Optimization Algorithms
(ACM 41030)

Dr Lennon O Naraigh
Exercises #6

1. Consider the OP

C1 (15) Z 07

min(x + subject to:
ety s {cQ(w) >0,

where ¢;(z) =1—2? — (y — 1)? and ¢; = —y. Show that the LICQ does not
hold at =, = (0,0).

We have Ve, = =221 — 2(y — 1)j. At z, = (0,0)7 we have:

Vcl = 2j (13)
Also,
VCQ == —J (].b)

The vectors in Equations (1a) and (1b) are not linearly independent, hence the
LICQ does not hold at x, = (0,0)7.
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2. Consider the feasible set:
Q={zcR?y>0,y<a2’}

(a) For =, = (0,0)T, write down T () and Fq(x.).
(b) Is the LICQ satisfied at «,?
(c) If the objective function is f(x) = —y, verify that the KKT conditions

are satisfied at x..
(d) Find a feasible sequence {z;}72, approaching x. with f(zx) < f(x.),
for all k.

We have ci(x) = y and cy(x) = 22 — y. Both constraints are active at x, =
(0,0)T.

(a) We therefore have Ve; = j and Ve = 221 — j. At ., we have Ve, = —j.
Hence,

d>
Fg(w*):{d€R2| Ver-d 20, tw*}.

VCQ -d Z 0 >3
Hence, dy > 0 and dy < 0, hence dy = 0 and thus,

Fa(x,) ={(d1,0)|d; € R}.

For the tangent cone, we consider the regularized constraint c; = 2?2 —y+e,
where ¢ > 0 is a small positive parameter. Hence, on the boundary ¢, = 0
we have y = 22 + €. As v — x, = 0, we linearize the constraint cy.: the
linearized form of the constraint ¢y = 0 is simply y = €. Feasible sequences
then have the form

Zr =Ty + tkd + 5ktk,

where dy, is an error term with ||dx|| — 0 as £ — oo. By inspection of the
Figure 1, d = (d1,ds), where d; is arbitrary and 0 < dy < e. We take e | 0
to get:

TQ(CB*) = {(dl, 0)|d1 € R}

(b) By direct calculation, we have:

VC1($*) = j>
VCQ(m*) = _ja

these are not linearly independent, so the LICQ does not hold.
Remark: From class notes, we know that:

LICQ = To(x.) = Falx,).
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Figure 1: Construction of the tangent cone at x, = (0,0)7

The contrapositive statement is:
LICQ does not hold <= Tq(x.) # Fal(x,).

These are the only two statements we can be sure about a priori. So, just
because the LICQ does not hold, that does not tell us anything about Tq(.)
and Fq(x.).

We have f(x) = —y, so
L=—y—\y— do(2* —1).
The KKT conditions here are:
(V. L(xs, A, AL) =0,
No Equality Constraints
Cl(w*) >0, CQ(w*) >0
\/\fcl(a:*) = 07 )\362(33*) = 0.

We have VL = 0, hence,

o i
ox oy

KKT?2 is satisfied automatically. Both constraints are active, so KKT3 is

satisfied, and so is KKT5. We therefore solve for A} and Aj in Equation (2)
to verify KKT4.

From Equation (2) we have sz = 0 and x = x,. = 0, hence )\, is undeter-
mined. From the same equation, we have \{ + 1 = Xy. As the LICQ is not
satisfied, the Lagrange multipliers are not necessarily unique. So the valid
(non-unique) Lagrange multipliers satisfying KKT 1-5 are:

(AL A5) = {1, A2)[ A = 0,00 = Ay + 1}

0 == —2)\2$, 0 == (-Al — 1) + )\2 (2)
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(d) By inspection, we consider a curve

z(a) = (a,0”)",

which is on the boundary of 2 satisfying co(x) = 0 and ¢;(x > 0). We
introduce:

fla) = f(@(a) = y(a) = —a”.
We have f(a) < 0 for all @ # 0. A feasible sequence z;, approaching x,
with f(zx) > f(z.) is therefore:

zk:m(ak), Oék::i:l/k', kE{l,Q,}

See Figure 2.
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Figure 2: Construction of feasible sequences z; such that z; — x, = (0,0)” as k — oo
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3. Consider the half-space defined by:
H,={z eR"a -z +a>0},

where a € R" is a constant non-zero vector and « € R is a constant scalar.
Formulate and solve the OP for finding the point * € H, with the smallest
Euclidean norm.

