Optimization in Machine Learning (ACM 40990)

Dr Lennon Ó Náraigh

Constrained Optimization \#2

1. Consider the OP

$$
\min (x+y) \quad \text { subject to: }\left\{\begin{array}{l}
c_{1}(\boldsymbol{x}) \geq 0 \\
c_{2}(\boldsymbol{x}) \geq 0
\end{array}\right.
$$

where $c_{1}(\boldsymbol{x})=1-x^{2}-(y-1)^{2}$ and $c_{2}=-y$. Show that the LICQ does not hold at $\boldsymbol{x}_{*}=(0,0)^{T}$.

We have $\nabla c_{1}=-2 x \mathbf{i}-2(y-1) \mathbf{j}$. At $\boldsymbol{x}_{*}=(0,0)^{T}$ we have:

$$
\begin{equation*}
\nabla c_{1}=2 \mathbf{j} \tag{1a}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\nabla c_{2}=-\mathbf{j} \tag{1b}
\end{equation*}
$$

The vectors in Equations (1a) and (1b) are not linearly independent, hence the LICQ does not hold at $\boldsymbol{x}_{*}=(0,0)^{T}$.
2. Consider the feasible set:

$$
\Omega=\left\{\boldsymbol{x} \in \mathbb{R}^{2} \mid y \geq 0, y \leq x^{2}\right\} .
$$

(a) For $\boldsymbol{x}_{*}=(0,0)^{T}$, write down $T_{\Omega}\left(\boldsymbol{x}_{*}\right)$ and $\mathcal{F}_{\Omega}\left(\boldsymbol{x}_{*}\right)$.
(b) Is the LICQ satisfied at \boldsymbol{x}_{*} ?
(c) If the objective function is $f(\boldsymbol{x})=-y$, verify that the KKT conditions are satisfied at \boldsymbol{x}_{*}.
(d) Find a feasible sequence $\left\{\boldsymbol{z}_{k}\right\}_{k=0}^{\infty}$ approaching \boldsymbol{x}_{*} with $f\left(\boldsymbol{z}_{k}\right)<f\left(\boldsymbol{x}_{*}\right)$, for all k.

We have $c_{1}(\boldsymbol{x})=y$ and $c_{2}(\boldsymbol{x})=x^{2}-y$. Both constraints are active at $\boldsymbol{x}_{*}=$ $(0,0)^{T}$.
(a) We therefore have $\nabla c_{1}=\mathbf{j}$ and $\nabla c_{2}=2 x \mathbf{i}-\mathbf{j}$. At \boldsymbol{x}_{*}, we have $\nabla c_{2}=-\mathbf{j}$. Hence,

$$
\mathcal{F}_{\Omega}\left(\boldsymbol{x}_{*}\right)=\left\{\boldsymbol{d} \in \mathbb{R}^{2} \left\lvert\, \begin{array}{c}
\nabla c_{1} \cdot \boldsymbol{x} \geq 0, \\
\nabla c_{2} \cdot \boldsymbol{x} \geq 0
\end{array}\right., \text { at } \boldsymbol{x}_{*}\right\} .
$$

Hence, $d_{2} \geq 0$ and $d_{2} \leq 0$, hence $d_{2}=0$ and thus,

$$
\mathcal{F}_{\Omega}\left(\boldsymbol{x}_{*}\right)=\left\{\left(d_{1}, 0\right) \mid d_{1} \in \mathbb{R}\right\} .
$$

For the tangent cone, we consider the regularized constraint $c_{2, \epsilon}=x^{2}-y+\epsilon$, where $\epsilon>0$ is a small positive parameter. Hence, on the boundary $c_{2 \epsilon}=0$ we have $y=x^{2}+\epsilon$. As $x \rightarrow 0 x_{*}=0$, we linearize the constraint $c_{2 \epsilon}$: the linearized form of the constraint $c_{2, \epsilon}=0$ is simply $y=\epsilon$. Feasible sequences then have the form

$$
\boldsymbol{z}_{k}=\boldsymbol{x}_{*}+t_{k} \boldsymbol{d}+\boldsymbol{\delta}_{k} t_{k},
$$

