FIG. 1. Schematic diagram showing the generation of small-amplitude water waves by a piston
wavemaker located at x =0

II. SPATIO-TEMPORAL ANALYSIS OF SMALL-AMPLITUDE WATER WAVES

In this section we develop the spatio-temporal theory of small-amplitude water waves.
This theory describes the linear response of the free surface to a localized forcing corre-
sponding to a wavemaker and as such, forms the basis of wavemaker theory. The theory
has already been presented in the standard reference [5] and is included here for complete-
ness, and to provide the proper context for the subsequent experimental and computational
investigations.

For this purpose, we refer to the set-up in Figure 1, and take the direction of propagation
along the z-axis, and the direction of oscillation along the z-axis. The free surface is therefore
denoted by z = n(x,t), where z = 0 represents the undisturbed free-surface height. Standard
undergraduate texts describe a temporal theory [3], where the free surface is initialized to
have a monochromatic sinusoidal profile n(z,t = 0) o sin(kz + ¢) everywhere (here, ¢ is a
constant phase term). Here, we describe in detail the spatio-temporal theory, wherein the
free surface is assumed to be undisturbed initially, but to undergo a localized forcing at z =0
corresponding to the impact of a piston wavemaker.

To understand the setup of the spatio-temporal wave propagation, we refer to Figure 1. A
piston located at x = 0 generates localized, impulsive forcing. The piston oscillates according
to:
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where f(z) is a shape function describing the details of the back-and-forth motion of the
piston. This can be left unspecified for now. Inside the domain €2, the flow is inviscid and
irrotational, so potential theory applies:

V2o =0, weQ (3)

Here, ® is the velocity potential, such that u = V®. Also, the vector « = (x,z) is a two-
dimensional vector. The boundary condition at z = —h is the no-penetration condition,
w = 0, hence:

00

g = O, z =—h. (4)



A. Conditions at the free surface

We next look at the boundary condition at the free surface z = . Bernoulli’s equation
gives the pressure on the free surface as:

0
p= —pa—f - 3pu® - pgn + f(t), (5)

where f(t) is a parameter associated with Bernoulli’s principle. We assume that the wave
amplitude is small in comparison to the water depth h. This introduces a small parameter
e = max(n)/h into the problem. Thus, disturbances, whether of amplitude, pressure, velocity
or streamfunction are proportional to €, whereas products of disturbances (such as u?) are
proportional to €2 and can be neglected in a small-amplitude approximation. Thus, the
pressure on the free surface can be approximated as:

0P
p=-p=-—pgn+ f(t). (6)
ot
From Reference [3], the pressure condition at the interface for an inviscid flow is:

Patm — P = VK, (7)

where & = 1,,/(1+n2)3/?2 is the mean curvature and pg,, is the atmospheric pressure. In the
small-amplitude approximation, this reduces to:

Patm =P = VMzx- (8)
Using Equation (6), this becomes:
0P
P+ P9 [Paim = F(O] = 1w, 2=, 9)

Since f(t) is arbitrary, we set f(t) = paim, leaving:

o
P+ PIN= Vs, z=1. (10)

However, we may expand ®(z = 1) = ®(z = 0) + (09/0z),-on + O(n?). Because of the
small-amplitude approximation, we can replace ®(z = n) with ®(z = 0), and similarly for
derivatives, giving

0P
Pop tPIN=Vews 2=0. (11)

The difference between Equations (10) and (11) is subtle but it enables a great simplification
in the foregoing analysis.
We now make the standard transformations:

® = R[p(x)e™], (12a)
n = R[Ax)e™]. (12b)

We henceforth drop the hat on 77. Thus, we use the same symbol for 1 (which depends on
x and t), and 77 (which depends on z only). It should be clear from context which variable
is being used. In this way, Equation (11) becomes:

: v
piwg = pgn - w25 0. (13)



A second interfacial condition is the kinematic condition. In the small-amplitude approxi-
mation, which states that the interface moves with the flow, hence:

%+u%=w, z =1, (14)
As with Equation (11), we linearize this identity on to the surface z = 0, which gives:
% =w z =0, (15)
or 0;m =0,® on z =0, hence:
—iwn = 99 z=0. (16)
0z’

We combine Equations (13)—(16). First, Equation (16) gives n = —1/(iw)¢,. We substitute
this into Equation (13) to obtain a single boundary condition at z = 0:
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_ _ sl =0. 1
wp=g pamé’z’ z2=0 (17)
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B. Solving Laplace’s Equation

We solve V2¢ =0 in the linearized domain Qf, = {(x,2)|-h <z < 0}. We do separation of
variables to get ¢(x,z) = X(z)Z(z). Following standard steps, we get:

