
Exercises in Optimization
(ACM 40990 / ACM41030)

Dr Lennon Ó Náraigh

Exercises #2

Exercises #2 - More on Line-search Methods

1. In the notes (Chapter 6), it is shown that the Newton method satisfies:

∥xk+1 − x∗∥2 ≤ C∥xk − x∗∥22 whenever ∥xk − x∗∥2 < δ.

If we choose

∥x0 − x∗∥2 < δ, and ∥x0 − x∗∥ <
1

2C
,

then
∥x1 − x∗∥2
∥x0 − x∗∥2

≤ C∥x0 − x∗∥2 ≤ 1
2
.

The aim of this exercise is to show that these inequalities give rise to the
following important result:

∥xk − x∗∥2
∥x0 − x∗∥2

≤ 1

22k−1
. (1)

The proof of the inequality (1) can be obtained by the following sequence of
steps:

(a) Write down inequalities for

∥x1 − x∗∥2 ≤
1

2···
∥x0 − x∗∥2, ∥x2 − x∗∥2 ≤

1

2···
∥x0 − x∗∥2,

∥x3 − x∗∥2 ≤
1

2···
∥x0 − x∗∥2.

(b) Hence, guess that the general term satisfies

∥xk − x∗∥ ≤ 1

2pk
∥x0 − x∗∥2,

where
pk = 2pk−1 + 1. (2)
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(c) Equation (2) is a first-order difference equation with general solution
pk = A + Bλn, where A, B, and λ are constants to be determined.
Hence, show that pk satisfies:

pk = 2k − 1, k > 1

with p1 = 1.

(d) Conclude that

∥xk − x∗∥2 ≤
1

22k−1
∥x0 − x∗∥2,

and hence,
lim
k→∞

∥xk − x∗∥2 = 0.

For part (a) we have:

∥x1 − x∗∥2 ≤ C∥x0 − x∗∥22,
≤ (C∥x0 − x∗∥2) ∥x0 − x∗∥2,
≤ 1

2
∥x0 − x∗∥2.

Also,

∥x2 − x∗∥2 ≤ C∥x1 − x∗∥22,
≤ C

(
1
2
∥x0 − x∗∥2

) (
1
2
∥x0 − x∗∥2

)
,

≤ 1
22
(C∥x0 − x∗∥2) ∥x0 − x∗∥2,

≤ 1
23
∥x0 − x∗∥2.

Finally,

∥x3 − x∗∥2 ≤ C∥x2 − x∗∥22,
≤ C

(
1
23
∥x0 − x∗∥2

) (
1
23
∥x0 − x∗∥2

)
,

≤ 1
26
(C∥x0 − x∗∥2) ∥x0 − x∗∥2,

≤ 1
27
∥x0 − x∗∥2.

For part (b), we guess the pattern, pk is the power of two in the general term, and we
have:

p1 = 1,

p2 = 3,

p3 = 7,

so we guess:
pk = 2pk−1 + 1 (3)

for k > 1, and pk = 1 for k = 1.
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For part (c), we substitute the trial solution pk = A + Bλk into the difference
equation (3). We have:

A+Bλk = 2
(
A+Bλk−1

)
+ 1.

We equate coefficients to get A = −1 and λ = 2, hence

pk = B(2k)− 1.

We have p1 = 1, hence B = 1 also, hence:

pk = 2k − 1,

hence (part (d)),

∥xk − x∗∥2 ≤
1

22k−1
∥x0 − x∗∥2,

hence
lim
k→∞

∥xk − x∗∥2 = 0,

as required.

3



ACM 40090 / ACM41030 Exercises #2

2. Show that if 0 < c2 < c1 < 1, there may be no step lengths that satisfy the
Strong Wolfe conditions.

Hint: Consider the quadratic function

ϕ(α) = a+ bα + cα2,

where b < 0 and c > 0.