where $\boldsymbol{\delta}_{k}$ is an error term with $\left\|\boldsymbol{\delta}_{k}\right\| \rightarrow 0$ as $k \rightarrow \infty$. By inspection of the Figure $1, \boldsymbol{d}=\left(d_{1}, d_{2}\right)$, where d_{1} is arbitrary and $0 \leq d_{2} \leq \epsilon$. We take $\epsilon \downarrow 0$ to get:

$$
T_{\Omega}\left(\boldsymbol{x}_{*}\right)=\left\{\left(d_{1}, 0\right) \mid d_{1} \in \mathbb{R}\right\} .
$$

(b) By direct calculation, we have:

$$
\begin{aligned}
\nabla c_{1}\left(\boldsymbol{x}_{*}\right) & =\mathbf{j}, \\
\nabla c_{2}\left(\boldsymbol{x}_{*}\right) & =-\mathbf{j},
\end{aligned}
$$

these are not linearly independent, so the LICQ does not hold.
Remark: From class notes, we know that:

$$
\mathrm{LICQ} \Longrightarrow T_{\Omega}\left(\boldsymbol{x}_{*}\right)=\mathcal{F}_{\Omega}\left(\boldsymbol{x}_{*}\right) .
$$

Figure 1: Construction of the tangent cone at $\boldsymbol{x}_{*}=(0,0)^{T}$

The contrapositive statement is:

$$
\text { LICQ does not hold } \Longleftarrow T_{\Omega}\left(\boldsymbol{x}_{*}\right) \neq \mathcal{F}_{\Omega}\left(\boldsymbol{x}_{*}\right) \text {. }
$$

These are the only two statements we can be sure about a priori. So, just because the LICQ does not hold, that does not tell us anything about $T_{\Omega}\left(\boldsymbol{x}_{*}\right)$ and $\mathcal{F}_{\Omega}\left(\boldsymbol{x}_{*}\right)$.
(c) We have $f(\boldsymbol{x})=-y$, so

$$
\mathcal{L}=-y-\lambda_{1} y-\lambda_{2}\left(x^{2}-y\right) .
$$

The KKT conditions here are:

$$
\left\{\begin{array}{l}
\nabla_{x} \mathcal{L}\left(\boldsymbol{x}_{*}, \lambda_{1}^{*}, \lambda_{2}^{*}\right)=0, \\
\text { No Equality Constraints } \\
c_{1}\left(\boldsymbol{x}_{*}\right) \geq 0, c_{2}\left(\boldsymbol{x}_{*}\right) \geq 0 \\
\lambda_{1}^{*} \geq 0, \lambda_{2}^{*} \geq 0 \\
\lambda_{1}^{*} c_{1}\left(\boldsymbol{x}_{*}\right)=0, \lambda_{2}^{*} c_{2}\left(\boldsymbol{x}_{*}\right)=0 .
\end{array}\right.
$$

We have $\nabla_{x} \mathcal{L}=0$, hence,

$$
\begin{equation*}
0=\frac{\partial \mathcal{L}}{\partial x}=-2 \lambda_{2} x, \quad 0=\frac{\partial \mathcal{L}}{\partial y}=\left(-\lambda_{1}-1\right)+\lambda_{2} \tag{2}
\end{equation*}
$$

KKT2 is satisfied automatically. Both constraints are active, so KKT3 is satisfied, and so is KKT5. We therefore solve for λ_{1}^{*} and λ_{2}^{*} in Equation (2) to verify KKT4.
From Equation (2) we have $\lambda_{2} x=0$ and $x=x_{*}=0$, hence λ_{2} is undetermined. From the same equation, we have $\lambda_{1}+1=\lambda_{2}$. As the LICQ is not satisfied, the Lagrange multipliers are not necessarily unique. So the valid (non-unique) Lagrange multipliers satisfying KKT 1-5 are:

$$
\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)=\left\{\left(\lambda_{1}, \lambda_{2}\right) \mid \lambda_{1} \geq 0, \lambda_{2}=\lambda_{1}+1\right\} .
$$

