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Lecture notes in Survey of Applied and Computational Mathematics, January 2017





Survey of Applied and Computational Mathematics (ACM40690)

• Subject: Applied and Computational Mathematics

• School: Mathematical Sciences

• Module coordinator: Dr Lennon Ó Náraigh
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Chapter 0

Introduction

0.1 Overview

Here is an executive summary of the module:

This module involves the study of advanced mathematical techniques in complex analysis, theory

of differential equations, asymptotic methods, and computation. The aim of this study is twofold:

to learn some interesting and useful mathematics, but also to connect the disparate modules

you have hitherto studied so you can obtain a broad survey of Applied and Computational

Mathematics.

The following is a more detailed list of the topics to be studied in the present semester (January

2016). It differs slightly from the module descriptor.

Part I

1. Review of Complex Analysis (1 weeks).

2. Laplace’s equation and the maximum principle (1 weeks).

3. Green’s functions for Laplace’s equation on finite domains (1 week).

4. Conformal mapping theory (1 week).

5. Laplace transforms (1 week).

6. The steepest-descent method (2 weeks).

7. Writing the solution of an ODE as a contour integral, and the evaluation of the same in

asymptotic limits where the steepest-descent method can be used (1 week).

1



2 Chapter 0. Introduction

8. The WKB approximation in the far field and near turning points, applications of WKB theory

in Quantum Mechanics and Fluid Mechanics (1 week)

Part II

Introduction to Fortran programming and multithreading, with applications in Scientific Computing

relating to Part I (3 weeks).

0.2 Learning and Assessment

Learning

• For Part I, teaching will be by way of fairly fast-paced lectures, and there will be only two

such lectures per week during part I of the module (notice that this is different from previous

years).

• Teaching in Part II will be by way of lab sessions, details of which and notes for which will be

provided later, after the midterm break.

• As this is an advanced undergraduate module, heavy emphasis is placed on independent

study. Only a small amount of the material in the lecture notes will be covered in class. Your

independent study will be guided by reading this material, supplementary material from the

recommended textbooks, and by a weekly problem sheet.

Assessment

• One final exam, counting for 60%.

• Weekly homework assignments in Part I, counting for 20%, the details of which are given

below.

• Computational assignments in Part II, counting for 20%.

Concerning the homework assignments in Part I, there will be nine such assignments, given out

weekly during Part I of the module. Complete each problem sheet and submit your answers in the

following week. The corrected homeworks will be returned to you promptly. Model answers for the

assignments will also be provided promptly. You will be able to reflect on your performance as the

module progresses by comparing your work with model answers to be provided on a weekly basis.
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Lecturers

I will teach both parts of the module.

Textbooks

For Part I of this module, lecture notes that are more-or-less self-contained will be put on the web.

The lecture notes will be based in part on the following books:

• Mathematical Methods for Physicists, G. B. Arfken, H. J. Weber, and F. Harris (Wiley, Fifth

Edition).

• Advanced Mathematical Methods for Scientists and Engineers – Asymptotic Methods and

Perturbation Theory, Carl M. Bender and S. A. Orzag (Springer edition, 1999).

• Partial Differential Equations of Mathematical Physics and Integral Equations, R. B. Guenther

and J. W. Lee (Dover edition, 1996).



Chapter 1

Review of Complex Analysis

“It is too soon to say.”

Quote by Zhou Enlai, first Premier of the People’s Republic of China. The quote is often, though

disputedly, thought to refer to the significance of the French Revolution of 1789, although it has

been argued that he was actually referring to the French protests of 1968. In any case, what are

the consequences of Cauchy’s theorems of complex analysis? Again, it is too soon to say.

Overview

We review the basic concepts and results in the theory functions of a single complex variable. The

chapter starts with basic definitions and takes the reader up to the Residue Theorem. Homework

examples will involve evaluation of seemingly difficult integrals via the Calculus of Residues. This is

an important aspect of Complex Analysis in Applied Mathematics and Mathematical Physics, and

it is given its proper place in this module. However, a principal aim of this module is to show the

reader that the usefulness of complex-variable theory extends to an unimaginably broad vista beyond

this single application. You will begin to comprehend this fact in later chapters. Finally, there will be

a brief discussion about non-isolated singularities, leading to branch cuts and the beautiful Riemann

surfaces.

4



1.1. Basic notions – Review 5

1.1 Basic notions – Review

Our review of complex analysis starts with our recalling some familiar definitions. We let D be an

open subset of C, and we study complex-valued functions of the single complex variable z = x+ iy:

f : D → C,

z 7→ f(z). (1.1)

The complex-valued function f(z) can itself be split into its real and imaginary parts:

f(z) = u(x, y) + iv(x, y).

Examples of such functions, with D = C include the polynomials, the complex exponential ez,

and the usual trigonometric functions derived from the complex exponential. The function f(z) in

Equation (1.1) is said to be differentiable at the point z0 if the limit

lim
δz→0

f(z0 + δz)− f(z0)

δz
(1.2)

exists and is independent of the particular approach to the point z0. The limit in Equation (1.2)

– if it exists – is denoted by f ′(z0), and is called the derivative of the function f(z) at the point

z0. The function f(z) in Equation (1.1) is called analytic in the domain D if the derivative f ′(z)

exists for all points z ∈ D.

If the function f(z) is analytic in D, then the independence-of-approach in the definition (1.2)

implies that f(z) should satisfy the famous Cauchy–Riemann conditions:

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (1.3)

A partial converse exists: if u(x, y) and v(x, y) are C1 functions of (x, y) ∈ D, such that u and v

satisfy the Cauchy–Riemann functions, then the complex-valued function f(z) = u(x, y) + iv(x, y)

is analytic in D.

The Cauchy–Riemann conditions will prove to be incomparably useful in this module and in the wider

mathematical world. For now, by way of example, consider the complex-valued function f(z) = z.

Applying the Cauchy–Riemann conditions, one obtains

∂u

∂x
= 1 6= ∂v

∂y
= −1.

Thus, f(z) = z is an example of a function that is everywhere continuous but nowhere (complex)

differentiable. Indeed, any complex-valued function involving z will fail to be analytic.
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1.2 Integral theorems

Throughout this section, a closed, non-intersecting piecewise smooth path is called a contour. In

the context of closed curves, a brief discussion of the notion of simply-connectedness is warranted.

Loosely, a set is simply connected if it ‘contains no holes’. More precise is the following: a set D is

simply connected if, for any two contours C0 : [0, 1]→ D, C1 : [0, 1]→ D based at x0 ∈ D, i.e.

xC0(0) = xC1(0) = x0,

there exists a continuous map

H : [0, 1]× [0, 1]→ D,

such that

H(t, 0) = xC0(t), 0 ≤ t ≤ 1,

H(t, 1) = xC1(t), 0 ≤ t ≤ 1,

H(0, s) = H(1, s) = x0, 0 ≤ s ≤ 0.

Such a map is called a homotopy and C0 and C1 are called homotopy equivalent. One can think

of this map as a ‘continuous deformation of one loop into another’. Because a point is, trivially, a

loop, in a simply-connected set, a loop can be continuously deformed into a point.

In this context, we consider

f : D → C,

z 7→ f(z), (1.4)

where D is open and simply-connected. This enables us to formulate the statement of Cauchy’s

theorem, the cornerstone of complex analysis:

Theorem 1.1 Let f(z) be analytic on the domain D given in Equation (1.4). Then, for any contour

C contained entirely in D, ∮
C

f(z)dz = 0.

Next up is Cauchy’s integral formula:

Theorem 1.2 Let f(z) be analytic on the domain D given in Equation (1.4), and let C be a

contour contained entirely in D. Let I(C) denote the open region whose boundary is the contour

C. Then, for any a ∈ I(c),

f(a) =
1

2πi

∮
C

f(z)

z − a
dz.
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1.3 Power series

A power series centred at a is a function of the form

f(z) =
∞∑
n=0

an(z − a)n, (1.5)

where the an’s are complex numbers. A power series of the form (1.5) satisfies precisely one of the

following three possibilities:

1. It converges for all z ∈ C;

2. It converges only for z = a (all power series converge at their centre!);

3. There is R > 0 such that the power series converges (absolutely) whenver |z − a| < R and

diverges whenever |z − a| > R.

