

Optimization Algorithms

(ACM 41030)

Dr Lennon Ó Náraigh

Exercises #6

1. Consider the OP

$$\min(x + y) \quad \text{subject to:} \quad \begin{cases} c_1(\mathbf{x}) \geq 0, \\ c_2(\mathbf{x}) \geq 0, \end{cases}$$

where $c_1(\mathbf{x}) = 1 - x^2 - (y - 1)^2$ and $c_2 = -y$. Show that the LICQ does not hold at $\mathbf{x}_* = (0, 0)^T$.

2. Consider the feasible set:

$$\Omega = \{\mathbf{x} \in \mathbb{R}^2 | y \geq 0, y \leq x^2\}.$$

- (a) For $\mathbf{x}_* = (0, 0)^T$, write down $T_\Omega(\mathbf{x}_*)$ and $\mathcal{F}_\Omega(\mathbf{x}_*)$.
- (b) Is the LICQ satisfied at \mathbf{x}_* ?
- (c) If the objective function is $f(\mathbf{x}) = -y$, verify that the KKT conditions are satisfied at \mathbf{x}_* .
- (d) Find a feasible sequence $\{\mathbf{z}_k\}_{k=0}^\infty$ approaching \mathbf{x}_* with $f(\mathbf{z}_k) < f(\mathbf{x}_*)$, for all k .

3. Consider the half-space defined by:

$$H_\alpha = \{\mathbf{x} \in \mathbb{R}^n | \mathbf{a} \cdot \mathbf{x} + \alpha \geq 0\},$$

where $\mathbf{a} \in \mathbb{R}^n$ is a constant non-zero vector and $\alpha \in \mathbb{R}$ is a constant scalar. Formulate and solve the OP for finding the point $\mathbf{x} \in H_\alpha$ with the smallest Euclidean norm.

4. Consider the following modification of the example in class notes. Here, t is a parameter that is fixed prior to solving the problem:

$$\min_{\mathbf{x} \in \mathbb{R}^2} f(\mathbf{x}),$$

where

$$f(\mathbf{x}) = \left(x - \frac{3}{2}\right)^2 + (y - t)^4,$$

subject to:

$$\begin{bmatrix} 1 - x - y \\ 1 - x + y \\ 1 + x - y \\ 1 + x + y \end{bmatrix} \geq 0.$$

- (a) For what values of t does the point $\mathbf{x}_* = (1, 0)^T$ satisfy the KKT conditions?
- (b) Show that when $t = 1$, only the first constraint is active at the solution and find the solution.
5. Solve the OP in Question 4 (part (ii)) numerically, using Matlab or Python. Compare your answer with the answer obtained previously.
6. Formulate the dual problem for the following OPs:

- (a) Minimize:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \langle \mathbf{c}, \mathbf{x} \rangle, \text{ subject to } A\mathbf{x} - \mathbf{b} \geq 0.$$

Here, $\mathbf{c} \in \mathbb{R}^n$ is a constant vector, $\mathbf{b} \in \mathbb{R}^m$ is a constant vector, and $A \in \mathbb{R}^{m \times n}$ is a constant matrix.

- (b) Minimize:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \langle \mathbf{x}, G\mathbf{x} \rangle, \text{ subject to } A\mathbf{x} - \mathbf{b} \geq 0.$$

Here, A and b are as before, and $G \in \mathbb{R}^{n \times n}$ is a constant symmetric positive-definite matrix.