Optimization in Machine Learning (ACM 40990)

Dr Lennon Ó Náraigh

Constrained Optimization #1

1. Consider the OP

$$\min(x+y)$$
 subject to:
$$\begin{cases} c_1(\boldsymbol{x}) \geq 0, \\ c_2(\boldsymbol{x}) \geq 0, \end{cases}$$

where $c_1(\boldsymbol{x}) = 1 - x^2 - (y-1)^2$ and $c_2 = -y$. Show that the LICQ does not hold at $\boldsymbol{x}_* = (0,0)^T$.

2. Consider the feasible set:

$$\Omega = \{ \boldsymbol{x} \in \mathbb{R}^2 | y \ge 0, \ y \le x^2 \}.$$

- (a) For ${m x}_*=(0,0)^T$, write down $T_\Omega({m x}_*)$ and ${m \mathcal F}_\Omega({m x}_*).$
- (b) Is the LICQ satisfied at x_* ?
- (c) If the objective function is f(x) = -y, verify that the KKT conditions are satisfied at x_* .
- (d) Find a feasible sequence $\{m{z}_k\}_{k=0}^\infty$ approaching $m{x}_*$ with $f(m{z}_k) < f(m{x}_*)$, for all k

3. Consider the half-space defined by:

$$H_{\alpha} = \{ \boldsymbol{x} \in \mathbb{R}^n | \langle \boldsymbol{a}, \boldsymbol{x} \rangle + \alpha \ge 0 \},$$

where $a \in \mathbb{R}^n$ is a constant non-zero vector and $\alpha \in \mathbb{R}$ is a constant scalar. Formulate and solve the OP for finding the point $x \in H_{\alpha}$ with the smallest Euclidean norm.

4. Consider the following modification of the example in class notes. Her, t is a parameter that is fixed prior to solving the problem:

$$\min_{\boldsymbol{x} \in \mathbb{R}^2} f(\boldsymbol{x}),$$

where

$$f(x) = (x - \frac{3}{2})^2 + (y - t)^4$$

subject to:

$$\begin{bmatrix} 1-x-y\\ 1-x+y\\ 1+x-y\\ 1+x+y \end{bmatrix} \ge 0.$$

- (a) For what values of t does the point $\boldsymbol{x}_* = (1,0)^T$ satisfy the KKT conditions?
- (b) Show that when t=1, only the first constraint is active at the solution and find the solution.
- 5. Solve the OP in Question 4 (part (ii)) numerically, using Matlab or Python. Compare your answer with the answer obtained previously.