Exercises in Optimization

(ACM 40990 / ACM41030)

Dr Lennon O Naraigh
Exercises #4

Exercises #4 — Global Optimization

1. The Metropolis Algorithm can be used to generate random numbers from an
arbitrary distribution. In this exercise, you should write a computer code to
generate a sequence of numbers from the exponential distribution,

e ™™ x>0,
0 z < 0.

[l \) = { (1)

Here, X is a positive constant, which you should fix for the exercise.

Code listings are shown below:

e MHsimple.m
e runMH.m

function [X,acc] = MHsimple()

% Computer code to generate numbers drawn from a

% target distribution. Uses the MH algorithm.
Inspiration from:

%

% https://stephens999.github.io/fiveMinuteStats /...
% MH_intro.html

% http://physics.ujep.cz/"mmaly/vyuka/poc_fyz 1 /...
% zdroje/MeropolisAlg_clanek . pdf

% %k 3k sk 3k 3k sk sk sk 3k sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk ok sk sk sk 5k %k >k %k k sk k
% Numerical parameters:

burnin = 100; % number of burn—in iterations




ACM 40090 / ACM41030 Exercises #4

nsamp = 10000; % number of samples to draw
sig = 5; % standard deviation of Gaussian proposal
x = 1; % start point

% % %k 3k 3k 5k 5k %k ok %k 5k 5k >k 3k %k 5k %k >k 3k 5k 3k %k %k 3k 5k k %k %k 5k 5k %k >k %k 5k 5k %k >k %k %k %k %k %k %k %k %k %k %k %k %k *k )k k

% Store samples drawn from the Markov chain:
X = zeros(nsamp,1);

% Store the following vector to track

% the acceptance rate:

acc = [0 0];

Oy sk ok % o ok ok ok ok ok ok ok K ok ok K ok ok ok K ok K K ok K ok ok K ok K K oK K K ok ok K ok K K Kk K
% Burn—in :

for i = 1l:burnin
% Update chain:
[x,a] = MHstep(x,sig);
% Track accept—reject status
acc = acc + [a 1];
end

Ol sk sk ok ok ok o ok ok ok ok ok ok ok ok ok ok K o ok ok ok o ok ok K ok ok ok K o ok ok ok o ok ok o ok ok ok ok ok ok K ok ok K
% MH routine

for i = l:nsamp
% Update chain:
[x,a] = MHstep(x,sig);
% Track accept—reject status

acc = acc + [a 1];
% Store the i—th sample:
X(i) = x;

end

end

% % 3k 3k 3k 3k 5k %k ok %k 5k Kk sk 3k %k 5k %k >k 3k 5k 3k %k %k 3k 5k %k %k %k 3k 5k %k sk %k 5k 5k %k sk %k 5k %k %k %k %k %k %k %k %k %k %k *k )k k

function [x1,a] = MHstep(x0, sig)
% Generate candidate from Gaussian:
xp = normrnd(x0,sig ,1);
% Compute acceptance probability:
accprob = targetdist(xp) / targetdist(x0);
u = rand; % uniform random number
if u<= accprob % if accepted




ACM 40090 / ACM41030 Exercises #4

x1 = xp; % new point is the candidate

a = 1; % note the acceptance

else % if rejected
x1 = x0; % new point is the same as the old one
a = 0; % note the rejection

end
end

% 3 %k 3k 3k 5k 5k %k sk %k 5k ok sk sk %k ok %k sk 3k sk sk sk sk %k sk sk %k sk 5k 5k %k sk sk 5k 5k %k sk 3k 5k ok sk sk sk %k %k >k %k %k k k k%
% % %k 3k 3k 3k 5k %k ok %k 5k Kk >k 3k %k 5k %k >k 3k 5k %k %k %k %k 5k k %k %k 5k 5k %k >k %k 5k 5k %k >k k 5k *k %k %k k 5k %k %k %k %k %k *k )k k

function probX = targetdist(x)
lambda=1;

if (x<0)
probX=0;
else
probX = lambda*exp(—lambdaxx);
end
end

The code is run from the following script:

% Matlab script to run the code
% "MHsimple.m” and plot the results.

[X,acc] = MHsimple();
xx=0:0.1:10;
lambda=1;

hold on

histogram (X, 'Normalization ', 'pdf ")

plot (xx,exp(—xx), " linewidth ',2, color ', 'red ")
% set(gca, yscale', 'log")

grid on

xlim ([0 10])

xlabel ('x")

ylabel ("p(x)")

arate=floor (100%acc(1l)/acc(2));
display (strcat('acceptance rate=",num2str(arate)), %")




ACM 40090 / ACM41030

Results (z-values) are shown in Figure 1.

8 : ; .
O
Q o]
O
I &
° B o 80 ©o %00 & o
><4—%§“; ‘%005 e S 5 cg:oo%@oog
o B® %)O
2

2000

Parameter: \ = 1.

4000

index

6000

8000

10000

Exercises #4

Figure 1: x-values from the exponential distribution, generated from the MH algorithm.

A histogram of the x-values is generated and shown in Figure 2.

p(x)

[Data

-X

e

Figure 2: Histogram of x-values showing comparison with the exponential distribution.

X

10



ACM 40090 / ACM41030 Exercises #4

2. Write a computer code to compute the global minimum of the cost function

sin(z)

f::c2+1o‘

Compare your result with the built-in SA algorithm in Python / Matlab.

The computer code has already been developed in the typed notes and the global
minimum estimated. There is no need to repeat this calculation here. Instead,
we show how to implement the built-in SA algorithm in Matlab, this requires the
installation of the ‘global optimization’ toolbox. Code listings are shown below,
and are also available in the online repository (SA matlab.m).

function [x_star, fval]=SA_matlab()

% For reproducibility:
rng default

% Function handle for cost function:
CostFunction = @myfun;

% Starting point
x0 = 3;

% %k %k %k %k %k %k 3k %k 5k 5k %k %k %k %k %k %k %k %k 5k 5k %k %k 5k %k %k 5k k %k %k 5k %k %k 5k %k %k 5k 5k %k %k %k %k %k 5k %k k %k %k k k k
% Call SA solver, use verbose mode:

options = optimoptions('simulannealbnd ', ...
"FunctionTolerance ' ,1e—8, PlotFcns ', ...
{@saplotbestx , @saplotbestf , @saplotx , @saplotf});

[x_star ,”] = simulannealbnd(CostFunction ,x0,[],[], optio

% After getting a rough idea of the position of

% the global minimum using SA, | now refine the

% estimate using local optimization methods:

[x_star ,fval] = fminunc(CostFunction, x_star);

D0 ok sk ko ok ok ko ok ok ok ok ok ok ok ok K ok ok ok K ok K Rk ok K R ok ok K K ok K Rk ok K R ok ok K Kk
function y=myfun(x)

y=sin (x)/(x*x+10);
end




ACM 40090 / ACM41030 Exercises #4

end

Some coaxing is required to produce the correct final answer. In particular, the
function tolerance needs to be set at 10~%, to avoid premature termination of the
algorithm at a local minimum. Also, SA really just gives a good estimate of the
global minimum, and the present example is no exception. Hence, in this example,
once a good estimate of the global minimum is found, this is taken as the initial
guess for a local optimization, which then produces a more precise estimate of the
global minimum, xr ~ —1.3466.



