Advanced Fluid Mechanics
(ACM 40740) — Assignment 1

Dr Lennon O Naraigh

1. The linearized equations of motion for the Rayleigh—Bénard convection problem
read
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Here, dp is the perturbation pressure. Prove Equation (1) by carrying out the
relevant linearization.

Solution: Start with the Boussinesq approximation:
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These are the ‘full’ equations of motion. However, we now consider a solution
that represents a perturbation from the base state. As such, we henceforth let u
denote a small-amplitude perturbation velocity. Correspondingly,
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base state perturbation

is the pressure, and
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base state perturbation

is the temperature. To simplify the following presentation, we will write p = po+dp
for the pressure, where pq is the base pressure and dp is the perturbed pressure.
Then, the Boussinesq equation becomes
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By hydrostatic balance, —Vpy — gpoz = 0. Also, the term u - Vu is omitted, by
linearization. Hence, the linearized Boussinesq equation reads
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The incompressibility condition is trivial:

V-u=0. (2b)

The full advection-diffusion for the temperature 7" = (Ty — 5z) + 0 is
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The base-state temperature distribution solves Laplace’s equation, V(T — 3z) =
0 Also, by linearization, the term w - V6 is omitted. Thus, we are left with
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2. Show that the Rayleigh number is dimensionless.

Start with i
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Only a and 8 have somewhat unusual units. From é6p = —poa(T — Tp), the

constant « has units of [Temperature]™!. From T = T, — 3z, (3 has units of
[Temperature|/L. Thus, af has units of 1/L. So,

_ (@/T)a/L)Lt
[Ra] - (LQ/T>2 ’ (3)
L*)T?
= (4)
— 1 (5)



