
Optimization Algorithms
(ACM 41030)

Dr Lennon Ó Náraigh

Exercises #6

1. Consider the OP

min(x+ y) subject to:

{
c1(x) ≥ 0,

c2(x) ≥ 0,

where c1(x) = 1− x2 − (y− 1)2 and c2 = −y. Show that the LICQ does not
hold at x∗ = (0, 0)T .

We have ∇c1 = −2xi− 2(y − 1)j. At x∗ = (0, 0)T we have:

∇c1 = 2j. (1a)

Also,
∇c2 = −j. (1b)

The vectors in Equations (1a) and (1b) are not linearly independent, hence the
LICQ does not hold at x∗ = (0, 0)T .
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2. Consider the feasible set:

Ω = {x ∈ R2|y ≥ 0, y ≤ x2}.

(a) For x∗ = (0, 0)T , write down TΩ(x∗) and FΩ(x∗).

(b) Is the LICQ satisfied at x∗?

(c) If the objective function is f(x) = −y, verify that the KKT conditions
are satisfied at x∗.

(d) Find a feasible sequence {zk}∞k=0 approaching x∗ with f(zk) < f(x∗),
for all k.

We have c1(x) = y and c2(x) = x2 − y. Both constraints are active at x∗ =
(0, 0)T .

(a) We therefore have ∇c1 = j and ∇c2 = 2xi− j. At x∗, we have ∇c2 = −j.
Hence,

FΩ(x∗) =

{
d ∈ R2| ∇c1 · d ≥ 0,

∇c2 · d ≥ 0
, at x∗

}
.

Hence, d2 ≥ 0 and d2 ≤ 0, hence d2 = 0 and thus,

FΩ(x∗) = {(d1, 0)|d1 ∈ R}.

For the tangent cone, we consider the regularized constraint c2,ϵ = x2−y+ϵ,
where ϵ > 0 is a small positive parameter. Hence, on the boundary c2 ϵ = 0
we have y = x2 + ϵ. As x → x∗ = 0, we linearize the constraint c2ϵ: the
linearized form of the constraint c2,ϵ = 0 is simply y = ϵ. Feasible sequences
then have the form

zk = x∗ + tkd+ δktk,

where δk is an error term with ∥δk∥ → 0 as k → ∞. By inspection of the
Figure 1, d = (d1, d2), where d1 is arbitrary and 0 ≤ d2 ≤ ϵ. We take ϵ ↓ 0
to get:

TΩ(x∗) = {(d1, 0)|d1 ∈ R}.

(b) By direct calculation, we have:

∇c1(x∗) = j,

∇c2(x∗) = −j,

these are not linearly independent, so the LICQ does not hold.

Remark: From class notes, we know that:

LICQ =⇒ TΩ(x∗) = FΩ(x∗).
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Figure 1: Construction of the tangent cone at x∗ = (0, 0)T

The contrapositive statement is:

LICQ does not hold ⇐= TΩ(x∗) ̸= FΩ(x∗).

These are the only two statements we can be sure about a priori. So, just
because the LICQ does not hold, that does not tell us anything about TΩ(x∗)
and FΩ(x∗).

(c) We have f(x) = −y, so

L = −y − λ1y − λ2(x
2 − y).

The KKT conditions here are:

∇xL(x∗, λ
∗
1, λ

∗
2) = 0,

No Equality Constraints

c1(x∗) ≥ 0, c2(x∗) ≥ 0

λ∗
1 ≥ 0, λ∗

2 ≥ 0,

λ∗
1c1(x∗) = 0, λ∗

2c2(x∗) = 0.

We have ∇xL = 0, hence,

0 =
∂L
∂x

= −2λ2x, 0 =
∂L
∂y

= (−λ1 − 1) + λ2 (2)

KKT2 is satisfied automatically. Both constraints are active, so KKT3 is
satisfied, and so is KKT5. We therefore solve for λ∗

1 and λ∗
2 in Equation (2)

to verify KKT4.