(d) By inspection, we consider a curve

$$
\overrightarrow{(\alpha)}=\left(\alpha, \alpha^{2}\right)^{T}
$$

which is on the boundary of Ω satisfying $c_{2}(\boldsymbol{x})=0$ and $c_{1}(\boldsymbol{x} \geq 0)$. We introduce:

$$
\widetilde{f}(\alpha)=f(\boldsymbol{x}(\alpha))=y(\alpha)=-\alpha^{2} .
$$

We have $f(\alpha)<0$ for all $\alpha \neq 0$. A feasible sequence \boldsymbol{z}_{k} approaching \boldsymbol{x}_{*} with $f\left(\boldsymbol{z}_{k}\right)>f\left(\boldsymbol{x}_{*}\right)$ is therefore:

$$
\boldsymbol{z}_{k}=\boldsymbol{x}\left(\alpha_{k}\right), \quad \alpha_{k}= \pm 1 / k, \quad k \in\{1,2, \cdots\} .
$$

See Figure 2.

Figure 2: Construction of feasible sequences \boldsymbol{z}_{k} such that $\boldsymbol{z}_{k} \rightarrow \boldsymbol{x}_{*}=(0,0)^{T}$ as $k \rightarrow \infty$
3. Consider the half-space defined by:

$$
H_{\alpha}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid\langle\boldsymbol{a}, \boldsymbol{x}\rangle+\alpha \geq 0\right\}
$$

where $\boldsymbol{a} \in \mathbb{R}^{n}$ is a constant non-zero vector and $\alpha \in \mathbb{R}$ is a constant scalar. Formulate and solve the OP for finding the point $\boldsymbol{x} \in H_{\alpha}$ with the smallest Euclidean norm.

The OP to minimize is:

$$
\min f(\boldsymbol{x}), \quad f(\boldsymbol{x})=\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}
$$

subject to $c_{1}(\boldsymbol{x})$ geq 0 , where

$$
c_{1}(\boldsymbol{x})=\sum_{i=1}^{n} a_{i} x_{i}+\alpha .
$$

As such, we introduce the Lagrangian

$$
\mathcal{L}=\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}-\lambda\left(\sum_{i=1}^{n} a_{i} x_{i}+\alpha\right) .
$$

We have $\partial \mathcal{L} / \partial x_{i}=x_{i}-\lambda a_{i}$. We therefore have:

- KKT1: $x_{i}-\lambda a_{i}=0$.
- KKT2: No equality constraints.
- KKT3: $\sum_{i} x_{i} a_{i}+\alpha \geq 0$.
- KKT4: $\lambda \geq 0$.
- KKT5: $\lambda\left(\sum_{i} x_{i} a_{i}+\alpha\right)=0$.

Thus,

- KKT1 gives $x_{i}=\lambda a_{i}$.
- KKT3 gives $\sum_{i} a_{i} x_{i}+\alpha \geq 0$, hence:

$$
\lambda \sum_{i} a_{i}^{2}+\alpha \geq 0 .
$$

- KKT5 therefore becomes:

$$
\lambda\left(\lambda \sum_{i} a_{i}^{2}+\alpha\right) \geq 0
$$

So a solution is:

$$
\lambda= \begin{cases}-\alpha / \sum a_{i}^{2}, & \alpha<0(\text { Active constraint }) \\ 0, & \alpha>0 \text { (Inactive constraint) } .\end{cases}
$$

When $\lambda=0$ we have $\boldsymbol{x}=0$ (Case 1). When $\lambda \neq 0$ we have:

$$
\boldsymbol{x}=\frac{\alpha \boldsymbol{a}}{\sum_{i} a_{i}^{2}} \text { (Case 2). }
$$

This makes geometric sense: Case 1 is illustrated in Figure 3. and here \boldsymbol{x}_{*} is the shortest distance between the line (plane) $\langle\boldsymbol{x}, \boldsymbol{a}\rangle+\alpha=0$ and the origin. In contrast, Case 2 is illustrated in Figure 4. Now, the origin is in the feasible set, so the feasible vector of shortest distance is the zero vector.

