for example, a pre-specified total number

of iterations has been exceeded, or a solution of a certain quality has been found. In addition, if

Mk = 1 for all k, then the temperature changes at each iteration

A sample (very simple) Matlab code to implement the algorithm is shown in the following code

listings.

1 f u n c t i o n [b e s t x , bes t E , x vec , E vec]=mySA0 ()

2

3 % Funct i on f o r computing the g l o b a l minimum of :

4 %

5 % y=s i n (x) /(xˆ2+10) ;

6

7 % I n i t i a l i z e x :

8 x=5;

9

10 max i t o u t e r = 250 ; % Maximum Number o f I t e r a t i o n s

11 ma x i t i n n e r = 15 ; % Maximum Number o f Sub=i t e r a t i o n s

12

13 T0 = 1 ; % I n i t i a l Temperature

14 a lpha = 0 . 9 5 ; % Temperature Reduct ion Rate

15

16 % I n i t i a l i z e t empe ra tu r e :

17 T=T0 ;

18

140 Chapter 17. Global Optimization via Simulated Annealing

19 % I n i t i a l ene rgy :

20 E=my co s t f n (x) ;

21

22 be s t E=E ;

23 b e s t x=x ;

24

25 c t r =1;

26 x v e c =0*(1: max i t o u t e r *max i t i n n e r) ;

27 E vec =0*(1: max i t o u t e r *max i t i n n e r) ;

28

29 f o r k o u t e r =1: max i t o u t e r

30

31 f o r k i n n e r = 1 : ma x i t i n n e r

32

33 % Genera te new gues s u s i n g a normal d i s t r i b u t i o n :

34 x new=normrnd (x , 2*T, 1) ;

35 E new=my co s t f n (x new) ;

36

37 d e l t a E=E new=E ;

38

39 % I f de l t a E <=0, then accep t the new gues s w i th p r o b a b i l i t y 1 .

40 i f (d e l t a E<=E)

41 x=x new ;

42 E=E new ;

43 e l s e

44 % I f de l t a E >0, then accep t the new gues s w i th a p r o b a b i l i t y

45 % exp(=d e l t a E /T) .

46

47 prob = exp(=d e l t a E /T) ;

48 i f (rand <= prob)

49 x = x new ;

50 E = E new ;

51 end

52 end

53

54 i f (E<be s t E)

55 be s t E=E ;

56 b e s t x=x ;

57 end

58

59 x v e c (c t r)=x ;

60 E vec (c t r)=E ;

61 c t r=c t r +1;

62

63 end

64

65 % Update the t empe ra tu r e :

66 T = a lpha*T;

67 % T=5/(l o g (k ou t e r)+1) ;

68

69 d i s p l a y (s t r c a t (’ ou t e r i t e r a t i o n=’ , num2str (k o u t e r) , ’ ; b e s t v a l u e=’ , num2str (be s t E) , ’ ; b e s t x=’ , num2str (b e s t x))) ;

70

71 end

72

73 end

74

75 % ***

76

77 f u n c t i o n y=my co s t f n (x)

78 % y=(x=1)ˆ2

79 y=s i n (x) /(xˆ2+10) ;

80 end

The updated guess is selected to be a random perturbation away from the current guess, with the

perturbation chosen from a normal distribution, the standard deviation of which is 2T , where T is

the current temperature. This is then related to the annealing schedule Tk = T0/(ln(k) + 1), more

details of which are discussed in the final section below. Other annealing schedules are possible, for

instance, Tk+1 = αTk, where 0 < α < 1, the main idea here is that the temperature is gradually

17.4. Annealing Schedule (Boltzmann) 141

Figure 17.1: The cost function with multiple local minima; the SA algorithm successfully picks out
the global minimum

lowered as the algorithm converges to a global minimum. Finally, results of running the algorithm

are shown in Figure 17.1: the algorithm successfully picks out the global minimum.

17.4 Annealing Schedule (Boltzmann)

In this section, we assume that new proposals are generated using random-nummber generation: if

x1 is the new proposal and x0 is the old proposal, then:

x1 ∼ N(x0, σk),

where, for the present purposes, σ2
k is taken to be Tk, hence

σk =
√

Tk.

