

FIG. 1. Schematic diagram showing the generation of small-amplitude water waves by a piston wavemaker located at x = 0

II. SPATIO-TEMPORAL ANALYSIS OF SMALL-AMPLITUDE WATER WAVES

In this section we develop the spatio-temporal theory of small-amplitude water waves. This theory describes the linear response of the free surface to a localized forcing corresponding to a wavemaker and as such, forms the basis of wavemaker theory. The theory has already been presented in the standard reference [5] and is included here for completeness, and to provide the proper context for the subsequent experimental and computational investigations.

For this purpose, we refer to the set-up in Figure 1, and take the direction of propagation along the x-axis, and the direction of oscillation along the z-axis. The free surface is therefore denoted by $z = \eta(x,t)$, where z = 0 represents the undisturbed free-surface height. Standard undergraduate texts describe a temporal theory [3], where the free surface is initialized to have a monochromatic sinusoidal profile $\eta(x,t=0) \propto \sin(kx+\varphi)$ everywhere (here, φ is a constant phase term). Here, we describe in detail the spatio-temporal theory, wherein the free surface is assumed to be undisturbed initially, but to undergo a localized forcing at x=0 corresponding to the impact of a piston wavemaker.

To understand the setup of the spatio-temporal wave propagation, we refer to Figure 1. A piston located at x = 0 generates localized, impulsive forcing. The piston oscillates according to:

$$\xi(z,t) = \Re\left[-\frac{1}{\mathrm{i}\omega}f(z)\mathrm{e}^{-\mathrm{i}\omega t}\right]. \tag{2}$$

where f(z) is a shape function describing the details of the back-and-forth motion of the piston. This can be left unspecified for now. Inside the domain Ω , the flow is inviscid and irrotational, so potential theory applies:

$$\nabla^2 \Phi = 0, \qquad \boldsymbol{x} \in \Omega. \tag{3}$$

Here, Φ is the velocity potential, such that $\boldsymbol{u} = \nabla \Phi$. Also, the vector $\boldsymbol{x} = (x, z)$ is a two-dimensional vector. The boundary condition at z = -h is the no-penetration condition, w = 0, hence:

$$\frac{\partial \Phi}{\partial z} = 0, \qquad z = -h.$$
 (4)

A. Conditions at the free surface

We next look at the boundary condition at the free surface $z = \eta$. Bernoulli's equation gives the pressure on the free surface as:

$$p = -\rho \frac{\partial \phi}{\partial t} - \frac{1}{2}\rho \mathbf{u}^2 - \rho g \eta + f(t), \tag{5}$$

where f(t) is a parameter associated with Bernoulli's principle. We assume that the wave amplitude is small in comparison to the water depth h. This introduces a small parameter $\epsilon = \max(\eta)/h$ into the problem. Thus, disturbances, whether of amplitude, pressure, velocity or streamfunction are proportional to ϵ , whereas products of disturbances (such as \mathbf{u}^2) are proportional to ϵ^2 and can be neglected in a small-amplitude approximation. Thus, the pressure on the free surface can be approximated as:

$$p = -\rho \frac{\partial \Phi}{\partial t} - \rho g \eta + f(t). \tag{6}$$

From Reference [3], the pressure condition at the interface for an inviscid flow is:

$$p_{atm} - p = \gamma \kappa, \tag{7}$$

where $\kappa = \eta_{xx}/(1+\eta_x^2)^{3/2}$ is the mean curvature and p_{atm} is the atmospheric pressure. In the small-amplitude approximation, this reduces to:

$$p_{atm} - p = \gamma \eta_{xx}. \tag{8}$$

Using Equation (6), this becomes:

$$\rho \frac{\partial \Phi}{\partial t} + \rho g \eta + [p_{atm} - f(t)] = \gamma \eta_{xx}, \qquad z = \eta.$$
 (9)

Since f(t) is arbitrary, we set $f(t) = p_{atm}$, leaving:

$$\rho \frac{\partial \Phi}{\partial t} + \rho g \eta = \gamma \eta_{xx}, \qquad z = \eta. \tag{10}$$

However, we may expand $\Phi(z = \eta) = \Phi(z = 0) + (\partial \Phi/\partial z)_{z=0}\eta + O(\eta^2)$. Because of the small-amplitude approximation, we can replace $\Phi(z = \eta)$ with $\Phi(z = 0)$, and similarly for derivatives, giving

$$\rho \frac{\partial \Phi}{\partial t} + \rho g \eta = \gamma \eta_{xx}, \qquad z = 0. \tag{11}$$

The difference between Equations (10) and (11) is subtle but it enables a great simplification in the foregoing analysis.