Figure 3: Simple illustration of Case 1 in 2D for the constraint equation $a_{1} x+y+\alpha=0$

Figure 4: Simple illustration of Case 2 in 2D for the constraint equation $a_{1} x+y+\alpha=0$
4. Consider the following modification of the example in class notes. Her, t is a parameter that is fixed prior to solving the problem:

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{2}} f(\boldsymbol{x}),
$$

where

$$
f(\boldsymbol{x})=\left(x-\frac{3}{2}\right)^{2}+(y-t)^{4},
$$

subject to:

$$
\left[\begin{array}{l}
1-x-y \\
1-x+y \\
1+x-y \\
1+x+y
\end{array}\right] \geq 0
$$

(a) For what values of t does the point $\boldsymbol{x}_{*}=(1,0)^{T}$ satisfy the KKT conditions?
(b) Show that when $t=1$, only the first constraint is active at the solution and find the solution.

We have:
$\mathcal{L}=\left(x-\frac{3}{2}\right)^{2}+(y-t)^{4}-\lambda_{1}(1-x-y)-\lambda_{2}(1-x+y)-\lambda_{3}(1+x-y)-\lambda_{4}(1+x+y)$.
Thus,

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x}=2(x-3 / 2)+\lambda_{1}+\lambda_{2}-\lambda_{3}-\lambda_{4} \\
& \frac{\partial \mathcal{L}}{\partial y}=4(y-t)^{3}+\lambda_{1}-\lambda_{2}+\lambda_{3}-\lambda_{4}
\end{aligned}
$$

We solve $\nabla \mathcal{L}\left(\boldsymbol{x}_{*}\right)=0$, where $\boldsymbol{x}_{*}=(0,0)^{T}$. KKT1 then becomes:

$$
\text { KKT1 : } \begin{cases}\lambda_{1}+\lambda_{2}-\lambda_{3}-\lambda_{4}, & =1 \\ \lambda_{1}-\lambda_{2}+\lambda_{3}-\lambda_{4}, & =-4(-t)^{3} .\end{cases}
$$

KKT5 gives: $\lambda_{i} c_{i}=0$, hence:

$$
\lambda_{1} \times 0=0, \quad \lambda_{2} \times 0=0, \quad \lambda_{3}=0, \quad \lambda_{4}=0
$$

So only c_{1} and c_{2} are active. Hence:

$$
\begin{aligned}
\lambda_{1}+\lambda_{2} & =1, \\
\lambda_{1}-\lambda_{2} & =-4(-t)^{3},
\end{aligned}
$$

hence $2 \lambda_{1}=1-4(-t)^{3}$. We require $\lambda_{1} \geq 0$.

- If $t \geq 0$ we are fine, as then $2 \lambda_{1}=1-(-1)^{3} t^{3} \geq 0$.
- If $t \leq 0$, we have $-t=|t|$, and we require $2 \lambda 1=1-4|t|^{3} \geq 0$, hence $|t| \leq 1 / 4^{1 / 3}$,

So overall we require:

$$
t \geq-\frac{1}{4^{1 / 3}} .
$$

Furthermore,

$$
\lambda_{2}=1-\lambda_{1},
$$

hence

$$
\begin{aligned}
\lambda_{2} & =1-\lambda_{1}, \\
& =1-\left[\frac{1}{2}-\frac{1}{2} 2(-t)^{3}\right], \\
& =\frac{1}{2}+2(-t)^{3} .
\end{aligned}
$$

We also require $\lambda_{2} \geq 0$, which by the same reasoning as before gives $t \leq 1 / 4^{1 / 3}$ so overall, we require:

$$
-\frac{1}{4^{1 / 3}} \leq t \leq \frac{1}{4^{1 / 3}} .
$$

For part (ii) we first use an elementary method. Using geometric reasoning, we guess that the solution is $x_{*} \in L_{1}$, where L_{1} is the line $y=1-x$. We have (with $t=1$):

$$
\begin{aligned}
\widetilde{f}(x) & =f(x, y=1-x), \\
& =\left(x-\frac{3}{3}\right)^{2}+x^{4}, \\
& =x^{4}+x^{2}-3 x+\frac{9}{4} .
\end{aligned}
$$

