
Exercises in Optimization
(ACM 40990 / ACM41030)

Dr Lennon Ó Náraigh

Exercises #1

1. Program the steepest-decent and Newton algorithms using the backtracking line search
algorithm. Use them to minimize the Rosenbrock function:

f(x, y) = 100(y − x2)2 + (1− x)2. (1)

Set the initial step length α0 = 1 and print the step length used by each method at
each iteration. First try the initial point x0 = (1.2, 1.2)T and then true the more difficult
starting point x0 = (−1.2, 1)T .

Matlab codes for this exercise can be found in the folder OP Ros BT, the main code is shown in the
following listings. The Hessian is computable analytically, so to switch from an SD method to a
Newton method, it is a simple matter of replacing pk = −αk∇fk with pk = −αkB

−1∇fk.

f u n c t i o n [x k , f , k , xx , yy] = s d r o s ()

% t o l : s t o pp i n g c r i t e r i o n on the norm o f g r a d i e n t
t o l = 1e=5;

% maxi t : maximum number o f i t e r a t i o n s
max i t =20000;

xx =0*(1: max i t) ;
yy =0*(1: max i t) ;

% BT LS pa ramete r s :
c1 =0.1 ;
rho =0.8 ;

% x0 : i n i t i a l gue s s f o r the SD method :
x0 = [1 . 2 ; 1 . 2] ;
% x0 =[=1 .2 ;1] ;
x k=x0 ;

k=1;

1

ACM 40090 / ACM41030 Exercises #1

wh i l e 1

xx (k)=x k (1) ;
yy (k)=x k (2) ;
% Ca l c u l a t i o n o f the c o s t f u n c t i o n . Here , fun i s the c o s t
% func t i o n , t h i s i s d e f i n e d i n a s e p a r a t e Matlab r o u t i n e and i s
% c a l l e d he r e . The Hes s i an i s known f o r t h i s problem , t ha t i s
% why i t i s r e t u r n e d he r e .

[f k , g k , He s s i an] = fun (x k) ;

% Descent D i r e c t i o n : The Hes s i an i s known f o r t h i s prob lem
% so I can use the f u l l Newton method :

p k = =(He s s i an ˆ(=1))* g k ;
% p k==g k /norm (g k) ;

% Optimum Step l eng th , i n i t i a l gue s s f o r Step Length i s 1 :
f=f k ;
a k=1;
wh i l e (f>f k+c1* a k * dot (p k , g k))

a k=a k * rho ;
f=fun (x k+a k * p k) ;

end

x k new=x k+a k * p k ;
x k=x k new ;

i f (mod(k ,10)==0)
d i s p l a y (s t r c a t (’ Cost Func t i on : ’ , num2str (f)))
d i s p l a y (s t r c a t (’ a= ’ , num2str (a k)))

end

i f norm (g k) < t o l
d i s p l a y (s t r c a t (’ Convergence Reached : | \ nab l a f |= ’ , . . .

num2str (norm (g k))))
b reak ;

end

i f (k == maxi t)
d i s p (’Maximum number o f i t e r a t i o n reached ’) ;
b reak ;

end

k=k+1;
end

end

2

ACM 40090 / ACM41030 Exercises #1

The code finds the minimizer x∗ = (1, 1)T in each case. The code performance for the different
starting-points is shown in Table 1. The effect of the choice of x0 on the performance of the
algorithms is mixed. However, a clear finding is that the Newton method is faster, i.e. requires
fewer iterations to achieve convergence.

Starting Value Method f(x∗) |∇f(x∗)| Number iterations
x0 = (1.2, 1.2)T SD 2.7488× 10−11 9.0021× 10−6 13,037
x0 = (−1.2, 1)T SD 2.6785× 10−11 9.0013× 10−6 13,065
x0 = (1.2, 1.2)T Newton 2.2680× 10−11 2.9955× 10−6 15
x0 = (−1.2, 1)T Newton 2.1218× 10−11 3.4709× 10−6 20

Table 1: Code performance for the line-search solver (with SWCs) for solving the Rosenbrock
problem. Tolerance: 10−5.