If possibility 3 occurs, the power series converges inside the disc |z − a| < R, and R is called the

radius of convergence. The behaviour on the boundary of the disc can be ambiguous, and should

be examined on a case-by-case basis. There are several standard ways of computing the radius of

convergence, such as the following:

1. If |an+1/an| → ` as n→∞, then R = 1/`. Note: if ` = 0, then R =∞.

2. If |an|1/n → ` as n→∞ then again, R = 1/`, and if ` = 0, then R =∞.

By the usual criteria for term-by-term differentiation, all complex power series can be differentiated

term-by-term inside their radius of convergence. Hence, all complex power series are complex-

differentiable (analytic) inside their radius of convergence.

The converse is also true: all analytic functions can be represented by a power series, at least on

some open disc. This is the complex version of Taylor’s theorem:

Theorem 1.3 Let f(z) be analytic on the open disc of centre a and radius R, denoted by D(a,R).

Then, for all z ∈ D(a,R),

f(z) =
∞∑
n=0

an(z − a)n,

where

an =
1

2πi

∮
C(a,r)

f(z)

(z − a)n+1
dz,
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where C(a, r) is the circle of centre a and radius r, and 0 < r < R. Recall, the complex version

of Taylor’s theorem is by no means a trivial extension of its simpler real cousin. Combined with the

facts about term-by-term differentiation of complex-valued power series, it provides necessary and

sufficient conditions for a power series to converge to its generating function: it is necessary and

sufficient for the generating function to be (complex) differentiable. This contrasts greatly to the

real case, where convergence of a Taylor series to its generating function is not guaranteed even if

the generating function is differentiable. The function f(x) = e−1/x2 for x 6= 0 and f(0) = 0 is the

celebrated pathological example from real analysis. No such pathology exists in the complex plane:

if a function is differentiable, it will have a power series, and conversely.

Indeed, sometimes, the term holomorphic is used to describe complex-differentiable functions, while

the term analytic is used to describe functions that admit a power-series represenation. Taylor’s

theorem means that these two notions are interchangeable.

1.4 Isolated singularities

Consider the following punctured disc of centre a and radius r, but with the centre removed:

D = {z ∈ C|0 < |z − a| < r}. (1.6)

For definiteness, the following discussion focuses on the case with a = 0, but this is without loss

of generality. Let f(z) be a complex-valued function defined on the domain D. If f(z) is analytic

in D, but not differentiable at z = 0, then the point z = 0 is called an isolated singularity of

f . Isolated singularities are classified by their leading-order behaviour as the limit limz→0 f(z) is

approached. Specifically, we write

f(z) = f1(z) + f2(z),

where |f1(z)| � |f2(z)| as z → 0. Now, the singularities are classified as follows:

1. A removable or cosmetic singularity, whereby the Taylor-series representation of f(z) exhibits

no singular behaviour, e.g. f(z) = sin(z)/z.

Equivalently, we have f(z) = f1(z)+f2(z), with |f1(z)| � |f2(z)| as z → 0, and f1(z) = czn,

where c is a complex constant and n ≥ 0 is a non-negative integer

2. A pole, whereby

f(z) = f1(z) + f2(z),
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with |f1(z)| � |f2(z)| as z → 0, and

f1(z) =
c

zn
,

where c is a complex constant and n is a positive integer called the order of the pole. A pole

of order one is called simple.

3. An essential singularity – all other isolated singularities. More precisely, a function f(z) has

an essential singularity at z = a if its Laurent expansion there is of the form

f(z) =
∞∑

n=−∞

an(z − a)n,

with infinitely many of the coefficients {a−1, a−2, · · · } nonzero.

For the case of simple poles, the function f(z) on the punctured disc D admits a Laurent expansion,

in the following sense:

Theorem 1.4 Let f(z) be analytic on the punctured disc D given by Equation (1.6), with disc

centre at zero. Further, let f(z) have a pole at z = 0, of order n. Then f(z) admits the following

series expansion, valid for all z ∈ D:

f(z) =
∞∑

p=−n

apz
p,

where

ap =
1

2πi

∮
C(0,ρ)

f(z)

zp+1
dz,

where C(0, ρ) is a circle of centre zero and radius ρ, with 0 < ρ < r.

The particular coefficient a−1 will be very important in what follows. It is called the residue.

Denoting the location of the generic pole by z = a, we have

a−1 = Res(f, a).

Consider

f(z) =
a−n

(z − a)n
+ · · ·+ a−2

(z − a)2
+

a−1

z − a
+ a0 + a1(z − a) + · · · .

The contour integral of f(z) around a contour C enclosing the point a and contained entirely in the

domain D is taken (term-by-term integration is legitimate for convergent power series). Additionally,
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C is given an anticlockwise sense. For p 6= −1, we have∮
C

ap(z − a)p dz =
ap

p+ 1
(z − a)p+1

∣∣∣∣zend
zstart

,

where we have explicitly computed the complex antiderivative and evaluated the result at the start-

and endpoints of the path C. But C is closed, so the start- and end-points are the same, and the

integral is zero. On the other hand, for p = −1, we have∮
C

a−1 dz

(z − a)
.

By Cauchy’s integral formula, the result of this integration is the same for any closed curve C

encircling the point a, so we switch to a circular contour of radius ρ:∮
C

a−1 dz

(z − a)
= a−1

∮
C(a,ρ)

dz

z − a
, (1.7)

= a−1

∫ 2π

0

d(ρeiθ)

ρeiθ
, z = a+ ρeiθ,

= 2πia−1.

In summary,∮
C

f(z)dz =

∮
C

[
a−n

(z − a)n
+ · · ·+ a−2

(z − a)2
+

a−1

z − a
+ a0 + a1(z − a) + · · ·

]
dz,

= 2πia−1,

hence
1

2πi

∮
C

f(z)dz = Res(f, a). (1.8)

Aside: In Equation (1.7) it was possible to switch between an arbitrary closed contour C enclosing

the point a and a circular contour centred at a. This is explained in Figure 1.1. Consider in Figure 1.1

the contour consisting of the segments C, L1, C̃, and L2. Call the region bounded by this contour

D. Denote the boundary of the region D by ∂D. Hence,

∂D = C ∪ L1 ∪ L2 ∪ C̃.

Thus, by Cauchy’s theorem (1.1), ∮
∂D

1

z − a
dz = 0,
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Figure 1.1:

since (z − a)−1 has no singularities in the region D. Hence,∫
C

1

z − a
dz +

∫
L1

1

z − a
dz +

∫
L2

1

z − a
dz +

∫
C̃

1

z − a
dz = 0.

Let ε be the distance separating the two parallel line segments L1 and L2, and take ε→ 0. Then,∫
L1

1

z − a
dz +

∫
L2

1

z − a
dz = 0,

and in the same limit, C is the closed contour of interest and C̃ is the corresponding circle of

interest, hence ∫
C

1

z − a
dz +

∫
C̃

1

z − a
dz = 0.

But these contours have opposite senses, hence∫
C, Clockwise

1

z − a
dz =

∫
C̃, Clockwise

1

z − a
dz.

The result (1.8) extends in a fairly straightforward manner to a function f on domain D such that

f has finitely many poles in D. The extension is the celebrated Cauchy’s residue theorem:

Theorem 1.5 Let f(z) be analytic in an open set D except at finitely many isolated singularities

z1, · · · , zm, and let C be an anticlockwise contour contained entirely in D and surrounding the

singularities. Then, ∮
C

f(z)dz = 2πi
m∑
j=1

Res(f, zj).

The proof is a fairly straightforward extension of the foregoing discussion.
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Finally, the following results are useful as a shortcut for obtaining residues:

Theorem 1.6 Let f(z) have a simple pole (i.e. order 1) at a. Then,

Res(f, a) = lim
z→a

[(z − a) f(z)] .