Xl/ ZII

— ===k 1
¥ =7 (18)
We look at the boundary conditions at z = 0 next. The boundary condition (17) gives:
WX (2)Z(0) = (gX(:z:) - ZX"(x)) 7'(0). (19)
p
We use the separation-of-variables condition (18) to reduce this to:
2 7(0) = (g— 1k2)z'(0). (20)
p
We further re-write this as:
! w2
P
Putting it all together, we have to solve:
7"+ k*Z =0, (22a)
Z'(-h) =0, (22b)
Z'(0) = axZ(0). (22¢)
The solution is: k(2 + 1))
cos|k(z +
g =L\ /] 23
coskh (23)
with solvability condition ktan(kh) = —ay, or:
w2
k:tan(kh) = —m. (24)
P

We label the solutions of Equation (25) as k,, where n € {0,1,2,--}.
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FIG. 2. The dispersion relation (25). For a given w, there is a uniquely determined k-value, hence
a uniquely determined wavelength A = 27/k. Parameter values: h = 0.05m, p = 1000, kg - m~3,
g=9.8m-s2, v=0.072N-m™%.

C. Dispersion Relation

Equation (24) has two solution types:

e Case 1. This corresponds to n =0, so we are dealing with ky. In this case, kg is purely
imaginary, and we write kg = ik, where & is real. Using the properties of trigonometric
functions, Equation (25) reduces to:

w2

rtanh(kh) = (25)

g+ k%
which is precisely Equation (1). In this case, however, w is known, and x has to be
obtained by inversion. A sample dispersion curve is shown in Figure 2.

e Case 2. In this case, we look at k,, where n > 1. A standard graphical eigenvalue
analysis shows in this case there are infinitely many real positive roots, confirming
that ne {1,2,---}.

Putting the two cases together, we have the following set of eigenfunctions, with Z(z) being
replaced by x,(2):

cos[kn (z+h)]
———", nx>1
X?L(z) = {cosﬁ(ficlzghh)] (26)
cosh K_;L y M= 0.
As these are eigenfunctions of a self-adjoint operator, we have an orthogonality relation
0
[ n()xa(2)dz = Codn. 1)
~h
In particular,
1 1
[2kh + sinh(2kh)] . (28)

°" 1k cosh?(kh)



D. General Solution

The general solution for the velocity potential can now be written as:

B(2,2) = 3 anxn(2)e™ + agxo(2)e™. (20)

n=1

Notice that we do not allow for a contribution proportional to e % as this would correspond
to a wave travelling inward from positive infinity, which is not physical. Notice also that
we rule out intrinsically negative eigenvalues k, (n > 1) as well. Thus, the Sommerfeld
Radiation condition d¢/dx ~ ik¢ is satisfied as  — co. Furthermore, at x = 0, we have:

09 > .
(%)(amo,z) Z anXn(2)(=kn) + aoxo(2)(ix). (30)

n=1

The boundary condition at z =0 is 0,¢ = u = 0;§, where £ is the displacement of the wall at
x =0 (c¢f. Equation (2)). Thus, we obtain:

Zanxn 2)(=ky) + aoxo(2)(-ik) = f(2). (31)
Hence, the coefficients ag and a,, can be determined from:
1 0
e Ja )
1 0

In particular, for a piston wavemaker with f(z) = fo = Const., we have:

ag =

Qn

fo  1sinh(xh)
o= (ix)Cy r cosh(kh) (32)

Furthermore, in the far field, we have
¢ ~ agxo(2)e"?, T — 00, (33)

since e™*% — () as & — oo, for n > 1. Only the oscillatory wave with dispersion relation (25)
survives far downstream of the disturbance.

E. Results

By analysing the dispersion relation (25), we can see what type of wavelengths can be
expected for a given forcing frequency. The wavelengths depend sharply on depth, as shown
in Table I.

A further key quantity of interest is the height-to-stroke ratio, which we derive now for
the piston wavemaker as follows. We apply the kinematic condition (16) in the far field (for
T — 00) to get

0 :
ag (%)z:O = —iwnp. (34)



w (RPM)[X (h=0.05m)[A (h=0.1m)

10 4.19 5.91
50 0.820 1.13
100 0.381 0.484
200 0.139 0.142

TABLE I. Expected wavelengths (in metres), based on the dispersion relation (25). Depths: h =
0.05m and 0.1m. Other parameters as in Figure 2.

Here, we have decomposed n(x) into a phase 1y and the complex exponential e™*%  corre-
sponding to the n = 0 normal model. We fill in for x((z) (¢f. Equation (26)) to get
fo sinhQ(/@h) ~
—ir Cy cosh?(kh)

—iWT](), (35)

For a piston wavemaker, we have fy = wAe'?, where A is the amplitude of the back-and-forth
motion of the piston (and equal to half the stroke, 24 = S), and ¢ is a constant phase. This
gives:

‘ﬂ‘ _ 1 sinh?(kh) (36)
Al kCy cosh®*(kh)’
and filling in for Cj gives:
M| _ 4sinh®(kh) (37)
Al 2kh+sinh(2kh)

We identify the height of the wave H = 2|ng|, hence |n/A| = |2n/(2A)| = H/S. This gives the
required height-to-stroke ratio in the far field, valid for a piston wavemaker:
H 4sinh?(kh)

S " 2kh+ sinh(2kh) (38)




