Exercises in Optimization (ACM 40990 / ACM41030)

Dr Lennon Ó Náraigh

Exercises \#3

Exercises \#3-BFGS again and Trust-Region Methods

1. A simple way to approximate the Hessian (i.e. simpler than BFGS) is to use the so-called symmetric rank-1 formula, defined by:

$$
B_{k+1}=B_{k}+\frac{\left(\boldsymbol{y}_{k}-B_{k} \boldsymbol{s}_{k}\right)\left(\boldsymbol{y}_{k}-B_{k} \boldsymbol{s}_{k}\right)^{T}}{\left\langle\boldsymbol{y}_{k}-B_{k} \boldsymbol{s}_{k}, \boldsymbol{s}_{k}\right\rangle}
$$

Unfortunately, this formula does not guarantee that the approximate Hessian is positive-definite. However, you should:
(a) Check that the update satisfies the Secant equation:

$$
B_{k+1} \boldsymbol{s}_{k}=\boldsymbol{y}_{k},
$$

where

$$
\boldsymbol{s}_{k}=\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k} \quad \boldsymbol{y}_{k}=\nabla f_{k+1}-\nabla f_{k} .
$$

(b) Check that B_{k} is a symmetric matrix, for all $k \in 0,1,2, \cdots$.

Furthermore,
(c) You should show that the inverted Hessians $H_{k}:=B_{k}^{-1}$ satisfy:

$$
H_{k+1}=H_{k}+\frac{\left(s_{k}-H_{k} \boldsymbol{y}_{k}\right)\left(s_{k}-H_{k} \boldsymbol{y}_{k}\right)^{T}}{\left(\boldsymbol{s}_{k}-H_{k} \boldsymbol{y}_{k}\right)^{T} \boldsymbol{y}_{k}}
$$

Hint: Use the Sherman-Morrison formula. Suppose $A \in \mathbb{R}^{n \times n}$ is an invertible square matrix and $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{n}$ are column vectors. Then $A+\boldsymbol{u} \boldsymbol{v}^{T}$ is invertible if and only if $1+\left\langle\boldsymbol{v}, A^{-1} \boldsymbol{u}\right\rangle \neq 0$. In this case,

$$
\left(A+\boldsymbol{u} \boldsymbol{v}^{T}\right)^{-1}=A^{-1}-\frac{A^{-1} \boldsymbol{u} \boldsymbol{v}^{T} A^{-1}}{1+\left\langle\boldsymbol{v}, A^{-1} \boldsymbol{u}\right\rangle}
$$

We start with Part (b) first, because it will make the other calculations easier if we can assume that B_{k} and B_{k+1} are symmetric. This is an induction argument. We assume that B_{k} is symmetric. Then, B_{k+1} is of the form:

$$
B_{k+1}=B_{k}+\lambda \boldsymbol{u} \boldsymbol{u}^{T},
$$

where $\lambda=\left\langle\boldsymbol{y}_{k}-B_{k} \boldsymbol{s}_{k}, s_{k}\right\rangle^{-1}$ and $\boldsymbol{u}=\boldsymbol{y}_{k}-B_{k} \boldsymbol{s}_{k}$. The components of this matrix are:

$$
\left(B_{k+1}\right)_{i j}=\left(B_{k}\right)_{i j}+\lambda u_{i} u_{j} .
$$

By the induction hypothesis, $\left(B_{k}\right)_{i j}=\left(B_{k}\right)_{j i}$ so the matrix on the RHS is symmetric, hence B_{k+1} is a symmetric matrix. Therefore, provided the starting matrix B_{0} is symmetric, by mathematical induction, all of the matrices B_{1}, B_{2}, \cdots will be symmetric.
We look at Part (a) next. We will look at the components of the vector $B_{k+1} s_{k}$ with respect to the usual basis $\left\{\boldsymbol{e}_{i}\right\}_{i=1}^{n}$. We have:

$$
\left\langle B_{k+1} \boldsymbol{s}_{k}, \boldsymbol{e}_{i}\right\rangle=\left\langle B \boldsymbol{s}, \boldsymbol{e}_{i}\right\rangle+\frac{\left\langle(\boldsymbol{y}-B \boldsymbol{s})(\boldsymbol{y}-B \boldsymbol{s})^{T} \boldsymbol{s}, \boldsymbol{e}_{i}\right\rangle}{\langle\boldsymbol{y}-B \boldsymbol{s}, \boldsymbol{s}\rangle} .
$$