We compute ϕ(0) = a and ϕ′(0) = b. SW1 requires ϕ(α) ≤ a+ c1bα, hence:

bα + cα2 ≤ c1bα,

hence α = 0 or
α = −b(1− c1)/c.

Identify α1 = |b|(1− c1)/c with 0 < c1 < 1. Thus, for SWC1 to hold we require:

0 ≤ α ≤ α1 =
|b|(1− c1)

c
.

Figure 1: The idea behind SWC1 in the case of a quadratic function ϕ(α) = a+bα+cα2

For SWC2 to hold, we require |ϕ′(α)| ≤ c2|b|, hence |b + 2cα| ≤ c2|b|. This is a
quadratic inequality in disguise:

b2 + 4bcα + 4c2α2 ≤ c22b
2.

We have:
4c2α2 + 4bcα + b2(1− c22) = 0.
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Hence:

α =
−4bc±

√
16b2c2 − 16c2b2(1− c22)

8c2
,

=
−4bc±

√
16c2b2c22

8c2
,

=
−4bc± 4|b|cc2

8c2
,

=
4|b|c± 4|b|cc2

8c2
,

=
|b|(1± c2)

2c
,

= α±.

Figure 2: The idea behind SWC2 in the case of a quadratic function ϕ(α) = a+bα+cα2

Referring to Figures 1 and 2, there is a contradiction (and hence, the SWCs don’t
hold) if

α− > α1, (4)

hence, if:
|b|(1− c2)

2c
>

|b|(1− c1)

c
. (5)

Hence, the SWCs do not hold if

1− c2 > 2− 2c1,

or
2c1 > c2 + 1.

Refer now to Figure 3. If c1 > c2, then there is the possibility we are in the danger
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Figure 3: The danger zone (highlighted in red) where the SWCs fail to hold for this
example
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zone (highlighted in red) in the figure, and hence there is the possibility that the
SWCs will fail. Whereas, if c1 < c2, we can’t be in the danger zone, and the SWCs
will always hold.

3. Consider the one-dimensional function

ϕ(α) = f(xk + αpk),

where pk is a descent direction – that is, ϕ′(0) < 0 – so that our search can
be confined to positive values of α. Find the value that minimizes ϕ(α) in the
case where the cost function is quadratic, specifically:

f(x) = ⟨a,x⟩+ 1
2
⟨x, Bx⟩, (6)

where a ∈ Rn and B ∈ Rn×n.

We have:

ϕ(α) = f(xk + αpk),

= ⟨a,xk + αpk⟩+ 1
2
⟨xk + αpk, Bxk + αBpk⟩,

= ⟨a,xk⟩︸ ︷︷ ︸+α⟨a,pk⟩+ 1
2
⟨xk, Bxk⟩︸ ︷︷ ︸+1

2
α⟨pk, Bxk⟩+ 1

2
α⟨xk, Bpk⟩+ 1

2
α2⟨pk, Bpk⟩.

Continuing thus, we have:

ϕ(α) = f(xk)︸ ︷︷ ︸+α⟨a,pk⟩+ 1
2
α⟨pk, Bxk⟩+ 1

2
α⟨xk, Bpk⟩+ 1

2
α2⟨pk, Bpk⟩,

= f(xk) + α⟨a,pk⟩+ 1
2
α⟨pk, Bxk⟩+ 1

2
α⟨BTxk,pk⟩+ 1

2
α2⟨pk, Bpk⟩,

= f(xk) + α⟨a,pk⟩+ 1
2
α⟨pk, Bxk⟩+ 1

2
α⟨Bxk,pk⟩+ 1

2
α2⟨pk, Bpk⟩,

= f(xk) + α⟨a,pk⟩+ 1
2
α⟨pk, Bxk⟩+ 1

2
α⟨BTxk,pk⟩+ 1

2
α2⟨pk, Bpk⟩,

= f(xk) + α⟨a,pk⟩+ α⟨pk, Bxk⟩+ 1
2
α2⟨pk, Bpk⟩,

= f(xk) + α⟨pk, a+Bkxk +
1
2
α2⟨pk, Bpk⟩.