From Equation (2) we have λ2x = 0 and x = x∗ = 0, hence λ2 is undeter-
mined. From the same equation, we have λ1 + 1 = λ2. As the LICQ is not
satisfied, the Lagrange multipliers are not necessarily unique. So the valid
(non-unique) Lagrange multipliers satisfying KKT 1-5 are:

(λ∗
1, λ

∗
2) = {(λ1, λ2)|λ1 ≥ 0, λ2 = λ1 + 1}.
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(d) By inspection, we consider a curve

x(α) = (α, α2)T ,

which is on the boundary of Ω satisfying c2(x) = 0 and c1(x ≥ 0). We
introduce:

f̃(α) = f(x(α)) = y(α) = −α2.

We have f(α) < 0 for all α ̸= 0. A feasible sequence zk approaching x∗
with f(zk) > f(x∗) is therefore:

zk = x(αk), αk = ±1/k, k ∈ {1, 2, · · · }.

See Figure 2.

Figure 2: Construction of feasible sequences zk such that zk → x∗ = (0, 0)T as k → ∞
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3. Consider the half-space defined by:

Hα = {x ∈ Rn|a · x+ α ≥ 0},

where a ∈ Rn is a constant non-zero vector and α ∈ R is a constant scalar.
Formulate and solve the OP for finding the point x ∈ Hα with the smallest
Euclidean norm.

The OP to minimize is:

min f(x), f(x) = 1
2

n∑
i=1

x2
i ,

subject to c1(x) ≥ 0, where

c1(x) =
n∑

i=1

aixi + α.

As such, we introduce the Lagrangian

L = 1
2

n∑
i=1

x2
i − λ

(
n∑

i=1

aixi + α

)
.

We have ∂L/∂xi = xi − λai. We therefore have:

� KKT1: xi − λai = 0.
� KKT2: No equality constraints.
� KKT3:

∑
i xiai + α ≥ 0.

� KKT4: λ ≥ 0.
� KKT5: λ (

∑
i xiai + α) = 0.

Thus,

� KKT1 gives xi = λai.

� KKT3 gives
∑

i aixi + α ≥ 0, hence:

λ
∑
i

a2i + α ≥ 0.

� KKT5 therefore becomes:

λ

(
λ
∑
i

a2i + α

)
≥ 0. (3)

By inspection, a solution of Equation (3) is:

λ =

{
0, α > 0 (Inactive constraint) – Case 1,

−α/
∑

a2i , α < 0 (Active constraint) – Case 2.
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When λ = 0 we have x = 0 (Case 1). When λ ̸= 0 we have:

x = − αa∑
i a

2
i

(Case 2).

This makes geometric sense: Case 1 is illustrated in Figure 3. Here, the origin is
in the feasible set, so the feasible vector of shortest distance is the zero vector.
In contrast, Case 2 is illustrated in Figure 4. Now, x∗ is the shortest distance
between the line (plane) x · a+ α = 0 and the origin.

Figure 3: Simple illustration of Case 1 in 2D for the constraint equation a1x+y+α = 0

Figure 4: Simple illustration of Case 2 in 2D for the constraint equation a1x+y+α = 0
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4. Consider the following modification of the example in class notes. Here, t is a
parameter that is fixed prior to solving the problem:

min
x∈R2

f(x),

where
f(x) =

(
x− 3

2

)2
+ (y − t)4 ,

subject to: 
1− x− y
1− x+ y
1 + x− y
1 + x+ y

 ≥ 0.

(a) For what values of t does the point x∗ = (1, 0)T satisfy the KKT condi-
tions?

(b) Show that when t = 1, only the first constraint is active at the solution
and find the solution.

We have:

L =
(
x− 3

2

)2
+(y − t)4−λ1(1−x−y)−λ2(1−x+y)−λ3(1+x−y)−λ4(1+x+y).