Be careful! In Dr Smith’s words:

[Theorem 1.6] only works if the pole is simple!! Applying it to a pole of a different order

will lead to much upset and embarrassment.

For non-simple poles, we have the following result:

Theorem 1.7 Let f(z) have a pole of order m at a, and moreover, suppose that f(z) has the

following specific form:

f(z) =
g(z)

(z − a)m
+ h(z)

where g(z), h(z) are analytic in some D(a, r), and where g(a) 6= 0. Then,

Res(f, a) =
1

(m− 1)!
g(m−1)(a).

Example 1: Evaluate the integral

I =

∫ 2π

0

dθ

1 + ε cos θ
, 0 < ε < 1.

Let z = ρeiθ be a complex number. We are to work on the circle |z| = 1, hence ρ = 1. On this

circle

dz = ieiθdθ,

= iz dθ,

hence

dθ =
dz

iz
.

Also, on the circle, z = eiθ,

cos θ = 1
2

(
eiθ + e−iθ

)
= 1

2

(
z +

1

z

)
.
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We have

I =
1

i

∮
C(0,1)

1

1 + 1
2
ε
(
z + 1

z

) dz

z
,

=
2

iε

∮
C(0,1)

dz

z2 + (2/ε) + 1
.

The denominator has roots at

z− = −1

ε
− 1

ε

√
1− ε2, z+ = −1

ε
+

1

ε

√
1− ε2.

Also,

z+ − z− =
2

ε

√
1− ε2

The root z+ is inside the unit circle, while the root z− is outside. The integrand is now expressed as

f(z) :=
1

z2 + (2/ε) + 1
,

=
1

(z − z−)(z − z+)
,

=
1

z+ − z−

(
1

z − z+

− 1

z − z−

)
.

It suffices to consider behaviour near the z+-root. From the partial-fraction decomposition, it follows

that f(z) has a simple pole of order 1 at z = z+, and in this instance, the residue can be computed

from the formula

Res (f, z+) = lim
z→z+

[(z − z+) f(z)] ,

= lim
z→z+

{
(z − z+)

[
1

z+ − z−

(
1

z − z+

− 1

z − z−

)]}
,

=
1

z+ − z−
,

= 1
2

ε√
1− ε2

.

Putting it all together,

I =
2

iε

∮
C(0,1)

dz

z2 + (2/ε) + 1
,

=
2

iε

∮
C(0,1)

f(z)dz,

=
2

iε
(2πiRes(f, z+)) ,

=
2π√

1− ε2
.
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Figure 1.2: Suggested contour for
∫∞
−∞ eax(1 + ex)−1dx, with 0 < a < 1.

Example 2: Evaluate

I =

∫ ∞
−∞

eax

1 + ex
dx, 0 < a < 1.

The contour is the one shown in Figure 1.2, with R → ∞ The vertical line-segment contributions

vanish as R→∞. E.g.[∫
eaz

1 + ez
dz

]
z=−R+it,t∈[0,2π]

= i

∫ 2π

0

e−aReit

1 + e−Reit
dt,

→ 0, as R→∞.

Similarly, [∫
eaz

1 + ez
dz

]
z=R+it,t∈[0,2π]

= i

∫ 2π

0

eaReit

1 + eReit
dt,

∼ i

∫ 2π

0

eaReit

eReit
dt, as R→∞,

= i

∫ 2π

0

eite(a−1)Rdt, 0 < a < 1,

→ 0 , as R→∞.

Hence, calling the closed (anticlockwise) contour in Figure 1.2, we have∮
C

eaz

1 + ez
dz = lim

R→∞

[∫ R

−R

eax

1 + ex
dx− e2πia

∫ R

−R

eax

1 + ex

]
,

= 2πi
∑

(enclosed residues) ,

where in the second integral here we have used the fact that ex+2πi = ex.
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Consider therefore

f(z) =
eaz

1 + ez
.

The singularities are simple poles located at

ez = −1,

hence

z = iπ + 2πip, p ∈ Z.

However, conveniently the contour C encloses only a single simple pole corresponding to p = 0 (this

is of course more than convenience; the contour has been chosen with perfect hindsight!). But

1 + ez = 1 + ez−iπeiπ,

= 1− ez−iπ,

= −(z − iπ)

[
1 +

z − iπ

2!
+

(z − iπ)2

3!
+ · · ·

]
,

1

1 + ez
= −

(
1

z − iπ

)
1

1 + z−iπ
2!

+ (z−iπ)2

3!
+ · · ·

,

lim
z→iπ

(
1

1 + ez

)
= − lim

z→iπ

[
1

1 + z−iπ
2!

+ (z−iπ)2

3!
+ · · ·

]
,

= −1.

Hence,

Res(f, iπ) = −eiπa.

Putting the results together, we have

−2πieiπa =

[∫ ∞
−∞

eax

1 + ex
dx

]
︸ ︷︷ ︸

=I

(
1− e2πia

)
,

or

−2πi = I
(
1− e2πia

)
.

Algebraic manipulations give the final answer:

I =
π

sin aπ
.
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Figure 1.3: Plot of cos(θ/2) (continuous blue line) and sin(θ/2) (dotted red line) showing the jump
discontinuity / cusp at θ = 2π.

1.5 Branch cuts – non-isolated singularities

Consider the classic example

f(z) = z1/2. (1.9)

We restrict first of all to the unit circle |z| = 1 and we plot f(z) on this restricted set. Thus, it

suffices to plot eiθ/2 = cos(θ/2) + i sin(θ/2). This is done in Figure 1.3. Consider for example

the real part. Starting at θ = 0, we have Re(f) = cos(0/2) = cos(0) = 1. Moving around the

circle through θ = 2π, we have Re(f) = cos(2π/2) = cos(π) = −1. This manifests itself as a

jump discontinuity in Figure 1.3, in the interval [2π − ε, 2π + ε]. Because 2π is identified with 0

on the Argand diagram, the real part of function f(z) therefore jumps as the positive real axis is

crossed. Consider also the imaginary part. Continuing along the same lines as before, one can see

that Im(f) = sin(θ/2) is continuous across the interval [2π − ε, 2π + ε], but that there is a cusp

at θ = 2π. Thus, Im(f) is not differentiable there. Again, because 2π is identified with 0 on the

Argand diagram, the function imaginary part of f(z) is not differentiable as the positive real axis

is crossed. Thus, the to make f(z) analytic, we must exclude the positive real axis. The point

x = 0, y = 0 must also be excluded (why?). This line x ≥ 0 is referred to as a branch cut; the

square-root function is single-valued and analytic on the open set comprising C, minus the branch

cut. Of course, there is something arbitrary about taking f(z) = |z|1/2eiθ/2 as we have done. One

can equally take f(z) = |z|1/2eiθ/2+iπ, but this leads again to a branch cut along the positive real

axis. Something a bit weirder happens if we do the following. We can ‘patch together’ a square-root
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Figure 1.4: Plot of the phases of the square-root function in Equation (1.10). Real part: blue
continuous line; Imaginary part: red dotted line. The branch cut is shifted to the negative real line
x ≤ 0, i.e. θ = π.

function form the positive- and negative-branch constructions just defined. Thus, let us take1

f̃(z) =

|z|1/2eiθ/2, 0 < θ < π,

−|z|1/2eiθ/2, π < θ ≤ 2π,
, θ = Arg(z). (1.10)

This is still a legitimate square-root function, because [f̃(z)]2 = z. However, by inspecting the

phases in Equation (1.10), we see that the jump / cusp has been shifted to θ = π. Also, now the

real part has the cusp and the imaginary part the jump. Thus, the branch cut for f̃(z) is located

along the half-line x ≤ 0. The location of the branch cut is therefore rather arbitrary. However,

while the location of the branch point is arbitrary, its necessity is ineluctable. The function f̃(z)

is shown plotted in a part of the full complex plane in Figure 1.5 using Matlab. Note that Matlab

selects the branch cut to be the negative half-line by default.

Finally, although I said that the presence of the branch cut was unavoidable, this is not quite true.