To verify our code implementation, we have also calculated the minimum of the Rosenbrock function
using the built-in Matlab optimization functions, the listings for which are shown here:

f u n c t i o n x s t a r=s d r o s ma t l a b ()

x0=rand (2 , 1) ;

f v a l=@myfun ;
x s t a r = fmincon (f v a l , x0 , [] , [] , [] , [] , [] , [] , []) ;

f u n c t i o n y=myfun (x)
[y ,˜ ,˜]= fun (x) ;

end

end

Execution of this code confirms that the minimizer is indeed at x∗ = (1, 1)T . Further, because this
is a simple 2D optimization, the cost function can be studied graphically and the landscape around
the minimum can be inspected. We do this in Figure 1–2, where we further show the SD path to the
minimum and the Newton path to the minimum. The SD path shows the familiar ‘zig-zag’ pattern
whereas the Newton path is characteristically straight. These different path shapes show intuitively
why the Newton method is faster to converge to the minimizer.

3

ACM 40090 / ACM41030 Exercises #1

Figure 1: Contour plot of the Rosenbrock function showing the SD path to the minimum

Figure 2: Contour plot of the Rosenbrock function showing the Newton path to the minimum

4

ACM 40090 / ACM41030 Exercises #1

2. Program the steepest-descent and Newton algorithms with the stepsize determined by the
SWCs. Use them to minimize the Rosenbrock function in Equation (1).

Matlab codes for this exercise can be found in the folder OP Ros SWC. The code finds the minimizer
x∗ = (1, 1)T in each case. The code performance for the different starting-points is shown in
Table 2.

Starting Value Method f(x∗) |∇f(x∗)| Number iterations
x0 = (1.2, 1.2)T SD 3.5151× 10−11 1.766× 10−4 4964
x0 = (−1.2, 1)T SD 3.1317× 10−11 1.067× 10−4 2303
x0 = (1.2, 1.2)T Newton 1.7392× 10−11 1.4519× 10−6 8
x0 = (−1.2, 1)T Newton 2.5518× 10−11 1.7003× 10−7 21

Table 2: Code performance for the line-search solver (with SWCs) for solving the Rosenbrock
problem. Tolerance: 2× 10−4.

As before, the effect of the choice of x0 on the performance of the algorithms is mixed. However,
it is still the case that the Newton method is faster, i.e. requires fewer iterations to achieve
convergence. Overall, the implementation with the SWC is fastest (i.e. faster than the BT Line-
search method).

5

ACM 40090 / ACM41030 Exercises #1

3. Program the BFGS algorithm using the SWCs for the stepsize. Have the code verify
that ⟨yk, sk⟩ is always positive. Use the code to minimize the Rosenbrock function in
Equation (1).

Matlab codes for this exercise can be found in the folder OP Ros BFGS. Although the Hessian is
available analytically, we don’t compute it so, the aim of this question (and of BFGS more generally)
is to approximate the Hessian numerically. We need a starting-value for the (inverse) Hessian, we
take this to be H0 = I2×2. We use the SWCs to compute the stepsize αk. A screenshot showing the
execution of the code is shown in Figure 3, showing good convergence to the minimizer x∗ = (1, 1)T

from an initial value x0 = (−1, 2, 1)T .

Figure 3: Screenshot showing the execution of the line-search solver (with BFGS/SWCs) for solving
the Rosenbrock problem

The output variables xx and yy record the trajectory of the solution towards the minimum (x- and
y-coordinates), these are plotted in Figure 4.

Figure 4: Contour plot of the Rosenbrock function showing the BFGS/SWC path to the minimum

6

ACM 40090 / ACM41030 Exercises #1

We have further added an additional output variable dd, this records the value ⟨yk, sk⟩ at each
iteration. The result is plotted in Figure 5.

Figure 5: Monitoring the dot product ⟨yk, sk⟩ in the BFGS code

7