(we omit the subscript k 's on the RHS for clarity). We also have:

$$
\begin{aligned}
\left\langle\boldsymbol{u} \boldsymbol{u}^{T} \boldsymbol{s}, \boldsymbol{e}_{i}\right\rangle & =\left[\boldsymbol{u} \boldsymbol{u}^{T} \boldsymbol{s}\right]_{i}, \\
& =\sum_{j}\left[\boldsymbol{u} \boldsymbol{u}^{T}\right]_{i j} s_{j}, \\
& =\sum_{j} u_{i} u_{j} s_{j}, \\
& =u_{i}\langle\boldsymbol{u}, \boldsymbol{s}\rangle, \\
& =\left\langle\boldsymbol{u}, \boldsymbol{e}_{i}\right\rangle\langle\boldsymbol{u}, \boldsymbol{s}\rangle .
\end{aligned}
$$

Putting this all together, we have:

$$
\begin{aligned}
\left\langle B_{k+1} \boldsymbol{s}_{k}, \boldsymbol{e}_{i}\right\rangle & =\left\langle B \boldsymbol{s}, \boldsymbol{e}_{i}\right\rangle+\frac{\left\langle(\boldsymbol{y}-B \boldsymbol{s}), \boldsymbol{e}_{i}\right\rangle\langle(\boldsymbol{y}-B \boldsymbol{s}), \boldsymbol{s}\rangle}{\langle\boldsymbol{y}-B \boldsymbol{s}, \boldsymbol{s}\rangle} \\
& =\frac{\left\langle B \boldsymbol{s}, \boldsymbol{e}_{i}\right\rangle\langle\boldsymbol{y}-B \boldsymbol{s}, \boldsymbol{s}\rangle+\left\langle(\boldsymbol{y}-B \boldsymbol{s}), \boldsymbol{e}_{i}\right\rangle\langle(\boldsymbol{y}-B \boldsymbol{s}), \boldsymbol{s}\rangle}{\langle\boldsymbol{y}-B \boldsymbol{s}, \boldsymbol{s}\rangle}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left\langle B_{k+1} s_{k}, \boldsymbol{e}_{i}\right\rangle= \\
& \frac{\left\langle B \boldsymbol{s}, \boldsymbol{e}_{i}\right\rangle\langle\boldsymbol{y}, \boldsymbol{s}\rangle-\left\langle B \boldsymbol{s}, \boldsymbol{e}_{i}\right\rangle\langle B s, s\rangle+\left\langle\boldsymbol{y}, \boldsymbol{e}_{i}\right\rangle\langle\boldsymbol{y}, s\rangle-\left\langle B s, \boldsymbol{e}_{i}\right\rangle\langle\boldsymbol{y}, \boldsymbol{s}\rangle-\left\langle\boldsymbol{y}, \boldsymbol{e}_{i}\right\rangle\langle B s, s\rangle+\left\langle B s, \boldsymbol{e}_{i}\right\rangle\langle B \bar{s}, \boldsymbol{s}\rangle}{\langle\boldsymbol{y}-B s, \boldsymbol{s}\rangle}
\end{aligned}
$$

Continuing thus, we have:

$$
\begin{aligned}
\left\langle B_{k+1} \boldsymbol{s}_{k}, \boldsymbol{e}_{i}\right\rangle & =\frac{\left\langle\boldsymbol{y}, \boldsymbol{e}_{i}\right\rangle[\langle\boldsymbol{y}, \boldsymbol{s}\rangle-\langle B \boldsymbol{s}, \boldsymbol{s}\rangle]}{\langle\boldsymbol{y}-B \boldsymbol{s}, \boldsymbol{s}\rangle}, \\
& =\left\langle\boldsymbol{y}, \boldsymbol{e}_{i}\right\rangle
\end{aligned}
$$

