Optimization Algorithms
 (ACM 41030)

Dr Lennon Ó Náraigh

Exercises \#5

1. Does the OP

$$
\min f(\boldsymbol{x})=(y+100)^{2}+\frac{1}{100} x^{2}
$$

subject to $y-\cos x \geq 0$ have a finite or infinite number of local solutions? Use the KKT conditions to justify your answer.

Let

$$
\mathcal{L}(\boldsymbol{x}, \lambda)=(y+100)^{2}+\frac{1}{100} x^{2}-\lambda(y-\cos x) .
$$

We solve $\nabla_{x} \mathcal{L}=0$. We have:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x}=\frac{1}{50} x-\lambda \sin (x), \\
& \frac{\partial \mathcal{L}}{\partial y}=2(y+100)-\lambda .
\end{aligned}
$$

The following are the KTT conditions for the problem:

$$
\left\{\begin{array}{l}
\frac{1}{50} x-\lambda \sin (x)=0,2(y+100)-\lambda=0 \\
y-\cos (x) \geq 0 \\
\lambda \geq 0 \\
\text { No Equality Constraints, } \\
\lambda(y-\cos (x))=0
\end{array}\right.
$$

We look at two cases.
Case 1: We take $\lambda=0$, hence $x=0$ and $y=-100$. This is the global minimum, it is not feasible, so Case 1 is ruled out.
Case 2: We take $\lambda \neq 0$. So $y=\cos (x)$. We have:

$$
\begin{aligned}
\frac{1}{50} x & =\lambda \sin (x), \\
2(y+100) & =\lambda .
\end{aligned}
$$

Divide these equations one by the other:

$$
\begin{equation*}
\frac{\frac{1}{50} x}{2[100+\cos (x)]}=\sin (x) . \tag{1}
\end{equation*}
$$

Hence, $x=100[100+\cos (x)] \sin (x)$. This is a root-finding problem. It can be solved graphically by looking at the curves $y_{1}(x)=x$ and $y_{2}(x)=100[100+$ $\cos (x)] \sin (x)$. The points of intersection of the two curves, $y_{1}(x)=y_{2}(x)$ give the roots.

Notice that the curve $y_{1}(x)$ is unbounded while the curve $y_{2}(x)$ is bounded by $\pm 100 \times 101$. Thus, there will only be finitely many points of intersection where $y_{1}(x)=y_{2}(x)$ and hence, only finitely many roots.
Another way to look at this problem is to start with the result that the constraint is active, such that $y=\cos (x)$. Then, the cost function can be re-parametrized as:

$$
f(x, y=\cos (x))=[\cos (x)+100]^{2}+\frac{1}{100} x^{2}=\widetilde{f}(x) .
$$

The critical points are at $\mathrm{d} \widetilde{f}(x) / \mathrm{d} x=0$, hence

$$
2[\cos (x)+100] \sin (x)=\frac{1}{50} x
$$

which is exactly Equation (1) again. Furthermore, for large $x, \widetilde{f}(x) \sim x^{2} / 100$, and $\mathrm{d} \widetilde{f} / \mathrm{d} x \sim x / 50$. Thus, $\mathrm{d} \widetilde{f} / \mathrm{d} x \neq 0$ for x sufficiently large. Hence, the roots of Equation (1) must be contained in an interval $(-R, R)$ and as the roots can only be discrete, there are only finitely many of them.
2. Let $\boldsymbol{v}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a smooth vector function, and consider the unconstrained OP

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} f(\boldsymbol{x}),
$$

where

$$
f(\boldsymbol{x})=\max _{i \in\{1,2, \cdots, m\}} v_{i}(\boldsymbol{x}) .
$$

Reformulate this (generally non-smooth problem) as a smooth constrained problem.

We look at an example first:

$$
\begin{equation*}
\boldsymbol{x}_{*}=\arg \min _{(x, y) \in \mathbb{R}^{2}}\left\{\max \left[v_{1}(x, y), v_{2}(x, y)\right]\right\} . \tag{2}
\end{equation*}
$$

We look at the surfaces $z=v_{1}(x, y)$ and $z=v_{2}(x, y)$ in \mathbb{R}^{3}, shown in Figure 1. The figure suggests that the OP problem (2) can be recast as:

Figure 1:

$$
\min _{(x, y, z) \in \Omega} z,
$$

where

$$
\Omega=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z \geq v_{1}(x, y), z \geq v_{2}(x, y)\right\}
$$

This suggests the general reformulation of the OP in the original question is to introduce

$$
\widetilde{\boldsymbol{x}}=\binom{\boldsymbol{x}}{z} \in \mathbb{R}^{n+1}
$$

and we further introduce:

$$
\Omega=\left\{\widetilde{\boldsymbol{x}} \in \mathbb{R}^{n+1} \mid z \geq v_{1}(\boldsymbol{x}), \cdots, z \geq v_{m}(\boldsymbol{x})\right\} .
$$

We then consider the reformulated OP

$$
\min _{\widetilde{\boldsymbol{x}} \in \Omega} z .
$$

3. Can you perform a smooth reformulation of the previous question when f is defined by:

$$
f(\boldsymbol{x})=\min _{i \in\{1,2, \cdots, m\}} v_{i}(\boldsymbol{x}) .
$$

Why or why not?