It is unavoidable if one wants to obtain a single-valued square-root function. However, if one is

willing to sacrifice single-valuedness, one can glue together the two independent branches of the

square-root function into a multi-valued function. A plot of this multi-valued function is then a

1In Equation (1.10), I have used Arg(z) to denote the principal value of the argument of the complex number z,
such that Arg(z) is uniquely determined. I have located the branch cut of Arg(z) along the positive real axis. I know
it is conventional to locate the branch cut along the negative real axis, but the location is somewhat arbitrary and
can be shifted as a matter of convenience. There is one convention I do stick with however: I use function names
starting with a capital letter to denote principal values, and function names starting with a lower-case letter to denote
multivalued functions. E.g. Arg(z) versus arg(z), and Log(z) versus log(z). This convention is widespread I believe
but not universal. Cover your eyes and ears for this final bit: some writers swap around the capital and lowercase
letters and adopt the opposite convention for principal values versus multiple values.
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Figure 1.5: Real and imaginary parts of the square-root function f(z) = (x+ iy)1/2 with branch cut
selected accrding to Matlab’s convention.

Riemann surface that intersects itself along an infinitely long line segment. The Riemann surface

of the square-root function is shown in Figure 1.6. The line of intersection where the curve crosses

itself corresponds precisely to the branch cut. By taking apart the self-intersecting surface, one can

reassemble the two branches of the square-root function, which are now single-valued functions,

albeit with a branch cut. The taken-apart surfaces are called the Riemann sheets of the self-

intersecting surface.

Of course, another example of a multivalued function is the inverse of the exponential function ez.

You will have already encountered this in MATH 30040. Recall, one attempts to define the function

f(z) = log z to be the inverse of the exponential function:

w = log z,

= log(reiθ),

= log r + log eiθ,

= log r + iθ,

= log |z|+ iθ.

However, because the complex-valued exponential is not one-to-one, we have ez = ez+2πip, with

p ∈ Z. Thus, we could equally well take

w = log z,

= log(reiθ+2πip),

= log |z|+ iθ + 2πip, p ∈ Z.

Thus, it appears as though the log(z) is a multi-valued function. One possibility is to define a
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Figure 1.6: (Image courtesy of Wikipedia, page visited 15/01/2014). Riemann surface for the
function f(z) = z1/2. The two horizontal axes represent the real and imaginary parts of z, while
the vertical axis represents the real part of z1/2.

logarithm function restricted to 0 ≤ θ < 2π. This is called the principal value of the logarithm

function, denoted with a capital ‘L’ as follows:

Log(z) := log |z|+ iArg(z), 0 ≤ Arg(z) < 2π.

The argument function (and therefore the function Log(z)) therefore has a jump discontuity across

the line segment x > 0. Also, Log(z) is not defined for z = 0. Thus, on the domain D = C−{x ≥
0}, the principal value of the logarithm is an analytic function; one can show easily that

d

dz
Log(z) =

1

z
, z ∈ D; (1.11)

the segment {x ≥ 0} is therefore the branch cut chosen to make the inverse-exponential single-

valued and analytic.

As in the example of the square-root function, the branch cut can be moved around the complex

plane at will. Also, one can get rid of the branch cut altogether, but only by paying the price

of making the inverse-exponential multivalued, with countably infinitely many branches. These

can be glued together to form the Riemann surface. However, unlike in the square-root case, the

different sheets in the surface are non-intersecting. In particular, given w = u+ iv = log z, we have

u + iv = log r + i(θ + 2pπ), and it is possible to glue together the copies θ(x, y) + 2pπ such that

each copy connects to its neighbours in a continuous fashion, much as a the ramp in a multistorey
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carpark winds its way upwards. I have generated a part of the Riemann surface for Im[log(z)] using

Matlab. The results are shown in Figure 1.7 and the code is given at the end of this chapter for

reference.

(a) (b)

Figure 1.7: (a) Imaginary part of the principal value of the complex logarithm, in other words,
Arg(z), with branch cut along the negative real axis; (b) the same as (a), but superimposed with
multiple copies of the argument function, separated by±2π, in other words, a portion of the Riemann
surface of the complex-valued logarithm function (imaginary part).

The theory of Riemann surface has some pretty amazing applications in Applied Mathematics,

especially in the theory of complex dispersion relations for problems in linear stability. This is very

clearly well beyond the scope of the present module. However, the theory of branch cuts etc. can

help us finally to evaluate a further class of tricky definite integrals, an example of which is the

following.

Example 3: Show that

I =

∫ ∞
0

xa

x+ 1
dx =

π

sin π|a|
,

with −1 < a < 0.

We consider ∫
C

za

z + 1
dz,

with the contour C to be determined. Plotting the function g(θ) = eiθa, with −1 < a < 1, we see

that g(θ) has a single jump discontinuity between θ = 0 and θ = 2π (Figure 1.8). Thus, the contour

C should avoid the segment x ≥ 0 of the complex plane. This is the branch cut. Additionally, the

function f(z) = za/(z+1) has a simple pole at z = −1. We therefore choose C to be that contour

shown in Figure 1.9, such that C encloses no singularities. The result of the integration is not zero,

however, because of the phase difference in f(z) across both sides of the branch cut. We obtain

several contributions to the integration:
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Figure 1.8: Plot of cos(θ) and sin(aθ), with a = .6324.

1. The segment C1: We have

I1 =

(∫
za

z + 1
dz

)
z=x+iε,x∈[ε,∞)

,

=

∫ ∞
ε

(x+ iε)a

x+ iε+ 1
dx,

Consider za = |x+ iε|a in the integrand. As ε→ 0, the argument of the complex x+ iε tends

to zero, hence za → xa as ε→ 0. Thus,

I1 →
∫ ∞

0

xa

x+ 1
dx, ε→ 0.

2. The segment C7: Consider next the contribution

I7 =

(∫
za

z + 1
dz

)
z=x−iε,x∈[ε,∞)

,

=

∫ ∞
ε

(x− iε)a

x− iε+ 1
dx,

As before, we examine za = |x− iε|a in the integrand. As ε→ 0, the argument of the complex
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Figure 1.9: Suggested contour for
∫∞

0
xa(1 + x)−1dx, with −1 < a < 0.

number x− iε tends to 2π, hence za → xae2πa as ε→ 0. Thus,

I7 → e2πia

∫ ∞
0

xa

x+ 1
dx, ε→ 0.

3. The circlular segment C8: We have

I8 =

∫
εaeiθa

εeiθ + 1
εidθ,

where θ ranges from θ = π/4 and proceeds anticlockwise to θ = 7π/4. Clearly, I8 → 0 as

ε→ 0.

4. The line segments C3 and C5: The integrand is continuous across the axis x ≤ 0. Thus, the

contributions from the integrals along the line segments C3 and C5 are self-cancelling.

5. The circular segments C2 and C6: Consider, for example,

I2 =

∫ θ=θ1

θ=θ0

raeiθa

reiθ + 1
ireiθ dθ,

where θ0 → 0 through positive values, and θ1 → π through values strictly less than π. We
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have

I2 → ira
∫ π

0

eiθa dθ, r →∞, θ0 → 0, θ1 → π.

Since a < 0, we have I2 → 0 as r →∞, and similarly for I6.

6. The circular region C4:

I4 =

(∫ θ=θ2

θ=θ0

f(z) dz

)
z=−1+reiθ

,

where r > 0 is a fixed radius θ0 = π + δ, θ1 = π − δ, δ > 0, with δ → 0, and the integral is

taken in a clockwise sense. Taking δ → 0, we obtain

I4 = −
(∫ 2π

0

f(z) dz

)
z=−1+reiθ

Since the integrand has a simple pole at z = −1, this becomes

I4 = −
(∫ 2π

0

f(z) dz

)
z=−1+reiθ

,

= = −2πi [Res(f,−1)] ,

= −2πieiπa.

Finally now, because the total contour C = C1 + · · ·+ C8 encloses no singularities,

0 =

∮
C

f(z)dz =

∫
C1

f(z)dz + · · ·+
∫
C8

f(z)dz.

