Optimization in Machine Learning

(ACM 40990)

Dr Lennon O Naraigh

Constrained Optimization #2

1. Consider the OP

C1 (15) Z 07

min(x + subject to:
ety s {cQ(w) >0,

where ¢;(z) =1—2? — (y — 1)? and ¢; = —y. Show that the LICQ does not
hold at =, = (0,0).

We have Ve, = =221 — 2(y — 1)j. At z, = (0,0)7 we have:
Vcl = 2j (13)

Also,
VCQ == —J (].b)

The vectors in Equations (1a) and (1b) are not linearly independent, hence the
LICQ does not hold at x, = (0,0)7.
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2. Consider the feasible set:
Q={zcR?y>0,y<a2’}

(a) For =, = (0,0)T, write down T () and Fq(x.).
(b) Is the LICQ satisfied at «,?

(c) If the objective function is f(x) = —y, verify that the KKT conditions
are satisfied at x..

(d) Find a feasible sequence {z;}72, approaching x. with f(zx) < f(x.),
for all k.

We have ci(x) = y and cy(x) = 22 — y. Both constraints are active at x, =
(0,0)T.

(a) We therefore have Ve; = j and Ve = 221 — j. At ., we have Ve, = —j.

Hence,
Ver-ax >0
_ 2 1 >0,
Falz,) = {dER | Vey 2 >0 ,at w*}

Hence, dy > 0 and dy < 0, hence d, = 0 and thus,

Fa(x,) ={(d1,0)|d; € R}.

For the tangent cone, we consider the regularized constraint c; = 2?2 —y+e,
where € > 0 is a small positive parameter. Hence, on the boundary ¢, = 0
we have y = 22 + €. As v — Ox, = 0, we linearize the constraint cy.: the
linearized form of the constraint ¢y = 0 is simply y = €. Feasible sequences
then have the form

Zrp =Ty + tkd + 5ktk,

where dy, is an error term with ||dx|| — 0 as £ — oo. By inspection of the
Figure 1, d = (d1,ds), where d; is arbitrary and 0 < dy < e. We take e | 0
to get:

TQ(CB*) = {(dl, 0)|d1 € R}

(b) By direct calculation, we have:

VC1($*) = j>
VCQ(m*) = _ja

these are not linearly independent, so the LICQ does not hold.
Remark: From class notes, we know that:

LICQ = To(x.) = Falx,).
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Figure 1: Construction of the tangent cone at =, = (0,0)”

The contrapositive statement is:
LICQ does not hold <= Ty () # Fa(x.).

These are the only two statements we can be sure about a priori. So, just
because the LICQ does not hold, that does not tell us anything about Tq(.)
and Fq(x.).

We have f(x) = —y, so
L=—y—\y— d(z? —1y).
The KKT conditions here are:
(Vo L(x,, N, A;) =0,
No Equality Constraints
Cl(m*) Z 07 C2(m*) Z 0

AL 20,45 20,
(Alei(zs) =0, Ajea(zs) = 0.

We have VL = 0, hence,

o
- Ox

oc

0 ==
Oy

= —2)\2$, 0 = (-)\1 — 1) + )\2 (2)
KKT2 is satisfied automatically. Both constraints are active, so KKT3 is
satisfied, and so is KKT5. We therefore solve for A} and Aj in Equation (2)

to verify KKT4.

From Equation (2) we have Aoz = 0 and x = x, = 0, hence )\, is undeter-
mined. From the same equation, we have A\; + 1 = \5. As the LICQ is not
satisfied, the Lagrange multipliers are not necessarily unique. So the valid
(non-unique) Lagrange multipliers satisfying KKT 1-5 are:

()\T,)\;) - {()\1, )\2)‘)\1 2 0, )\2 - )\1 + 1}
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(d) By inspection, we consider a curve

—

(a) = (a,0®)",

which is on the boundary of 2 satisfying co(x) = 0 and ¢;(x > 0). We
introduce:

fl@) = f(x(a) = y(a) = —a®.

We have f(a) < 0 for all @ # 0. A feasible sequence z; approaching .
with f(zy) > f(x.) is therefore:

z, = x(ay), ar = t£1/k, ke{l,2,---}.

See Figure 2.

Llo)= —o*

N

Figure 2: Construction of feasible sequences z; such that z; — x, = (0,0)7 as k — oo
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3. Consider the half-space defined by:
H, = {x € R"(a,x) + a > 0},

where a € R" is a constant non-zero vector and o € R is a constant scalar.
Formulate and solve the OP for finding the point € H, with the smallest
Euclidean norm.

The OP to minimize is:
minf(z),  fl@) =13 a2
subject to ¢ (x)geq0, where
c(x) = i a;x; + .
i=1
As such, we introduce the Lagrangian
%ixf - A (iaixi +a> .
i=1 i=1

We have 0L/0z; = x; — Aa;. We therefore have:

L

KKT1: z; — \a; = 0.

KKT2: No equality constraints.
KKT3: Y. za; +a > 0.
KKT4: A > 0.

KKT5: XA (>, zia; + o) = 0.

Thus,

o KKT1 gives x; = \a;.
o KKT3 gives ). a;xz; + o > 0, hence:

A Z af +a>0.
o KKT5 therefore becomes:

A ()\Za?+a> > 0.