The OP to minimize is:
min f(z),  flx)=1) af,
subject to ¢1(x) > 0, where
c(x) = i a;x; + .
i=1
As such, we introduce the Lagrangian
%imf — A (Zn:aixi —i—a) .
i=1 i=1

We have 0L/0x; = x; — Aa;. We therefore have:

L

KKTL1: z; — Aa; = 0.

KKT2: No equality constraints.
KKT3: >, za; + > 0.
KKT4: A > 0.

Thus,

o KKT1 gives x; = \a;.
e KKT3 gives ), a;z; + a > 0, hence:

A Z a? +a>0.
o KKT5 therefore becomes:

A()\Za?+a>20. (3)

By inspection, a solution of Equation (3) is:

)= 0, a > 0 (Inactive constraint) — Case 1,
—a/Y a?, a <0 (Active constraint) — Case 2.
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When A = 0 we have = 0 (Case 1). When X # 0 we have:

aa
x = ——= (Case 2).
i &
This makes geometric sense: Case 1 is illustrated in Figure 3. Here, the origin is
in the feasible set, so the feasible vector of shortest distance is the zero vector.

In contrast, Case 2 is illustrated in Figure 4. Now, x, is the shortest distance
between the line (plane) x - a + a = 0 and the origin.

% i:{a,,4.>)o(7o

K'K-ftj_-(—dZU.
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Figure 3: Simple illustration of Case 1 in 2D for the constraint equation a1z +y+a =0
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Figure 4: Simple illustration of Case 2 in 2D for the constraint equation a1z +y+a =0
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4. Consider the following modification of the example in class notes. Here, t is a
parameter that is fixed prior to solving the problem:

min f(z),

where

subject to:
l—2z—y
l—z+y
14+z—y
l+2+y

(a) For what values of ¢ does the point x, = (1,0)7 satisfy the KKT condi-
tions?

(b) Show that when t = 1, only the first constraint is active at the solution
and find the solution.

We have:

L= (z—=3)+@y—t)'—M(1—2—y)=X(1—z4y) = As(1+z—1y) = As(1+2+Y).

Thus,
oL :
= = 2(z=3) + X4+ X— A3 — Ay,
oL
8y (y ) + A1 2+ A3 4

We solve V,L(x,) = 0, where =, = (1,0)T. KKT1 then becomes:

kKT JM A2 — =M =1 (4)
)\1 — )\2 + )\3 — )\4, = —4(—t)3.

Only ¢; and ¢, are active at x, = (1,0)7. So KKT5 becomes:
/\1><0:07 )\QXO:O, )\3:0, /\4:0
Hence, Equation (4) becomes:

MAEde = 1
M= X = —4(—t)?,

hence 2)\; = 1 — 4(—t)3. We require \; > 0.

e If £ > 0 we are fine, as then 2\; =1 — (—1)3t3 > 0.
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e If t <0, we have —t = |t|, and we require 2A\1 = 1 — 4[t]> > 0, hence

t] < 1/413,
So overall we require:
t> —an.
Furthermore,
A2 =1- Al?
hence
)\2 — 1 — )\1,
- 1- - b,
= 1+2(-t)%

We also require Ay > 0, which by the same reasoning as before gives ¢ < 1/4'/3
so overall, we require:
1 1
—am St qn

For part (b) we set ¢t = 1 in the OP:

fla)=(z— )"+ (-1

We first use an elementary method to minimize f(x) subject to the constraints.
Using geometric reasoning, we guess that the solution is z, € Ly, where L, is the
line y =1 — x. We have (with t = 1):

fx) = flr,y=1-2),
= (z-2)"+a",
= 2'+2° -3+ 4.

A plot of f(z) reveals a minimum x, less than one (Figure 5). Using ordinary
calculus, the minimum must satisfy f'(z) = 0, hence

20+ — 3 =0. (5)
Using a numerical method (e.g. Wolfram Alpha), we obtain a the minimum z,:

T, ~ 0.728.