Putting the results together, we have

0 = −2πieiπa + I − e2πiaI.

Rearrangement gives

π = −I
(

eiπa − e−iπa

2i

)
,

and the result follows.

1.6 Systematic approach to contour integration

Our presentation of contour integration has been a little unfortunate. We have looked at three

disparate examples, made an inspired guess for the appropriate contour, and the result followed.

This looks a little haphazard. Help is at hand. There is a way to ‘classify’ definite integrals that can
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be evaluated using contour integration. Each class comes with its own techniques. So, to tackle a

particular integral, one identifies the class to which the integral belongs, one looks up the tips and

tricks for that class in a textbook, and one proceeds from there. For instance, Arfken and Weber

classify definite integrals amenable to contour integration into the following categories:

1. Definite integrals of the form ∫ 2π

0

f(sin θ, cos θ) dθ.

See [Arfken and Weber], page 451. Also, see example 1 in the present chapter.

2. Definite integrals of the form ∫ ∞
−∞

f(x) dx.

See [Arfken and Weber], page 452. Also, see Dr Smith’s MATH 30040 notes.

3. Definite integrals of the form ∫ ∞
−∞

f(x)eiax dx, a ∈ R.

See [Arfken and Weber], page 453.

4. Singularities on the contour of integration, e.g.
∫∞

0
(sinx/x)dx. See [Arfken and Weber],

page 455.

5. Integrands whose complexification involves branch cuts.

These are the trickiest of them all. Each instance will have its own peculiarities, so that

proficiency in this kind of calculation is more of an art than a science. We have already seen

an example (example 2 in the present chapter). For more examples, with tips and tricks for

the selection of the branch cuts and the contour, see the examples in Section 7.2 of [Arfken

and Weber].

1.7 Matlab code to generate Figure 1.7

% Create an unambiguous distinction between x- and y-directions

% by making x- and y-arrays have different sizes.

x=-2:.01:2;

y=-1.5:.01:1.5;
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for i=1:length(x)

for j=1:length(y)

u_vec(i,j)=sqrt(x(i)^2+y(j)^2);

v_vec1(i,j)=angle(x(i)+sqrt(-1)*y(j));

% don’t plot the jump discontinuity!

if( (y(j)==0)& (x(i)<0))

v_vec1(i,j)=NaN;

end

end

end

mesh(x,y,v_vec1’)

xlim(’x’)

xlabel(’x’)

ylabel(’y’)

zlabel(’arg(x+iy)’)

v_vec2=v_vec1+2*pi;

v_vec3=v_vec1+2*2*pi;

hold on

mesh(x,y,v_vec2’)

mesh(x,y,v_vec3’)



Chapter 2

Maximum Principle for Laplace’s Equation

Overview

Throughout this Chapter, we study the following PDE with Dirichlet boundary conditions:

∇2u = 0 x ∈ D, u = f(x), x ∈ ∂D, (2.1)

where D ⊂ Rn is a bounded, simply connected domain with the smooth boundary ∂D, and f(x)

is a smooth function. The aim of this Chapter is to describe a priori the properties of the solutions

of Equation (2.1), that is, we assume that a smooth solution to Equation (2.1) exists, and deduce

the solution propterties in the absence of knowledge of the solution’s existence. Throughout this

Chapter and elsewhere, functions that satisfy Laplace’s equation are called harmonic.

Finally, the properties of harmonic functions a priori is not so silly, as such a priori knowledge can

then be turned around to find really existing solutions of the Laplace equation in many situations.

We will construct such solutions in the coming chapters.

2.1 The maximum principle

We have the following definitions:

Definition 2.1 Let D be an open, bounded, and simply connected subset of Rn, and let U(x) be

harmonic on D. Let x0 ∈ D. Then, there exists a real number r > 0 such that the open ball of

radius r and centred at x0 is entirely contained in D. We have some notation:

• B(x0, r) denotes the open ball of radius r and centred at x0 is entirely contained in D. The

volume of the ball B is denoted by |B|.

26
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• S(x0, r) is the boundary sphere of B(x0, r). The area of the boundary sphere is denoted by

|S|.

• The symbol dΩn denotes the differential element of solid angle in Rn, and the following

identity holds:

dnx = rn−1dr dΩn, r = |x|, (2.2)

• Integrate both sides of Equation (2.2) to obtain |B|, the volume of the ball in Rn, of radius

R:

|B| =
∫ R

0

rn−1dr

∫
Ωn

dΩn,

where the subscript in
∫

Ωn
denotes integration over all solid angles. Thus,

|B| = 1

n
Rn|Ωn|,

where |Ωn| =
∫

Ωn
dΩn is the area of the unit sphere in Rn.

Example: In R2, we have dΩn=2 = dϕ, where ϕ is the polar angle in the usual polar coordinates.

Thus, |Ω2| =
∫ 2π

0
dϕ = 2π. Also, |Bn=2| = (1/2)R2(2π) = πR2.

In R3, we have dΩn=3 = sin θ dθ dϕ, where again, (θ, ϕ) denote the usual polar coordinates: θ

is the polar angle, and ϕ is the azimuthal angle. Thus, |Ω3| =
∫ π

0
sin θ dθ

∫ 2π

0
dϕ = 4π. Also,

|Bn=3| = (1/3)R3(4π) = (4/3)πR3.

Next, we define boundary-averages and area-averages of U(x) as follows:

• Boundary average:

avS(x0,r)U :=
1

|Ωn|

∫
Ωn

U(x0 + rr̂) dΩn

where r̂ is the unit radial vector expressed as a function of the pertinent angular variables in

Rn.

• Volume average:

avB(x0,r)U :=
1

|B|

∫
B(x0,r)

U(x)dnx,

We have the following theorem:

Theorem 2.1 (Mean-value theorem, harmonic functions) Let D be an open, bounded, and

simply-connected subset of Rn, and let U(x) be harmonic on D. Specifically, let U ∈ C2(D) ∩
C0(D). Let x0 ∈ D. Then, for a ball B(x0, r) contained entirely in D,

U(x0) = avS(x0,r)U = avB(x0,r)U.
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Proof: We start with the boundary average. We call

φ(r,x0) := avS(x0,r)U =
1

|Ωn|

∫
Ωn

U(x0 + rr̂) dΩn.

We note that φ(0,x0) = U(x0). If we could show that ∂φ/∂r = 0, then we would be done, since

we would then have that

φ(r,x0) = φ(0,x0) = U(x0).

We compute:

∂φ

∂r
=

1

|Ωn|

∫
Ωn

[
∂

∂r
U(x0 + rr̂)

]
dΩn,

=
1

|Ωn|

∫
Ωn

[r̂ · ∇U ]x0+rr̂ dΩn,

=
1

|Ωn|

∫
Ωn

[(∇U)x] · (r̂ dΩn) , x = x0 + rr̂,

=
1

|Ωn|rn−1

∫
Ωn

(∇U) · dS, dS = rn−1dΩnr̂,

=
1

|Ωn|rn−1

∫
B

∇2U dnx, . . . Gauss’s theorem

= 0.

Hence, the first part is shown.

For the second part, we also do a direct calculation:

1

|B|

∫
B

U(x)dnx =
1

|B|

∫ r

0

rn−1dr

∫
Ωn

U(x0 + rr̂) dΩn,

=
|Ωn|
|B|

∫ r

0

rn−1 dr
[
avS(x0,r)U

]
,

=
n

rn
U(x0)

∫ r

0

rn−1 dr,

= U(x0).

Putting it all together, we have the following mean-value theorem for harmonic functions:

U(x0) = U(x0) = avS(x0,r) = avB(x0,r).
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The maximum principle also follows from this result:

Theorem 2.2 (Maximum principle, harmonic functions) Let D be an open, bounded, and

simply-connected subset of Rn and let U(x) be harmonic on D, with U ∈ C2(D) ∩ C0(D). Then

max
D

U(x) = max
∂D

U(x).

