
Exercises in Optimization
(ACM 40990 / ACM41030)

Dr Lennon Ó Náraigh

Exercises #4

Exercises #4 – Global Optimization

1. The Metropolis Algorithm can be used to generate random numbers from an
arbitrary distribution. In this exercise, you should write a computer code to
generate a sequence of numbers from the exponential distribution,

f(x;λ) =

{
λe−λx x ≥ 0,

0 x < 0.
(1)

Here, λ is a positive constant, which you should fix for the exercise.

Code listings are shown below:

� MHsimple.m

� runMH.m

f u n c t i o n [X , acc] = MHsimple ()

% Computer code to g en e r a t e numbers drawn from a
% t a r g e t d i s t r i b u t i o n . Uses the MH a l g o r i t hm .
I n s p i r a t i o n from :
%
% ht t p s : // s t ephens999 . g i t hub . i o / f i v eM i n u t e S t a t s / . . .
% MH intro . html
% ht tp : // p h y s i c s . u j ep . cz /˜mmaly/ vyuka / p o c f y z 1 / . . .
% z d r o j e / Me r o p o l i s A l g c l a n e k . pdf

% ***

% Numer i ca l pa ramete r s :

bu r n i n = 100 ; % number o f burn=i n i t e r a t i o n s

1

ACM 40090 / ACM41030 Exercises #4

nsamp = 10000; % number o f samp le s to draw
s i g = 5 ; % s tanda rd d e v i a t i o n o f Gaus s i an p r o p o s a l
x = 1 ; % s t a r t p o i n t

% ***

% Sto r e samp le s drawn from the Markov cha i n :
X = z e r o s (nsamp , 1) ;
% Sto r e the f o l l o w i n g v e c t o r to t r a c k
% the accep tance r a t e :
acc = [0 0] ;

% ***

% Burn=i n :

f o r i = 1 : bu r n i n
% Update cha i n :
[x , a] = MHstep (x , s i g) ;
% Track accept=r e j e c t s t a t u s
acc = acc + [a 1] ;

end

% ***

% MH r o u t i n e

f o r i = 1 : nsamp
% Update cha i n :
[x , a] = MHstep (x , s i g) ;
% Track accept=r e j e c t s t a t u s
acc = acc + [a 1] ;
% Sto r e the i=th sample :
X(i) = x ;

end

end

% ***

f u n c t i o n [x1 , a] = MHstep (x0 , s i g)
% Genera te c and i d a t e from Gaus s i an :
xp = normrnd (x0 , s i g , 1) ;
% Compute accep tance p r o b a b i l i t y :
accprob = t a r g e t d i s t (xp) / t a r g e t d i s t (x0) ;
u = rand ; % un i fo rm random number
i f u <= accprob % i f accep ted

2

ACM 40090 / ACM41030 Exercises #4

x1 = xp ; % new po i n t i s the c and i d a t e
a = 1 ; % note the accep tance

e l s e % i f r e j e c t e d
x1 = x0 ; % new po i n t i s the same as the o l d one
a = 0 ; % note the r e j e c t i o n

end
end

% ***

% ***

f u n c t i o n probX = t a r g e t d i s t (x)

lambda=1;

i f (x<0)
probX=0;

e l s e
probX = lambda* exp(= lambda*x) ;

end
end

The code is run from the following script:

% Matlab s c r i p t to run the code
% ”MHsimple .m” and p l o t the r e s u l t s .

[X , acc] = MHsimple () ;
xx =0 : 0 . 1 : 1 0 ;
lambda=1;
ho ld on

h i s tog ram (X, ’ No rma l i z a t i on ’ , ’ pdf ’)
p l o t (xx , exp(=xx) , ’ l i n ew i d t h ’ , 2 , ’ c o l o r ’ , ’ red ’)
% s e t (gca , ’ y s c a l e ’ , ’ log ’)
g r i d on
x l im ([0 10])
x l a b e l (’ x ’)
y l a b e l (’ p (x) ’)

a r a t e=f l o o r (100* acc (1)/ acc (2)) ;
d i s p l a y (s t r c a t (’ a ccep tance r a t e = ’ , num2str (a r a t e)) , ’% ’)

3

ACM 40090 / ACM41030 Exercises #4

Results (x-values) are shown in Figure 1.

Figure 1: x-values from the exponential distribution, generated from the MH algorithm.
Parameter: λ = 1.

A histogram of the x-values is generated and shown in Figure 2.

Figure 2: Histogram of x-values showing comparison with the exponential distribution.

4

ACM 40090 / ACM41030 Exercises #4

2. Write a computer code to compute the global minimum of the cost function

f =
sin(x)

x2 + 10
.

Compare your result with the built-in SA algorithm in Python / Matlab.

The computer code has already been developed in the typed notes and the global
minimum estimated. There is no need to repeat this calculation here. Instead,
we show how to implement the built-in SA algorithm in Matlab, this requires the
installation of the ‘global optimization’ toolbox. Code listings are shown below,
and are also available in the online repository (SA matlab.m).

f u n c t i o n [x s t a r , f v a l]=SA matlab ()

% For r e p r o d u c i b i l i t y :
rng d e f a u l t

% Func t i on hand l e f o r c o s t f u n c t i o n :
Cos tFunc t i on = @myfun ;

% S t a r t i n g po i n t
x0 = 3 ;

% **

% Ca l l SA s o l v e r , use v e r bo s e mode :

o p t i o n s = op t imop t i on s (’ s imu lannea lbnd ’ , . . .
’ Func t i onTo l e r ance ’ , 1 e=8 , ’ P lotFcns ’ , . . .
{@sap l o t b e s t x , @ s ap l o t b e s t f , @sap lo tx , @ s a p l o t f }) ;

[x s t a r , ˜] = s imu l annea l bnd (CostFunct ion , x0 , [] , [] , o p t i o n s) ;

% A f t e r g e t t i n g a rough i d e a o f the p o s i t i o n o f
% the g l o b a l minimum us i n g SA , I now r e f i n e the
% e s t ima t e u s i n g l o c a l o p t im i z a t i o n methods :

[x s t a r , f v a l] = fminunc (CostFunct ion , x s t a r) ;

% **

f u n c t i o n y=myfun (x)
y=s i n (x)/ (x*x+10);

end

5

ACM 40090 / ACM41030 Exercises #4

end

Some coaxing is required to produce the correct final answer. In particular, the
function tolerance needs to be set at 10−8, to avoid premature termination of the
algorithm at a local minimum. Also, SA really just gives a good estimate of the
global minimum, and the present example is no exception. Hence, in this example,
once a good estimate of the global minimum is found, this is taken as the initial
guess for a local optimization, which then produces a more precise estimate of the
global minimum, x ≈ −1.3466.

6