So a solution is:

)= {—a/ >~ a?, « <0 (Active constraint),

0, a > 0 (Inactive constraint).
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When A = 0 we have = 0 (Case 1). When X # 0 we have:

aa
D a3

This makes geometric sense: Case 1 is illustrated in Figure 3. and here x, is
the shortest distance between the line (plane) (x,a) + o = 0 and the origin. In
contrast, Case 2 is illustrated in Figure 4. Now, the origin is in the feasible set, so
the feasible vector of shortest distance is the zero vector.

(Case 2).

€Xr =
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'\ﬁ;/&’\‘\

Cone

"~

o= (a,,4.>, « <o

ﬁtlx+tj_4— d>o-

@

Figure 3: Simple illustration of Case 1 in 2D for the constraint equation a1z +y+a =0

A DI

A‘K-r—tj_*—olzo,

JU

Figure 4: Simple illustration of Case 2 in 2D for the constraint equation a1z +y+a =0
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4. Consider the following modification of the example in class notes. Her, ¢ is a
parameter that is fixed prior to solving the problem:

miy f(z),

where

subject to:
l—xz—y
l—xz+y
> 0.
l+z—vy =0
l+z+vy

(a) For what values of ¢ does the point z, = (1,0)7 satisfy the KKT condi-
tions?

(b) Show that when t = 1, only the first constraint is active at the solution
and find the solution.

We have:

L=(z-2)+@y—t)'-M1—z—y)—do(l-2+y) = Xs(1+z—y)— As(1+2+y).

Thus,
oL
- = 2($—3/2)+>\1+)\2—)\3—)\4,
ox
oL
= = Ay =1+ A = Ao+ A3 — A\
oy (y—1)°+ X\ 2+ A3 4

We solve VL (z,) = 0, where x, = (0,0)7. KKT1 then becomes:

KKT1 - AMF+A—A3 =N, =1,
A= Ao+ A3 — Ay, = —4(—t)3.

KKT5 gives: \;c; = 0, hence:
)\1)(0:0, )\2)(0:0, )\320, )\4:0
So only ¢; and ¢, are active. Hence:

MAd = 1
M= de = —A(—t),

hence 2)\; = 1 — 4(—t)3. We require \; > 0.

o If t > 0 we are fine, as then 2)\; = 1 — (=1)3¢3 > 0.
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o If t <0, we have —t = |t|, and we require 2\1 = 1 — 4|t]> > 0, hence

|t < 1/4Y3,
So overall we require:
L2~
Furthermore,
A=1— ),
hence
)\2 = 1—)\1,
- 1_[___2( t)]a
= §+2( ) .

We also require Ay > 0, which by the same reasoning as before gives ¢ < 1/4'/3
so overall, we require:
1 1
—ns StS am

For part (ii) we first use an elementary method. Using geometric reasoning, we
guess that the solution is =, € Ly, where Ly is the line y = 1 — 2. We have (with
t=1):

fl@) = flr,y=1-21),
= (x——) + 24,
= zt4 22 3£C+Z.

A plot of f(oc) reveals a minimum x, less than one (Figure 5). Using ordinary
calculus, the minimum must satisfy f’(x) = 0, hence

20+ — 3 =0. (3)
Using a numerical method (e.g. Wolfram Alpha), we obtain a the minimum z,:

T, ~ 0.728.

We now show compute the minimum using the KKT conditions. We solve
V.L = 0. We have:

2 —3/2) + M+ X=X — )X = 0,
Ay—1P 4+ M —+X-X = 0.

Introduce X =x —3/2and Y =y — 1. So we have:

M+ = —2X,
M — Ny = —4Y3

Hence,
A= —X —2Y3, Ay = —X +2Y3,
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Figure 5: Plot of f(x) on the interval [0, 1]
X 2>
\
ea\s'\u‘:_L ‘ \\/ ) F eastl ¢
L J ’
o j

Figure 6: Allowed region where X and Y satisfy X < —2Y3 and X < 2Y?3.

We require Ay > 0 and A\ > 0, hence

X < —2Y3,

X < 2v3.

The allowed region is shown in Figure 6 Overall therefore, X < —2|Y|3.

We now look at the complementarity conditions, starting with CC1:

A [—(x—3/2) —

AMl—z—y) = 0,
M[-z—(y—1)] = 0,
(y-1)-3/2 = 0,
M-X-Y=3/2 = 0

But \; = —X — 2Y3, hence:

(x4 2Y°) (Xy +3/2) =0,

CCL.

10
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Similarly, we look at CC2:

)\1(1—1’+y> 0,
X |—(x—1-1/2)—=1/24+(y—1)+1] = 0,
N [-X+Y+1/2] = 0

But \y = Ay = —X + 2Y?3, hence:

(Y% - X) (X -Y —1/2) =0, cC2.

We look at a particular solution for CC1:
X+Y+3/2=0,
hence y = 1 — x. Then, to make CC2 hold, we require:
2Y3 = X,
hence:

2Y3 = X,
20y —1)* = 2 -3/2,
21—z -1 = x-3/2,
2(—2)* = x3/2,
223 + 2 —3/2=0.
This is exactly Equation (3), so the minimum is at

(T4, 1 — ), T, = 0.728,

which is the same answer we got using the elementary method.

11
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5. Solve the OP in Question 4 (part (ii)) numerically, using Matlab or Python.
Compare your answer with the answer obtained previously.
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