Thus,

∂L
∂x

= 2
(
x− 3

2

)
+ λ1 + λ2 − λ3 − λ4,

∂L
∂y

= 4(y − t)3 + λ1 − λ2 + λ3 − λ4.

We solve ∇xL(x∗) = 0, where x∗ = (1, 0)T . KKT1 then becomes:

KKT1 :

{
λ1 + λ2 − λ3 − λ4, = 1,

λ1 − λ2 + λ3 − λ4, = −4(−t)3.
(4)

Only c1 and c2 are active at x∗ = (1, 0)T . So KKT5 becomes:

λ1 × 0 = 0, λ2 × 0 = 0, λ3 = 0, λ4 = 0.

Hence, Equation (4) becomes:

λ1 + λ2 = 1,

λ1 − λ2 = −4(−t)3,

hence 2λ1 = 1− 4(−t)3. We require λ1 ≥ 0.

� If t ≥ 0 we are fine, as then 2λ1 = 1− (−1)3t3 ≥ 0.
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� If t ≤ 0, we have −t = |t|, and we require 2λ1 = 1 − 4|t|3 ≥ 0, hence
|t| ≤ 1/41/3,

So overall we require:
t ≥ − 1

41/3
.

Furthermore,
λ2 = 1− λ1,

hence

λ2 = 1− λ1,

= 1−
[
1
2
− 1

2
2(−t)3

]
,

= 1
2
+ 2(−t)3.

We also require λ2 ≥ 0, which by the same reasoning as before gives t ≤ 1/41/3

so overall, we require:
− 1

41/3
≤ t ≤ 1

41/3
.

For part (b) we set t = 1 in the OP:

f(x) =
(
x− 3

2

)2
+ (y − 1)4 .

We first use an elementary method to minimize f(x) subject to the constraints.
Using geometric reasoning, we guess that the solution is x∗ ∈ L1, where L1 is the
line y = 1− x. We have (with t = 1):

f̃(x) = f(x, y = 1− x),

=
(
x− 3

2

)2
+ x4,

= x4 + x2 − 3x+ 9
4
.

A plot of f̃(x) reveals a minimum x∗ less than one (Figure 5). Using ordinary

calculus, the minimum must satisfy f̃ ′(x) = 0, hence

2x3 + x− 3
2
= 0. (5)

Using a numerical method (e.g. Wolfram Alpha), we obtain a the minimum x∗:

x∗ ≈ 0.728.

We now show compute the minimum using the KKT conditions. Since t >
1/41/3, only the c1-constraint is active. Hence, KKT1 becomes:

2
(
x− 3

2

)
+ λ1 +��λ2 −��λ3 −��λ4 = 0,

4(y − 1)3 + λ1 −��λ2 +��λ3 −��λ4 = 0.

Eliminating λ1 gives:
−2
(
x− 3

2

)
+ 4(y − 1)3 = 0. (6)
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Figure 5: Plot of f̃(x) on the interval [0, 1]

We next look at the complementarity condition,

λ1(1− x− y) = 0.

If λ1 = 0, then, referring back to KKT1 we have:

2
(
x− 3

2

)
= 0,

4(y − 1)3 = 0.

This would give x = 3/2 and y = 1. But this point is infeasible. Therefore, we
must have λ1 ̸= 0 and hence,

1− x− y = 0.

Re-arranging and cubing both sides gives:

(−x)3 = (y − 1)3.

Subbing in to Equation (6) gives:

−2
(
x− 3

2

)
+ 4(−x)3 = 0.

Re-arranging gives:
2x3 + x− 3

2
= 0.

This is exactly Equation (5), so the minimum is at

(x∗, 1− x∗), x∗ ≈ 0.728,

which is the same answer we got using the elementary method.
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5. Solve the OP in Question 4 (part (ii)) numerically, using Matlab or Python.
Compare your answer with the answer obtained previously.