A plot of $\tilde{f}(x)$ reveals a minimum x_{*} less than one (Figure 5). Using ordinary calculus, the minimum must satisfy $\widetilde{f^{\prime}}(x)=0$, hence

$$
\begin{equation*}
2 x^{3}+x-\frac{3}{2}=0 . \tag{3}
\end{equation*}
$$

Using a numerical method (e.g. Wolfram Alpha), we obtain a the minimum x_{*} :

$$
x_{*} \approx 0.728 .
$$

We now show compute the minimum using the KKT conditions. We solve $\nabla_{x} \mathcal{L}=0$. We have:

$$
\begin{aligned}
2(x-3 / 2)+\lambda_{1}+\lambda_{2}-\not \chi_{3}-\not \chi_{4} & =0, \\
4(y-1)^{3}+\lambda_{1}-\lambda_{2}+\not \chi_{3}-\not \chi_{4} & =0 .
\end{aligned}
$$

Introduce $X=x-3 / 2$ and $Y=y-1$. So we have:

$$
\begin{aligned}
\lambda_{1}+\lambda_{2} & =-2 X, \\
\lambda_{1}-\lambda_{2} & =-4 Y^{3} .
\end{aligned}
$$

Hence,

$$
\lambda_{1}=-X-2 Y^{3}, \quad \lambda_{2}=-X+2 Y^{3} .
$$

Figure 5: Plot of $\widetilde{f}(x)$ on the interval $[0,1]$

Figure 6: Allowed region where X and Y satisfy $X \leq-2 Y^{3}$ and $X \leq 2 Y^{3}$.

We require $\lambda_{1} \geq 0$ and $\lambda_{2} \geq 0$, hence

$$
X \leq-2 Y^{3}, \quad X \leq 2 Y^{3}
$$

The allowed region is shown in Figure 6 Overall therefore, $X \leq-2|Y|^{3}$.
We now look at the complementarity conditions, starting with CC1:

$$
\begin{aligned}
\lambda(1-x-y) & =0, \\
\lambda_{1}[-x-(y-1)] & =0, \\
\lambda_{1}[-(x-3 / 2)-(y-1)-3 / 2] & =0, \\
\lambda_{1}[-X-Y-3 / 2] & =0 .
\end{aligned}
$$

But $\lambda_{1}=-X-2 Y^{3}$, hence:

$$
\left(x+2 Y^{3}\right)\left(X_{Y}+3 / 2\right)=0, \quad \text { CC1 }
$$

Similarly, we look at CC2:

$$
\begin{aligned}
\lambda_{1}(1-x+y) & =0, \\
\lambda_{2}[-(x-1-1 / 2)-1 / 2+(y-1)+1] & =0, \\
\lambda_{2}[-X+Y+1 / 2] & =0
\end{aligned}
$$

But $\lambda_{2}=\lambda_{2}=-X+2 Y^{3}$, hence:

$$
\left(2 Y^{3}-X\right)(X-Y-1 / 2)=0, \quad \text { CC2 }
$$

We look at a particular solution for CC1:

$$
X+Y+3 / 2=0
$$

hence $y=1-x$. Then, to make CC2 hold, we require:

$$
2 Y^{3}=X
$$

hence:

$$
\begin{aligned}
2 Y^{3} & =X, \\
2(y-1)^{3} & =x-3 / 2, \\
2(1-x-1)^{3} & =x-3 / 2, \\
2(-x)^{3} & =x_{3} / 2, \\
2 x^{3}+x-3 / 2=0 &
\end{aligned}
$$

This is exactly Equation (3), so the minimum is at

$$
\left(x_{*}, 1-x_{*}\right), \quad x_{*} \approx 0.728
$$

which is the same answer we got using the elementary method.
5. Solve the OP in Question 4 (part (ii)) numerically, using Matlab or Python. Compare your answer with the answer obtained previously.