We now show compute the minimum using the KKT conditions. Since ¢ >
1/4/3, only the ¢,-constraint is active. Hence, KKT1 becomes:

2o =)+ M MMM = 0,
-1+ M-+ - X = 0

Eliminating A, gives:
2z - +4@y—-1)7°=0. (6)
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Figure 5: Plot of f(x) on the interval [0, 1]

We next look at the complementarity condition,
M(1—z—y)=0.
If Ay =0, then, referring back to KKT1 we have:

2(x—2) = o,

4(y—1)° = 0.

This would give x = 3/2 and y = 1. But this point is infeasible. Therefore, we
must have A\; # 0 and hence,

l—2z—-—y=0.

Re-arranging and cubing both sides gives:

Subbing in to Equation (6) gives:
—2(z—3) +4(—2)* = 0.

Re-arranging gives:
20+ — 3 =0.

This is exactly Equation (5), so the minimum is at
(T4, 1 — ), x, ~ 0.728,

which is the same answer we got using the elementary method.
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5. Solve the OP in Question 4 (part (ii)) numerically, using Matlab or Python.
Compare your answer with the answer obtained previously.

Code listings are provided below. Note that the linear constraints are of the form
Ax < b.

function x_star=opl(t)
x0=[0;0];

A=[1,1;1,-1;-1,1;—-1,-1];
b=[1;1;1;1];

fval=0myfun;

x_star=fmincon(fval ,x0,A,b);

function y=myfun(x)
y=(x(1)=(3/2)) "2+ (x(2)—t)"4;

end

end

Execution of the code gives the same results as before:

>> x_star=opl(1)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the value of the optimality tolerance,

and constraints are satisfied to within the value of the constraint tolerance.

<stopping criteria details>

%_star =

0.7281
0.2719

Figure 6: Code listings for the OP in Question 5

A plot of the optimum solution as a function of ¢ is shown in Figure 7. The plot
shows a sharp jump at t = +4-/3, consistent with the analysis in Question 4.

10
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Figure 7: Plot showing z.(t) and . (t), generated numerically from the code listings in
Question 5

6. Formulate the dual problem for the following OPs:

(a) Minimize:

m%n(c, x), subject to Ax — b > 0.
reR?

Here, ¢ € R™ is a constant vector, b € R™ is a constant vector, and
A € R™*™ js a contant matrix.
(b) Minimize:

min 5 (x, Gzx), subject to Az —b > 0.
xcR"

Here, A and b are as before, and G € R™" is a constant symmetric
positive-definite matrix.

For part (a), take:
‘C(mv A) = <va> - <AA$ - b>a

where A € R™ is a variable. We attempt to find the minimum of L£(-, X). We do
this by computing V£ and by attempting to set V£ = 0. We have:

V.L(x,A) =c— AT
If this is non-zero, we can take x = —p (c — AT)\), which gives:

Liw, A) = —pl| (e = ATX) [ + (A.b).

11
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Taking p — o0, the quantity £(x, A) decreases without lower bound. Therefore, in
order to bound £(x, A) below and have V£ = 0, we require V, £ = c— AT\ = 0.
We substitute this relation into £(x, ) to get:

L(x, X) (c,x) — (A, Azx) + (A, b),
= <C> w> - <AT’ A, :I)) + <)‘7 b>>

= (c—AFX x) + (A, b).

Thus, we have:

g(A) =1inf L(x, A) = (A, b).
The dual problem is therefore:

;\nﬁx()\, b) subject to A > 0 and A" A =c.
e m

For part (b) we form L(x, A) as follows:
L(z,A) = 3(x, G, x) — (X, Az — b).

As before, we have A € R™.

We compute V,L:
V.L(x,A) =Gz — AT\,

We set VL = 0 to get:
x=x2=G AT

Of course, the inverse G~! exists because G is positive-definite.

We have:
LT, A) = HGTAXNGETATX) — (A, AGT'A™A) + (A, D),
= AN GTTATA) — (ATX,GTTATA) 4+ (A, b),
— (AT, GTTATA) + (A, b).
Hence:

g(A) = —L(ATX, GTPATX) + (A, b).

The dual problem is therefore:

(ATX,G7"A"X) + (X, b)] subject to A > 0.

1
IHaX,L—Q

AERn
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