Code listings are provided below. Note that the linear constraints are of the form
Ax ≤ b.

f u n c t i o n x s t a r=op1 ( t )

x0 = [ 0 ; 0 ] ;

A=[1 ,1;1 ,=1;=1 ,1;=1 ,=1];
b = [ 1 ; 1 ; 1 ; 1 ] ;

f v a l=@myfun ;

x s t a r=fmincon ( f v a l , x0 ,A , b ) ;

f u n c t i o n y=myfun ( x )
y=(x (1)=(3/2))ˆ2+( x(2)= t ) ˆ 4 ;

end

end

Execution of the code gives the same results as before:

Figure 6: Code listings for the OP in Question 5

A plot of the optimum solution as a function of t is shown in Figure 7. The plot
shows a sharp jump at t = ±4−1/3, consistent with the analysis in Question 4.
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Figure 7: Plot showing x∗(t) and y∗(t), generated numerically from the code listings in
Question 5

6. Formulate the dual problem for the following OPs:

(a) Minimize:
min
x∈Rn

⟨c,x⟩, subject to Ax− b ≥ 0.

Here, c ∈ Rn is a constant vector, b ∈ Rm is a constant vector, and
A ∈ Rm×n is a contant matrix.

(b) Minimize:
min
x∈Rn

1
2
⟨x, Gx⟩, subject to Ax− b ≥ 0.

Here, A and b are as before, and G ∈ Rn×n is a constant symmetric
positive-definite matrix.

For part (a), take:
L(x,λ) = ⟨c,x⟩ − ⟨λAx− b⟩,

where λ ∈ Rm is a variable. We attempt to find the minimum of L(·,λ). We do
this by computing ∇xL and by attempting to set ∇xL = 0. We have:

∇xL(x,λ) = c− ATλ.

If this is non-zero, we can take x = −ρ
(
c− ATλ

)
, which gives:

L(x,λ) = −ρ∥
(
c− ATλ

)
∥22 + ⟨λ, b⟩.
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Taking ρ → ∞, the quantity L(x,λ) decreases without lower bound. Therefore, in
order to bound L(x,λ) below and have∇xL = 0, we require∇xL = c−ATλ = 0.
We substitute this relation into L(x,λ) to get:

L(x,λ) = ⟨c,x⟩ − ⟨λ, Ax⟩+ ⟨λ, b⟩,
= ⟨c,x⟩ − ⟨AT ,λ,x⟩+ ⟨λ, b⟩,
= ⟨�����

c− ATλ,x⟩+ ⟨λ, b⟩.

Thus, we have:
q(λ) = inf

x
L(x,λ) = ⟨λ, b⟩.

The dual problem is therefore:

max
λ∈Rm

⟨λ, b⟩ subject to λ ≥ 0 and ATλ = c.

For part (b) we form L(x,λ) as follows:

L(x,λ) = 1
2
⟨x, G,x⟩ − ⟨λ, Ax− b⟩.

As before, we have λ ∈ Rm.

We compute ∇xL:
∇xL(x,λ) = Gx− ATλ.

We set ∇xL = 0 to get:
x = x = G−1ATλ.

Of course, the inverse G−1 exists because G is positive-definite.

We have:

L(x,λ) = 1
2
⟨G−1ATλ,����

GG−1ATλ⟩ − ⟨λ, AG−1ATλ⟩+ ⟨λ, b⟩,
= 1

2
⟨ATλ, G−1ATλ⟩ − ⟨ATλ, G−1ATλ⟩+ ⟨λ, b⟩,

= −1
2
⟨ATλ, G−1ATλ⟩+ ⟨λ, b⟩.

Hence:
q(λ) = −1

2
⟨ATλ, G−1ATλ⟩+ ⟨λ, b⟩.

The dual problem is therefore:

max
λ∈Rn

[
−1

2
⟨ATλ, G−1ATλ⟩+ ⟨λ, b⟩

]
subject to λ ≥ 0.
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