Proof: Let U(x) attain its maximum over D at x0. If x0 ∈ ∂D, the theorem is proved. Thus,

consider the case where x0 ∈ D, with M = U(x0). Then, by the topology of the set D, and by

the Mean-Value Theorem, we can write

U(x0) =
1

|B|

∫
B(x0,r)

U(x)dnx,

where r > 0 is a positive number. Hence,

maxB(x0,r)U(x) = avgB(x0,r)U(x), (2.3)

and this result extends to the closed ball B(x0, r) because of the mean value theorem (boundary

averages). Thus, the maximum of the function is actually the mean value of the function on

B(x0, r), and hence

U(x) = M, x ∈ B(x0, r). (2.4)

We now extend this result to cover the entire domain D. Thus, choose a point x1 ∈ ∂B(x0, r),

with U(x1) = M . Choose a ball B(x1, r
′) contained entirely in D and conclude that

U(x) = M, x ∈ B(x1, r′).

By covering the set D with a collection of overlapping balls in this manner, it follows that

U(x) = M, x ∈ D. (2.5)

By continuity (for U ∈ C0(D)), we have U(x) = M on D. Thus, in this second case, the maximum

is attained everywhere, in particular, it is attained on the boundary. Therefore, in both cases, we

have

x0 ∈ ∂D,

and the result is proved.

Note that this result only holds for D a connected set.
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2.2 Maximum principle – heuristics in two dimensions

In the two-dimensional case, there is a heuristic way to understand the maximum principle. We

assume that U(x) is harmonic on D, an open, bounded, and connected subset of R2. We consider

a stationary point x0 ∈ D where

Ux(x0) = Uy(x0) = 0.

We make an expansion of U(x) in the neighbourhood of this point

∆ := U(x0 + δ)− U(x0),

= δxUx(x0) + δyUy(x0) + 1
2
δ2
xUxx(x0) + 1

2
δ2
yUyy(x0) + δxδyUxy(x0) + H.O.T.,

= 1
2
δ2
xUxx(x0) + 1

2
δ2
yUyy(x0) + δxδyUxy(x0) + H.O.T.,

≈ 1
2
δ2
xUxx(x0) + 1

2
δ2
yUyy(x0) + δxδyUxy(x0).

Thus, ∆ is a quadratic form. We assume that x0 is a non-degenerate point:

Uxx(x0) 6= 0,

and we complete the square as follows:

2∆ = Uxx(x0)

[
δ2
x +

2Uxy(x0)

Uxx(x0)

]
+ Uyy(x0)δ2

y ,

= Uxx(x0)

(
δx +

Uxy(x0)

Uxx(x0)
δy

)2

+

[
Uyy(x0)− [Uxy(x0)]2

Uxx(x0)

]
δ2
y ,

This tidies up as follows:

∆ = 1
2
sign (Uxx(x0))

[
|Uxx(x0)|

(
δx +

Uxy(x0)

Uxx(x0)
δy

)2

+
Uxx(x0)Uyy(x0)− [Uxy(x0)]2

|Uxx(x0)|
δ2
y

]

We call

D(U(x0)) := Uxx(x0)Uyy(x0)− [Uxy(x0)]2

the discriminant; the quadratic form simplifies to

∆ = 1
2
sign (Uxx(x0))

[
|Uxx(x0)|

(
δx +

Uxy(x0)

Uxx(x0)
δy

)2

+
D(U)

|Uxx(x0)|
δ2
y

]

The quadratic form ∆ is sign-definite if D > 0. Then, the critical point x0 is a definite maximum

or minimum. On the other hand, if D < 0, the critical point is a saddle point. The condition for a
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non-degenerate critical point to be a saddle is thus

Uxx(x0)Uyy(x0)− [Uxy(x0)]2 < 0.

However, for a harmonic function, Uxx = −Uyy, hence, for a non-degenrate critical point of a

harmonic function,

D(U) = −[Uxx]
2 − [Uxy]

2 < 0,

(the inequality is strict because Uxx(x0) 6= 0). Thus, all non-degenerate critical points are saddle

points, hence no maxima or minima exist.

Of course, the very last conclusion here is slightly dodgy, as the critical points could be degenerate;

for that reason, such a heuristic argument does not suffice to prove the maximum principle.

2.3 Uniqueness of solutions for Laplace’s equation

Theorem 2.3 Consider Equation (2.1). If this equation has a smooth solution u(x) ∈ C2(D) ∩
C0(D), then u(x) is the unique smooth solution.

Proof: Suppose that Equation (2.1) has two smooth solutions. Call them u1 and u2. Form the

difference

δ(x) := u2 − u1.

By the linearity of Equation (2.1), we have

∇2δ = 0, x ∈ D, δ = 0, x ∈ ∂D.

By the maximum principle,

maxDδ = max∂Dδ = 0.

Hence, the maximum value of δ(x) is zero. But the arguments in the maximum principle can also

be recycled to show that the minimum of a harmonic function, taken over the closure of the relevant

domain, is attained on the boundary, such that

minDδ = min∂Dδ = 0.

Hence,

0 = minDδ ≤ δ(x) ≤ maxDδ = 0,

hence δ(x) is zero everywhere in D, and thus u1 = u2.
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2.4 Laplace’s equation in two dimensions – connections to

complex analysis

Let z = x+ iy be a complex number, let D ⊂ C be an open set, and let

F : D → C

z 7→ F (z) = u(x, y) + iv(x, y) (2.6)

be an analytic function on D (hence u(x, y) and v(x, y) are C∞ in (x, y)). We have the following

remarkable fact:

Theorem 2.4 Let the function F (z) in Equation (2.6) be analytic. Then the corresponding u and

v real-valued functions satisfy Laplace’s equation for all points in D:

∇2u = 0, ∇2v = 0, x ≡ (x, y) ∈ D.

where now D is viewed as an open domain in R2.

The proof of this statement is by direct computation. Because F is analytic, the corresponding u

and v real-valued functions are C∞ in D and satisfy the Cauchy–Riemann conditions:

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

The proof now proceeds by direct computation:

∂2u

∂x2
+
∂2u

∂y2
=

∂

∂x

(
∂u

∂x

)
+

∂

∂y

(
∂u

∂y

)
,

=
∂

∂x

(
∂v

∂y

)
+

∂

∂y

(
−∂v
∂x

)
= 0.

The converse is also true, but only for D simply connected:

Theorem 2.5 Let u(x, y) : D → R, be harmonic, with and let D be an open, bounded, simply-

connected set in R2, with smooth boundary. Furthermore, let

u ∈ C2(D) ∩ C1(D).

Then there exists a function v(x, y) : D → R also harmonic, such that f(z) = u(x, y) + iv(x, y) is

analytic in D; the function v is called the harmonic conjugate to u.
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Note that it is necessary for the function to be in the class C1(D to continue certain integrals up

to the boundary of the domain.

Proof: Define a vector field w(x, y) in R2 as follows:

w =

(
−uy
ux

)
,

where u(x, y) is harmonic in D. Compute

∇×w =

∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂x ∂y ∂z

−uy ux 0

∣∣∣∣∣∣∣∣ = ẑ (uxx + uyy) = 0,

since u is harmonic in D. By Stokes’s theorem applied to the simply-connected domain D, there

exists a potential function v such that

w =

(
−uy
ux

)
= ∇v.

Specifically,

v(x) =

∫ x

a

w · dx,

=

∫ x

a

w · t̂d`,

=

∫ x

a

(−uytx + uxty) d`,

=

∫ x

a

(ux, uy) · (ty,−tx) d`,

=

∫ x

a

∇u · n̂d`,

where a ∈ D is arbitrary, and where the points a and x are joined by a smooth curve; by path-

independence, the function v(x) is independent of the details of this curve and depends only on

the endpoints. Also, t̂ is the unit tangent vector along the curve, and n̂ is the unit normal vector.

Hence

v ∈ C2(D) ∩ C1(D).

By construction, ∇v = (vx, vy)
T = (−uy, ux)T , and

u, v ∈ C2(D) ∩ C1(D).
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Thus, u and v are C1 functions that satisfy the Cauchy–Riemann conditions. Hence,

f = u+ iv

is analytic in D.