We now make the standard transformations:

$$\Phi = \Re \left[\phi(\mathbf{x}) e^{-i\omega t} \right], \tag{12a}$$

$$\eta = \Re \left[\widehat{\eta}(x) e^{-i\omega t} \right]. \tag{12b}$$

We henceforth drop the hat on $\widehat{\eta}$. Thus, we use the same symbol for η (which depends on x and t), and $\widehat{\eta}$ (which depends on x only). It should be clear from context which variable is being used. In this way, Equation (11) becomes:

$$\rho i\omega \phi = \rho g \eta - \frac{\gamma}{\rho} \eta_{xx}, \qquad z = 0. \tag{13}$$

A second interfacial condition is the kinematic condition. In the small-amplitude approximation, which states that the interface moves with the flow, hence:

$$\frac{\partial \eta}{\partial t} + u \frac{\partial \eta}{\partial x} = w, \qquad z = \eta. \tag{14}$$

As with Equation (11), we linearize this identity on to the surface z = 0, which gives:

$$\frac{\partial \eta}{\partial t} = w \qquad z = 0, \tag{15}$$

or $\partial_t \eta = \partial_z \Phi$ on z = 0, hence:

$$-i\omega\eta = \frac{\partial\phi}{\partial z}, \qquad z = 0. \tag{16}$$

We combine Equations (13)–(16). First, Equation (16) gives $\eta = -1/(i\omega)\phi_z$. We substitute this into Equation (13) to obtain a single boundary condition at z = 0:

$$\omega^2 \phi = g \frac{\partial \phi}{\partial z} - \frac{\gamma}{\rho} \partial_{xx} \frac{\partial \phi}{\partial z}, \qquad z = 0.$$
 (17)

B. Solving Laplace's Equation

We solve $\nabla^2 \phi = 0$ in the linearized domain $\Omega_L = \{(x, z) | -h < z < 0\}$. We do separation of variables to get $\phi(x, z) = X(x)Z(z)$. Following standard steps, we get:

$$\frac{X''}{X} = -\frac{Z''}{Z} = k^2. {18}$$

We look at the boundary conditions at z = 0 next. The boundary condition (17) gives:

$$\omega^2 X(x) Z(0) = \left(gX(x) - \frac{\gamma}{\rho} X''(x) \right) Z'(0). \tag{19}$$

We use the separation-of-variables condition (18) to reduce this to:

$$\omega^2 Z(0) = \left(g - \frac{\gamma}{\rho} k^2\right) Z'(0). \tag{20}$$

We further re-write this as:

$$Z'(0) = \alpha_k Z(0), \qquad \alpha_k = \frac{\omega^2}{g - \frac{\gamma}{\rho} k^2}.$$
 (21)

Putting it all together, we have to solve:

$$Z'' + k^2 Z = 0, (22a)$$

$$Z'(-h) = 0, (22b)$$

$$Z'(0) = \alpha_k Z(0). \tag{22c}$$

The solution is:

$$Z = \frac{\cos[k(z+h)]}{\cos kh},\tag{23}$$

with solvability condition $k \tan(kh) = -\alpha_k$, or:

$$k\tan(kh) = -\frac{\omega^2}{g - \frac{\gamma}{\rho}k^2}.$$
 (24)

We label the solutions of Equation (25) as k_n , where $n \in \{0, 1, 2, \dots\}$.

FIG. 2. The dispersion relation (25). For a given ω , there is a uniquely determined k-value, hence a uniquely determined wavelength $\lambda = 2\pi/k$. Parameter values: $h = 0.05 \,\mathrm{m}$, $\rho = 1000$, kg · m⁻³, $g = 9.8 \,\mathrm{m} \cdot \mathrm{s}^{-2}$, $\gamma = 0.072 \,\mathrm{N} \cdot \mathrm{m}^{-1}$.

C. Dispersion Relation

Equation (24) has two solution types:

• Case 1. This corresponds to n = 0, so we are dealing with k_0 . In this case, k_0 is purely imaginary, and we write $k_0 = \pm i\kappa$, where κ is real. Using the properties of trigonometric functions, Equation (25) reduces to:

$$\kappa \tanh(\kappa h) = \frac{\omega^2}{g + \frac{\gamma}{\rho} \kappa^2},\tag{25}$$

which is precisely Equation (1). In this case, however, ω is known, and κ has to be obtained by inversion. A sample dispersion curve is shown in Figure 2.

• Case 2. In this case, we look at k_n , where $n \ge 1$. A standard graphical eigenvalue analysis shows in this case there are infinitely many real positive roots, confirming that $n \in \{1, 2, \dots\}$.