Hence,
ϕ′(α) = ⟨pk, Bxk + a⟩+ α⟨pk, Bpk⟩.

When ϕ′(α) = 0 we have:

α = −⟨pk, Bxk + a⟩
⟨pk, Bpk⟩

,

or

α = −⟨pk,∇fk⟩
⟨pk, Bpk⟩

,
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4. Consider the steepest decent method with exact line searches applied to the
convex quadratic function in Equation (6).

(a) Show that if the initial point is such that x0 −x∗ is parallel to an eigen-
vector of B, then the steepest descent method will find the solution in
one step.

(b) Show that the Newton method always converges in exactly one step when
the cost function is quadratic, i.e. takes the form (6).

For Part (a) we have:

∇f0 = Bx0 + a,

= Bx0 + (−Bx∗),

= B(x0 − x∗).

But x0 − x∗ is parallel to an eigenvector (eigenvalue: λ), hence:

∇f0 = B(x0 − x∗),

= λ(x0 − x∗).

From the previous question, we have the value for the exact stepsize, and we are
using the SD algorithm, hence p0 = −∇f0. Hence,

α = −⟨p0,∇f0⟩
⟨p0, Bp0⟩

,

=
⟨∇f0,∇f0⟩
⟨∇f0, B∇f0⟩

,

=
λ2⟨x0 − x∗,x0 − x∗⟩

λ2⟨x0 − x∗, B(x0 − x∗)⟩
,

=
1

λ
.

Finally, we have the steepest-descent step:

x1 = x0 − α∇f0,

= x0 −
1

λ
[λ(x0 − x∗)] ,

= x∗,

and thus, the SD algorithm converges in one step.

For Part (b) we have:

x1 = x0 −B−1∇f0,

= x0 −B−1 [Bx0 + a] ,

= −B−1a,

= x∗,

and thus, the Newton algorithm converges in one step.
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5. Consider the optimization problem,

min f(x), f(x) = ⟨a,x⟩+ 1
2
⟨x, Bx⟩,

where now B is a specific 10 × 10 matrix and a is a specific 10 × 1 column
vector. The numerical values of these arrays can be found in the spreadsheet
OP 10x10.csv:

� The spreadsheet contains a 10× 1 array which corresponds to the vector
a;

� The spreadsheet contains a 10× 10 array B0.

The array B is obtained from B0 by the following sequence of steps:

(i) Symmetrize B0:
B0 → (B0 +BT

0 )/2;

(ii) Scale B0:
B0 → B0/max(|B0|)

(iii) Generate a positive-definite matrix:

B0 → (BT
0 )B0.

The end result of this sequence of operations is the matrix B.

Hence,

(a) Find the minimizer x∗ numerically, using the steepest-descent and New-
ton algorithms.

(b) Why is the convergence so poor in the case of the steepest-descent al-
gorithm?

For part (a), we present sample codes in Matlab, these can be found in an ac-
companying folder (OP 10x10). The convergence is extremely slow in case of the
SD method (for the given numerical parameters); results are not presented here.
Instead, we go straight over to the Newton method, where we obtain the following
results:
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This can be checked, as we know the analytical value of the minimizer in this
case, x∗ = −B−1a, this is also shown in the figure. The numerical and analytical
solutions agree, confirming the correct implementation of the Newton method in
this case.

For part (b), we look at the condition number of the matrix B:

This is greater than 105 meaning the maximum and minimum eigenvalues are
orders of magnitude apart. From class notes, and for the SD method, we have:

∥xk+1 − x∗∥2B ≤
(
1− 1

κ(B)

)
∥xk − x∗∥2B,

and with κ(B) > 105, we have:

∥xk+1 − x∗∥2B > ∥xk − x∗∥2B,

leading to poor convergence of the SD method in this particular example.

10