This approach is referred to as Boltzmann annealing, it is different to the numerical algorithms

used in previous sections where σk was taken to be 2Tk (fast annealing).

The probability that the new proposal is in a region R of phase space is:

P(New proposal in R) =
∫
R
p(x)dnx,

142 Chapter 17. Global Optimization via Simulated Annealing

where

p(x) =
1

(2πσ2
k)

n/2
e−∥x−x0∥22/2σ2

k .

We propose an annealing schedule

Tk ≤
T0

ln k
, (17.3)

where T0 is a parameter that is ‘sufficiently large’. Thus, the aim of this section is to show that this

is a ‘good’ annealing schedule, for Boltzmann annealing.

For this purpose, we look at the probability gk that the new proposal is to be found in a small volume

∆V around the global minimum, we denote this region by R(x∗,∆V):

gk = P(New proposal in R(x∗,∆V)).

Hence,

gk =

∫
R(x∗,∆V)

p(x)dnx.

We have:

gk = P(New proposal in R(x∗,∆V)),

=
1

(2πσ2
k)

n/2

∫
R(x∗,∆V))

e−∥x−x0∥22/2σ2
k dnx,

=

[
1

(2πσ2
k)

1/2

∫ x∗1+∆x/2

x∗1−(∆x/2)

e−(x1−x01)2/2σ2
k dx1

]
× · · ·

×

[
1

(2πσ2
k)

1/2

∫ x∗n+∆x/2

x∗n−(∆x/2)

e−(xn−x0n)2/2σ2
k dxn

]
,

≈
[

1

(2πσ2
k)

1/2
e−(x∗1−x01)2/2σ2

k∆x

]
× · · · ×

[
1

(2πσ2
k)

1/2
e−(x∗n−x0n)2/2σ2

k∆x

]
,

=
(∆x)n

(2πσ2
k)

n/2
e−∥x∗−x0∥22/2σ2

k ,

=
∆V

(2πσ2
k)

n/2
e−∥x∗−x0∥22/2σ2

k ,

where we have used the Trapezoidal Rule,∫ a+∆x/2

a−∆x/2

f(x)dx ≈ f(a)∆x,

valid for smooth functions.

As it turns out, it is better to look at the probability that the new proposal will not be within ∆V

of the global minimum, this will be 1− gk. Thus, the probability that the new proposals will never

17.4. Annealing Schedule (Boltzmann) 143

be within ∆V of the global minimum is:

∏
k

(1− gk).

It now suffices to show that the probability
∏

k(1−gk) tends to zero, as the number of temperature

updates tends to infinity; this will establish that the probability of generating the global minimum

tends to one:

To Show:
∏
k

(1− gk)→ 0, as k →∞.

We can take logarithms on both sides, then we have to show:

To Show:
∑
k

log(1− gk)→ −∞, as k →∞.

As gk is pre-multiplied by an arbitrary factor ∆V , we take ∆V sufficeintly small, such that log(1−
gk) ≈ −gk, by Taylor approxmimation. Thus, it suffices to show:

To Show:
∑
k

gk →∞, as k →∞. (17.4)

Hence we need to show:

∑
k

gk → ∞, as k →∞,

or
∑
k

1

(2πTk)n/2
e−∥x∗−x0∥22/(2Tk) → ∞, as k →∞,

or
∑
k

[
(log k)n/2

]
e−(log k)∥x∗−x0∥22/(2T0) → ∞, as k →∞,

We choose T0 ‘sufficiently large’, specifically:

∥x∗ − x0∥22
2T0

≤ 1.

In the ‘tail’ of the series, with k ≥ k0, we have:

∞∑
k=k0

[
(log k)n/2

]
e−(log k)∥x∗−x0∥22/(2T0) ≥

∞∑
k=k0

[
(log k)n/2

]
e−(log k),

≥
∞∑

k=k0

[
(log k)n/2

] 1
k
,

≥
∞∑

k=k0

1

k
=∞,

144 Chapter 17. Global Optimization via Simulated Annealing

where the result here is a divergent series because the harmonic series
∑∞

k=1(1/k) is the divergent

harmonic series. Thus, the sum in Equation (17.4) diverges, as required. This establishes the result

that the annealing schedule (17.3) will converge to the global minimum, albeit that infinite iterations

may be required.