As this is true for all $i \in\{1,2, \cdots, n\}$ it follows that:

$$
B_{k+1} \boldsymbol{s}_{k}=\boldsymbol{y}_{k},
$$

and thus, the symmetric rank-1 formula satisfies the Secant equation.
For Part (c), a direct application of the Sherman-Morrison formula (with the subscript k 's suppressed on the RHS) gives:

$$
\begin{aligned}
H_{k+1} & =H-\frac{H(\boldsymbol{y}-B \boldsymbol{s})\left[H(\boldsymbol{y}-B \boldsymbol{s})^{T}\right] /\langle\boldsymbol{y}-B \boldsymbol{s}, \boldsymbol{s}\rangle}{1+\langle\boldsymbol{y}-B \boldsymbol{s}, H(\boldsymbol{y}-B \boldsymbol{s})\rangle /\langle\boldsymbol{y}-B \boldsymbol{s}, \boldsymbol{s}\rangle} \\
& =H-\frac{(H \boldsymbol{y}-\boldsymbol{s})(H \boldsymbol{y}-\boldsymbol{s})^{T}}{\langle\boldsymbol{y}-B \boldsymbol{s}, \boldsymbol{s}\rangle+\langle\boldsymbol{y}-B \boldsymbol{s}, H(\boldsymbol{y}-B \boldsymbol{s})\rangle}
\end{aligned}
$$

We work on the denominator:

$$
\begin{aligned}
\langle\boldsymbol{y}-B s, \boldsymbol{s}\rangle+\langle\boldsymbol{y}-B s, H(\boldsymbol{y}-B \boldsymbol{s})\rangle & =\langle\boldsymbol{y}, \boldsymbol{s}\rangle-\langle B \boldsymbol{s}, \boldsymbol{s}\rangle+\langle\boldsymbol{y}-B \boldsymbol{s}, H \boldsymbol{y}-\boldsymbol{s}\rangle \\
=\langle\boldsymbol{y}, \boldsymbol{s}\rangle-\langle B \boldsymbol{s}, \boldsymbol{s}\rangle+\langle\boldsymbol{y}, H \boldsymbol{y}\rangle- & -\boldsymbol{y}, s\rangle-\langle B \boldsymbol{s}, H \boldsymbol{y}\rangle+\langle B \boldsymbol{s}, \boldsymbol{s}\rangle \\
& =\langle\boldsymbol{y}, H \boldsymbol{y}\rangle-\langle\boldsymbol{s}, \boldsymbol{y}\rangle=\langle\boldsymbol{y}, H \boldsymbol{y}-\boldsymbol{s}\rangle .
\end{aligned}
$$

Thus,

$$
H_{k+1}=H-\frac{(H \boldsymbol{y}-\boldsymbol{s})(H \boldsymbol{y}-\boldsymbol{s})^{T}}{\langle\boldsymbol{y}, H \boldsymbol{y}-\boldsymbol{s}\rangle}
$$

We now restore the subscript k 's on the RHS and apply $(-1)(-1)=1$ in various places to obtain the standard formula:

$$
H_{k+1}=H_{k}+\frac{\left(\boldsymbol{s}_{k}-H_{k} \boldsymbol{y}_{k}\right)\left(\boldsymbol{s}_{k}-H_{k} \boldsymbol{y}_{k}\right)^{T}}{\left\langle\boldsymbol{s}_{k}-H_{k} \boldsymbol{y}_{k}, \boldsymbol{y}_{k}\right\rangle}
$$

2. Write a code (in whatever programming langauge) that uses the Trust-Region method (Dogleg method) to solve the Rosenbrock problem

$$
f=10\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} .
$$

TBC