No. Inspect Figure 1 again. The min

$$
f(\boldsymbol{x})=\min _{i \in\{1,2, \cdots, m\}} v_{i}(\boldsymbol{x}) .
$$

is possibly unbounded.

Figure 2:
4. Consider the OP

$$
\min (x+y), \quad \text { subject to } 2-x^{2}-y^{2}=0
$$

Specify two feasible sequences that approach the maximizing point $(1,1)^{T}$ and show that neither sequence is a decreasing sequence for f.

Let $\boldsymbol{x}_{*}=(1,1)^{T}=\sqrt{2}(\cos \pi / 4, \sin \pi / 4)^{T}$. We have:

$$
\Omega=\left\{\boldsymbol{x} \in \mathbb{R}^{2} \mid x^{2}+y^{2}=2\right\},
$$

see Figure 2.
Consider the path

$$
\boldsymbol{x}(\phi)=\sqrt{2}(\cos (\pi / 4+\phi), \sin (\pi / 4+\phi))^{T} .
$$

Introduce

$$
\begin{aligned}
\widetilde{f}(\phi) & =f(\boldsymbol{x}(\phi)), \\
& =\sqrt{2}[\cos (\pi / 4+\phi)+\sin (\pi / 4+\phi)]
\end{aligned}
$$

We have:

$$
\widetilde{f}(\phi=0)=2,\left.\quad \frac{\mathrm{~d} \widetilde{f}}{\mathrm{~d} \phi}\right|_{\phi=0}=0,\left.\quad \frac{\mathrm{~d}^{2} \widetilde{f}}{\mathrm{~d} \phi^{2}}\right|_{\phi=0}=-2 .
$$

Hence,

$$
\begin{aligned}
\widetilde{f}(\phi) & =\widetilde{f}(0)+\left.\frac{\mathrm{d} \tilde{f}}{\mathrm{~d} \phi}\right|_{\phi=0} \phi+\left.\frac{1}{2} \frac{\mathrm{~d}^{2} \widetilde{f}}{\mathrm{~d} \phi^{2}}\right|_{\phi=0} \phi^{2}+\cdots, \\
& =2-\phi^{2}+\text { H.O.T. }
\end{aligned}
$$

We look at feasible sequences:

$$
\boldsymbol{x}_{n}=\boldsymbol{x}\left(\phi_{n}\right), \quad n \in\{1,2, \cdots\},
$$

where $\phi_{n}=1 / n$ or $\phi_{n}=-1 / n$, such that $\boldsymbol{x}_{n} \in \Omega$, for all $n \in\{1,2, \cdots\}$ and such that $\boldsymbol{x}_{n} \rightarrow \boldsymbol{x}_{*}$ as $n \rightarrow \infty$. Hence,

$$
\begin{aligned}
f\left(\boldsymbol{x}_{n}\right) & \underset{n n \rightarrow \infty}{=} \\
= & \widetilde{f}\left(\phi_{n}\right), \\
2 & -(\pm 1 / n)^{2} .
\end{aligned}
$$

Thus, as $n \rightarrow \infty$,

$$
\begin{aligned}
f\left(\boldsymbol{x}_{n+1}\right)-f\left(\boldsymbol{x}_{n}\right) & =-\frac{1}{(n+1)^{2}}+\frac{1}{n^{2}}, \\
& =\frac{-n^{2}+(n+1)^{2}}{n^{2}(n+1)^{2}}, \\
& =\frac{2 n+1}{n^{2}(n+1)^{2}}>0,
\end{aligned}
$$

and

$$
f\left(\boldsymbol{x}_{n+1}\right) \geq f\left(\boldsymbol{x}_{n}\right), \quad n \rightarrow \infty .
$$

Hence finally, we see that $f\left(\boldsymbol{x}_{n}\right)$ is non-decreasing along the sequences \boldsymbol{x}_{n}, and $f\left(\boldsymbol{x}_{n}\right) \rightarrow f\left(\boldsymbol{x}_{*}\right)$ as $n \rightarrow \infty$.

Figure 3:
5. If f is convex and the feasible region Ω is convex, show that local solutions of the OP

$$
\boldsymbol{x}_{*}=\arg \min _{\boldsymbol{x} \in \Omega} f(\boldsymbol{x})
$$

are also global solutions.
Hint: Review Theorem 2.8 in the class notes.

Suppose that \boldsymbol{x}_{*} is a local but not a global minimizer. Then we can find a point $\boldsymbol{y} \in \Omega$ such that $f(\boldsymbol{y})<f\left(\boldsymbol{x}_{*}\right)$. By convexity of Ω, the line segment

$$
L=\{\boldsymbol{x}(\alpha) \mid \boldsymbol{x}(\alpha)=\alpha \boldsymbol{y}+(1-\alpha) \boldsymbol{x}, \alpha \in[0,1]\},
$$

lies entirely in Ω. By convexity of f, we also have:

$$
f(\boldsymbol{x}(\alpha)) \leq \alpha f(\boldsymbol{y})+(1-\alpha) f\left(\boldsymbol{x}_{*}\right) .
$$

Refer to Figure 3. Any neighbourhood \mathcal{N} around \boldsymbol{x}_{*} contains a piece of the line segment L, so there exists an $\boldsymbol{x} \in \Omega$ such that $f(\boldsymbol{x})<f\left(\boldsymbol{x}_{*}\right)$, which is a contradiction. Hence, \boldsymbol{x}_{*} is the global minimizer.

