
Foundations of Data Science lectures
Continuous Optimization: Computational Exercises

Dr Lennon Ó Náraigh

8th December 2023

1. Program the steepest-decent and Newton algorithms using the backtracking
line search algorithm. Use them to minimize the Rosenbrock function:

f(x, y) = 100(y − x2)2 + (1− x)2. (1)

Set the initial step length α0 = 1 and print the step length used by each
method at each iteration. First try the initial point x0 = (1.2, 1.2)T and then
true the more difficult starting point x0 = (−1.2, 1)T .

Matlab codes for this exercise can be found in the folder OP Ros BT, the main code is
shown in the following listings. The Hessian is computable analytically, so to switch from
an SD method to a Newton method, it is a simple matter of replacing pk = −αk∇fk
with pk = −αkB

−1∇fk.

f u n c t i o n [x k , f , k , xx , yy] = s d r o s ()

% t o l : s t o pp i n g c r i t e r i o n on the norm o f g r a d i e n t
t o l = 1e=5;

% maxi t : maximum number o f i t e r a t i o n s
max i t =10000;

xx =0*(1: max i t) ;
yy =0*(1: max i t) ;

% BT LS pa ramete r s :
c1 =0.1 ;
rho =0.8 ;

% x0 : i n i t i a l gue s s f o r the SD method :
% x0 = [1 . 2 ; 1 . 2] ;

1

Foundations of Data Science Lectures Continuous Optimization

x0 =[=1 .2 ;1] ;
x k=x0 ;

k=1;
wh i l e 1

xx (k)=x k (1) ;
yy (k)=x k (2) ;
% Ca l c u l a t i o n o f the c o s t f u n c t i o n .

Here , fun i s the c o s t
% func t i o n , t h i s i s d e f i n e d i n a s e p a r a t e Matlab r o u t i n e and i s
% c a l l e d he r e . The Hes s i an i s known f o r t h i s problem , t ha t i s
% why i t i s r e t u r n e d he r e .

[f k , g k , He s s i an] = fun (x k) ;

% Descent D i r e c t i o n : The Hes s i an i s known f o r t h i s prob lem
% so I can use the f u l l Newton method :

p k = =(He s s i an ˆ(=1))* g k ;
% p k==g k /norm (g k) ;

% Optimum Step l eng th , i n i t i a l gue s s f o r Step Length i s 1 :
f=f k ;
a k=1;
wh i l e (f>f k+c1* a k * dot (p k , g k))

a k=a k * rho ;
f=fun (x k+a k * p k) ;

end

x k new=x k+a k * p k ;
x k=x k new ;

i f (mod(k ,10)==0)
d i s p l a y (s t r c a t (’ Cost Func t i on : ’ , num2str (f)))
d i s p l a y (s t r c a t (’ a= ’ , num2str (a k)))

end

i f norm (g k) < t o l
d i s p l a y (s t r c a t (’ Convergence Reached : | \ nab l a f |= ’ , . . .

num2str (norm (g k))))
b reak ;

end

i f (k == maxi t)

2

Foundations of Data Science Lectures Continuous Optimization

d i s p (’Maximum number o f i t e r a t i o n reached ’) ;
b reak ;

end

k=k+1;
end

end

The code finds the minimizer x∗ = (1, 1)T in each case. The code performance for
the different starting-points is shown in Table 1. The effect of the choice of x0 on the
performance of the algorithms is mixed. However, a clear finding is that the Newton
method is faster, i.e. requires fewer iterations to achieve convergence.

Starting Value Method f(x∗) |∇f(x∗)| Number iterations
x0 = (1.2, 1.2)T SD 2.7488× 10−11 9.87× 10−6 368
x0 = (−1.2, 1)T SD 2.6785× 10−11 9.7104× 10−6 383
x0 = (1.2, 1.2)T Newton 2.2680× 10−11 9.7938× 10−6 147
x0 = (−1.2, 1)T Newton 2.1218× 10−11 9.4728× 10−6 150

Table 1: Code performance for the line-search solver for solving the Rosenbrock problem

To verify our code implementation, we have also calculated the minimum of the Rosen-
brock function using the built-in Matlab optimization functions, the listings for which
are shown here:

f u n c t i o n x s t a r=s d r o s ma t l a b ()

x0=rand (2 , 1) ;

f v a l=@myfun ;
x s t a r = fmincon (f v a l , x0 , [] , [] , [] , [] , [] , [] , []) ;

f u n c t i o n y=myfun (x)
[y ,˜ ,˜]= fun (x) ;

end

end

Execution of this code confirms that the minimizer is indeed at x∗ = (1, 1)T . Further,
because this is a simple 2D optimization, the cost function can be studied graphically
and the landscape around the minimum can be inspected. We do this in Figure 1–
2, where we further show the SD path to the minimum and the Newton path to the

3

Foundations of Data Science Lectures Continuous Optimization

minimum. The SD path shows the familiar ‘zig-zag’ pattern whereas the Newton path is
characteristically straight. These different path shapes show intuitively why the Newton
method is faster to converge to the minimizer.

Figure 1: Contour plot of the Rosenbrock function showing the SD path to the minimum

Figure 2: Contour plot of the Rosenbrock function showing the Newton path to the
minimum

4

Foundations of Data Science Lectures Continuous Optimization

2. Consider the optimization problem,

min f(x), f(x) = ⟨a,x⟩+ 1
2
⟨x, Bx⟩,

where now B is a specific 10 × 10 matrix and a is a specific 10 × 1 column
vector. The numerical values of these arrays can be found in the spreadsheet
OP 10x10.csv:

� The spreadsheet contains a 10× 1 array which corresponds to the vector
a;

� The spreadsheet contains a 10× 10 array B0.

The array B is obtained from B0 by the following sequence of steps:

(i) Symmetrize B0:
B0 → (B0 +BT

0)/2;

(ii) Scale B0:
B0 → B0/max(|B0|)

(iii) Generate a positive-definite matrix:

B0 → (BT
0)B0.

The end result of this sequence of operations is the matrix B.

Hence,

(a) Find the minimizer x∗ numerically, using the steepest-descent and New-
ton algorithms.

(b) Why is the convergence so poor in the case of the steepest-descent al-
gorithm?

5

Foundations of Data Science Lectures Continuous Optimization

For part (a), the code is similar to Question 1 and is not shown here. The convergence
is extremely slow in case of the SD method (for the given numerical parameters); results
are not presented here. Instead, we go straight over to the Newton method, where we
obtain the following results:

This can be checked, as we know the analytical value of the minimizer in this case,
x∗ = −B−1a, this is also shown in the figure. The numerical and analytical solutions
agree, confirming the correct implementation of the Newton method in this case.

For part (b), we look at the condition number of the matrix B:

This is greater than 105 meaning the maximum and minimum eigenvalues are orders
of magnitude apart. From the theory for the SD method, we know that:

∥xk+1 − x∗∥2B ≤
(
1− 1

κ(B)

)
∥xk − x∗∥2B,

and with κ(B) > 105, we have:

∥xk+1 − x∗∥2B > ∥xk − x∗∥2B,

leading to poor convergence of the SD method in this particular example.

6