Thus, in a loose sense, and only for simpy-connected domains in R2, a function is harmonic if and

only if it is analytic. This result is of immense importance to fluid mechanics. There is only sufficient

time to describe sketchily this importance, which we do in Section 2.5.

Example: Denote the unit disc of radius 1 centred at the origin by D0. The boundary of D0 is the

unit circle. Consider the following Dirichlet problem:

∇2Φ = 0, (x, y) ∈ D0,

Φ = sinϕ, (x, y) ∈ ∂D0.

Solve for u(x, y).

Consider the function f(z) = z. This is an analytic function. Thus, u = x and v = y are both

harmonic functions. Rewrite f(z) in polar coordinates as

f(z) = u+ iv = r cos θ + ir sinϕ.

We have v = r sinϕ, with v harmonic in D0 and v = sinϕ on ∂D0. Thus,

Φ = v = r sinϕ = y

is the required solution.

Example: Let u(x, y) = log(x2 + y2)1/2. Write down the domain D on which u(x, y) is defined.

Show that u(x, y) is harmonic D and find its harmonic conjugate. Comment on the smoothness

properties of the harmonic conjugate.

Solution: Write u(x, y) = log r in polar coordinates. Clearly, u(x, y) is well defined for r 6= 0.

Hence, the domain D is the punctured complex plane with the origin removed. On D,

∇2u =
1

r

∂

∂r

(
r
∂

∂r
log r

)
,

= 0.

Hence, u(x, y) is harmonic on D. We identify

f(z) = Logz = log r︸︷︷︸
=u

+i Arg(z)︸ ︷︷ ︸
=v

,
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where we have taken the principal branch of the complex multivaued log function. Hence, the

harmonic conjugate to u = log r is v = Arg(x+ iy). Again writing (x, y) = reiϕ, we have

v = atan2(y, x) = ϕ, 0 ≤ ϕ < 2π

which is a smooth function of ϕ, except across the nonnegative real axis, where there is a jump

discontinuity in v (‘international date line’). Thus, the harmonic conjugate of u(x, y) is defined on

the set

C− {x ≥ 0}.

2.5 Applications of the theory in two dimensions

Connection to fluid flow in two dimensions

Let u(x, y) be the velocity field describing the flow of a fluid in a container D ∈ R2. Further, let

D be bounded, open, simply-connected, with a smooth boundary ∂D. Suppose that the flow is

incompressible:

∇ · u = 0.

Suppose further that the flow is irrotational:

∇× u = 0.

Then, given the topology of the domain D and the irrotational condition, we can write u as the

gradient of a potential function:

u = ∇φ, φ ∈ C∞(D) ∩ C1(D).

The incompressibility condition is now rewritten as follows:

∇2φ = 0, x ∈ D.

The pertinent boundary condition is a Neumann no-outflow condition un = 0 on ∂D, or ∂φ/∂n = 0

on ∂D, where ∂/∂n denotes the derivative in a direction normal to the boundary ∂D.

Given the harmonic velocity potential φ, we obtain the harmonic conjugate ψ and write down the

complex potential

χ(z) = φ(x, y) + iψ(x, y).
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Using the Cauchy–Riemann conditions, we have

u =
∂φ

∂x
=
∂ψ

∂y
,

v =
∂φ

∂y
= −∂ψ

∂x
.

Summarizing,

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

Thus, we identify ψ with the streamfunction of the flow. We have the following definitions:

Definition 2.2 The curves

ψ = Const.

are called the streamlines of the flow; the curves

φ = Const.

are called the equipotential curves. Using results from the worked examples in Section 2.6 below,

it can be shown that the equipotential curves are are orthogonal to the streamlines, in the sense

that

∇φ · ∇ψ = 0.

Hence,

u · ∇ψ = 0,

and the normal ∇ψ to the streamline is orthogonal to u. Hence, the tangent to the streamline must

align with u; from these arguments the following further definition follows:

Definition 2.3 Tangent vectors to the streamlines are everywhere aligned with the flow.

In summary, all incompressible irrotational flows (on a pertinent domain) can be reduced to the

simpler problem of obtaining a harmonic function. Moreover, the same problem can be reduced

further to the problem of computing the real part of a certain analytic function. This will be discussed

in more detail in the following chapters, especially Chapter 4, where the theory of conformal mapping

is introduced.

Jensen’s theorem in Complex Analysis

Theorem 2.6 Let f(z) : C→ C be non-constant and analytic in the entire complex plane. Then

|f(z)|2 has no maxima and, moreover, its minima extend down to zero.
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This is a mean-value theorem in disguise. We start with the statement about maxima. Assume

for contradiction that |f(z)|2 possesses a maximum, attained at z0. By analyticity, we make a

Taylor-series expansion of f(z) in the neighbourhood of z0:

f(z) =
∞∑
n=0

an(z − z0)n,

with f(z0) = a0. We compute the mean value of F along a circle of radius r centred at z0:

avg|f |2 =
1

2π

∫ 2π

0

|f(z0 + reiθ)|2dθ,

=
1

2π

∫ 2π

0

(∑
m,n

a∗manr
n+mei(m−n)θ

)
dθ,

=
∑
m,n

a∗manr
n+mδm,n,

Continue thus:

avg|f |2 =
∞∑
n=0

|an|2r2n,

= |a0|2 +
∞∑
n=1

|an|2r2n,

= |f(z0)|2 +
∞∑
n=1

|an|2r2n.

Hence,

avg|f |2 ≥ max|f |2,

which is impossible for a non-constant function f(z). Thus, |f(z)| admits no maxima on C.

We now examine the statement about minima. Suppose that |f(z)| admits a minimum at z0, and

moreover, that

0 < |f(z0)|2 < |f(z)|2,

for all z in a small open neighbourhood D of z0. Thus, f(z) has no zeros in D, and 1/f(z) is

analytic there. Hence, by the first part of the theorem, 1/|f(z)| has no maxima in D. However,

by assumption, 1/|f(z)| has a maximum at z0. This is a contradiction, hence minima of |f(z)| are

exactly zero,

|f(z0)| = 0.
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2.6 Worked examples

1. Prove the following ‘minimum principle’ for harmonic functions:

Let D be an open, bounded, and simply connected subset of Rn and let u(x)

be harmonic on D. Then

min
D

u(x) = min
∂D

u(x).

Hint: Take v = −u and apply the maximum principle to v.

We have

umin ≤ u(x) ≤ umax, x ∈ D,

hence

−umin ≥ −u(x) ≥ −umax,

and

−u(x) ≤ −umin,

or

max(−u) = −min(u). (2.7)

Now, if u(x) is harmonic, so is −u, hence

max
D

[−u(x)] = max
∂D

[−u(x)] . (2.8)

By Equation (2.7), this is the same as

−min
D

[u(x)] = −min
∂D

[u(x)] ,

or

min
D

[u(x)] = min
∂D

[u(x)] .
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2. Consider the following Dirichlet problem:

∇2Φ = 0, x ∈ D,

Φ = Const., x ∈ ∂D,

where D is an open, bounded, and simply connected subset of Rn Show that Φ = Const.

everywhere in D.

Hint: Use the maximum/minimum principles.

Let Φ = M on ∂D. By the maximum / minimum principles, we have

M = min∂DΦ = minDΦ ≤ Φ(x) ≤ maxDΦ = max∂DΦ = M,

for all x ∈ D. Hence,

M ≤ Φ(x) ≤M, x ∈ D,

hence Φ(x) = M .

3. Consider the following Dirichlet problem:

∇2Φ = 0, (x, y) ∈ D0,

Φ = cos2 ϕ, (x, y) ∈ ∂D0,

where D0 is the open unit disc centred at the origin, and ϕ is the angle going around the

unit circle. Solve for u(x, y).

On the boundary, we have

Φ = cos2 ϕ = 1
2

(cos 2ϕ+ 1) .

By inspiration, consider the auxiliary compled-valued function

F (z) = 1
2

(
r2e2iϕ + 1

)
= 1

2

(
z2 + 1

)
.