Putting the two cases together, we have the following set of eigenfunctions, with Z(z) being replaced by $\chi_n(z)$:

$$\chi_n(z) = \begin{cases} \frac{\cos[k_n(z+h)]}{\cos k_n h}, & n \ge 1\\ \frac{\cosh[\kappa(z+h)]}{\cosh \kappa h}, & n = 0. \end{cases}$$
(26)

As these are eigenfunctions of a self-adjoint operator, we have an orthogonality relation

$$\int_{-h}^{0} \chi_m(z) \chi_n(z) dz = C_n \delta_{nm}. \tag{27}$$

In particular,

$$C_0 = \frac{1}{4\kappa} \frac{1}{\cosh^2(\kappa h)} \left[2\kappa h + \sinh(2\kappa h) \right]. \tag{28}$$

D. General Solution

The general solution for the velocity potential can now be written as:

$$\phi(x,z) = \sum_{n=1}^{\infty} a_n \chi_n(z) e^{-k_n x} + a_0 \chi_0(z) e^{i\kappa x}.$$
 (29)

Notice that we do not allow for a contribution proportional to $e^{-i\kappa x}$, as this would correspond to a wave travelling inward from positive infinity, which is not physical. Notice also that we rule out intrinsically negative eigenvalues k_n $(n \ge 1)$ as well. Thus, the Sommerfeld Radiation condition $\partial \phi/\partial x \sim ik\phi$ is satisfied as $x \to \infty$. Furthermore, at x = 0, we have:

$$\left(\frac{\partial \phi}{\partial x}\right)_{(x=0,z)} = \sum_{n=1}^{\infty} a_n \chi_n(z) (-k_n) + a_0 \chi_0(z) (\mathrm{i}\kappa).$$
(30)

The boundary condition at x = 0 is $\partial_x \phi = u = \partial_t \xi$, where ξ is the displacement of the wall at x = 0 (cf. Equation (2)). Thus, we obtain:

$$\sum_{n=1}^{\infty} a_n \chi_n(z) (-k_n) + a_0 \chi_0(z) (-i\kappa) = f(z).$$
 (31)

Hence, the coefficients a_0 and a_n can be determined from:

$$a_{0} = \frac{1}{(i\kappa)C_{0}} \int_{-h}^{0} f(z)\chi_{0}(z)dz,$$

$$a_{n} = \frac{1}{(-k_{n})C_{n}} \int_{-h}^{0} f(z)\chi_{n}(z)dz, \qquad n \ge 1$$

In particular, for a piston wavemaker with $f(z) = f_0 = \text{Const.}$, we have:

$$a_0 = \frac{f_0}{(i\kappa)C_0} \frac{1}{\kappa} \frac{\sinh(\kappa h)}{\cosh(\kappa h)}.$$
 (32)

Furthermore, in the far field, we have

$$\phi \sim a_0 \chi_0(z) e^{i\kappa x}, \qquad x \to \infty,$$
 (33)

since $e^{-k_n x} \to 0$ as $x \to \infty$, for $n \ge 1$. Only the oscillatory wave with dispersion relation (25) survives far downstream of the disturbance.

E. Results

By analysing the dispersion relation (25), we can see what type of wavelengths can be expected for a given forcing frequency. The wavelengths depend sharply on depth, as shown in Table I.

A further key quantity of interest is the height-to-stroke ratio, which we derive now for the piston wavemaker as follows. We apply the kinematic condition (16) in the far field (for $x \to \infty$) to get

$$a_0 \left(\frac{\partial \chi_0}{\partial z}\right)_{z=0} = -i\omega \eta_0. \tag{34}$$

ω (RPM)	$\lambda (h = 0.05 \mathrm{m})$	$\lambda (h = 0.1 \mathrm{m})$
10	4.19	5.91
50	0.820	1.13
100	0.381	0.484
200	0.139	0.142

TABLE I. Expected wavelengths (in metres), based on the dispersion relation (25). Depths: $h = 0.05 \,\mathrm{m}$ and $0.1 \,\mathrm{m}$. Other parameters as in Figure 2.

Here, we have decomposed $\eta(x)$ into a phase η_0 and the complex exponential $e^{-i\kappa x}$, corresponding to the n=0 normal model. We fill in for $\chi_0(z)$ (cf. Equation (26)) to get

$$\frac{f_0}{-i\kappa C_0} \frac{\sinh^2(\kappa h)}{\cosh^2(\kappa h)} = -i\omega \eta_0.$$
 (35)

For a piston wavemaker, we have $f_0 = \omega A e^{i\varphi}$, where A is the amplitude of the back-and-forth motion of the piston (and equal to half the stroke, 2A = S), and φ is a constant phase. This gives:

$$\left| \frac{\eta}{A} \right| = \frac{1}{\kappa C_0} \frac{\sinh^2(\kappa h)}{\cosh^2(\kappa h)},\tag{36}$$

and filling in for C_0 gives:

$$\left| \frac{\eta_0}{A} \right| = \frac{4 \sinh^2(\kappa h)}{2\kappa h + \sinh(2\kappa h)}.$$
 (37)

We identify the height of the wave $H = 2|\eta_0|$, hence $|\eta/A| = |2\eta/(2A)| = H/S$. This gives the required height-to-stroke ratio in the far field, valid for a piston wavemaker:

$$\frac{H}{S} = \frac{4\sinh^2(\kappa h)}{2\kappa h + \sinh(2\kappa h)}.$$
 (38)