The function F (z) is analytic (everywhere). On the unit disc, we have

F (z) = 1
2

(cos 2ϕ+ 1) + 1
2
i sin 2ϕ.
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Thus, Φ = Re(F ) is the required function; specifically,

Φ = 1
2

(
x2 − y2 + 1

)
.

4. Let f(x) = u(x, y) + iv(x, y) be analytic. Show that the contours

u = Const., v = Const.

are orthogonal, except at critical points f ′(z) = 0.

Away from a critical point f ′(z) = 0, consider the curves

u(x, y) = Const., v(x, y) = Const.

Assume moreover, that the point (x, y) is a point of intersection of the two curves. At (x, y),

the vectors ∇u and ∇v are normal to the two respective curves. Thus, we have the following

respective unit normal vectors:

n̂1 =
(ux, uy)√
u2
x + u2

y

, (2.9a)

n̂2 =
(vx, vy)√
v2
x + v2

y

. (2.9b)

Thus,

n̂1 · n̂2 ∝ uxvx + uyvy,

= ux(−uy) + uy(ux),

= 0,

where we have used the Cauchy–Riemann conditions for u(x, y) and v(x, y). Hence, the

curves are orthogonal at their points of intersection.

On the other hand, at points of intersection that are also critical points, by Equation (2.9),

such points do not have well-defined unit normal vectors, and in fact correspond to the two

curves meeting in a cusp.
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5. Show that the following functions are harmonic and find their conjugates, valid on D = R2:

u(x, y) = 2x(1− y), u(x, y) = e−2x sin 2y.

For the first example, we have u(x, y) = 2x−2xy. We shall construct the harmonic conjugate

first of all by inspection. Consider z2, where z = x+ iy. We have

z2 = x2 − y2 + 2ixy,

iz2 = i(x2 − y2)− 2xy,

Re
(
iz2
)

= −2xy.

Hence, take

f(z) = 2z + iz2,

with Re[f(z)] = 2x− 2xy, and i[f(z)] = 2y + (x2 − y2). Hence, v(x, y) = 2y + (x2 − y2) is

the harmonic conjugate.

Alternatively, we may take

v(x) =

∫ x

a

∇u · n̂ d`, x = (x, y),

where the path of integration is any curve starting at a (arbitrary) and ending up at x, and

where n̂ is normal to the same curve. Also, the points a, x, and the entirety of the curve

must be contained in the set D. Finally, the normal vector needs to be chosen carefully to get

the sign of v right. First, the tangent vector t̂ should point from a to x, with t̂ = (tx, ty).

Then, the chosen normal vector should be (ty,−tx), in keeping with the construction in the

notes of the harmonic conjugate. In the present situation, the choices are obvious, we take

a = 0, and the curve to be a straight line from the origin to the (fixed) location x:

x(t) = xt = (x, y)t,

with unit tangent vector t̂ = ẋ/|ẋ| = (x, y)/|(x, y) and unit normal vector

n̂ =
(y,−x)

|x|
, |x| = |(x, y)| =

√
x2 + y2;
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also, d` = |x|dt, and t ∈ [0, 1], which takes us from the origin to the point x. Thus,

v(x) =

∫ 1

0

[
(∇u)x(t) · (y,−x)

]
dt,

=

∫ 1

0

(2(1− yt),−2xt) · (y,−x)dt,

=

∫ 1

0

(
2y − 2y2t+ 2x2t

)
dt,

= 2y + (x2 − y2),

which agrees with the previously-obtained answer. Note finally that had I taken a 6= 0, I

would have obtained v(x) = 2y + (x2 − y2) + C, where C is a constant. This is legitimate:

the harmonic conjugate is not quite unique but rather is unique up to a constant.

For the second problem, we again construct the harmonic conjugate by eye. We start with

f(z) = ie−2z. Consider then the following string of equalities:

f(z) = ie−2z,

= ie−2xe−2iy,

= ie−2x (cos 2y − i sin 2y) ,

= e−2x [sin 2y + i cos 2y] .

Hence, Re[f(z)] = e−2x sin 2y, and Im[f(z)] = e−2x cos 2y, and

v(x, y) = e−2x cos 2y

is the required harmonic conjugate.

6. Using complex variables or some other method, prove Liouville’s theorem for harmonic

functions:

Let u be harmonic in the entire two-dimensional plane. Assume that u is

bounded, |u| ≤M , for all (x, y) ∈ R2. Then u is constant.

Let v denote the harmonic conjugate of u. This certainly exists, because the complex plane

is simply connected. Also, u+ iv is analytic in the entire complex plane. Consider

f(z) = eu+iv.
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Thus,

|f(z)| = eu ≤ eM .

Therefore, f(z) is bounded and analytic in the entire complex plane and by Lioville’s theorem,

f(z) = Const.. Thus,

eu+iv = Const.,

and it follows that u and v are both constant.



Chapter 3

Laplace’s Equation – Green’s function

Again, we focus on the following problem:

∇2u = 0, x ∈ D,

u = f(x), x ∈ ∂D, (3.1)

where D is a bounded open simply-connected set in Rn. The aim of this Chapter is to describe rigor-

ously the Green’s function technique for the Laplace problem, whereby the solution to Equation (3.1)

can be written as a convolution,

u(x) =

∫
∂D

f(y)n̂(y) · ∇yG(x,y)dSy, (3.2)

where the properties of the Green’s function G(x,y) are discussed in this section.

3.1 Brief review – Green’s function for D = Rn

Neglecting boundary conditions, we know the Green’s function G0(x,y) for D = Rn: for n = 2 we

have

G0(x,y) =
1

2π
log |x− y|,

while for n = 3 we have

G0(x,y) = − 1

4π|x− y|
.

In this chapter, this basic knowledge will be used to construct the Green’s function for bounded

domains.

44
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3.2 Green’s function for bounded domains – basic idea

For definiteness, in this chapter we work in two dimensions. Let D be a finite domain in R2, with

smooth boundary ∂D. We are interested in solving

∇2
xG(x;y) = δ(x− y), x ∈ D,

G(x;y) = 0, x ∈ ∂D.

• Now the function G0(x− y) will satisfy the first of these criteria.

• To construct a G that satisfies both criteria, simply add a smooth function to G0:

G(x;y) = G0(x− y) + h(x;y).

• There are some conditions on h:

∇2
xh(x;y) = 0, x ∈ D,

G0(x− y) + h(x;y) = 0, x ∈ ∂D. (3.3)

• The boundary term in Equation (3.3) is a smooth function. Existence theory (a version

of which we shall tackle later, at least in two dimensions) therefore guarantees that the

corrector function h(x;y) exists. Indeed, having constructed a Green’s function on the full

space, solving for the Green’s function in the bounded domain Ω is (at least superficially)

straightforward - just add a function that satisfies ∇2
xh = 0, together with some BCs.

In the next section, we prove a vital property of the Green’s function for the Laplace operator,

namely the symmetry property G(x,y) = G(y,x). This then enables us to check that the proposed

convolution (3.2) actually works for all bounded domains (or at least, for the usual ‘sensible’ ones).

3.3 Symmetry of the Green’s function

We prove the following result:

Theorem 3.1 Let G(x,y) be the Green’s function for the Poisson problem on a bounded open,

simply connected domain D with smooth boundary ∂D. Then

G(x,y) = G(y,x).
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The proof comes in a series of seemingly irrelevant steps, that gradually converge to a relevant final

result. First, we define the following functions:

v(z) = G(z,x), w(z) = G(z,y).

We aim to show that v(y) = w(x). Consider

G(z,x) = G0(z − x) + h(z;x),

where

∇2
zh(z;x) = 0, z ∈ D,

G0(z − x) + h(z;x) = 0, z ∈ ∂D.

For z ∈ ∂D then,

v(z) = G(z,x) = G0(z − x) + h(z;x) = 0.

Thus,

v(z) = 0, z ∈ ∂D.

Similarly,

w(z) = 0, z ∈ ∂D.

Now consider the following string of relations, for z ∈ D:

∇2
zv = ∇2

zG(z,x),

= ∇2
zG0(z − x) +∇2

zh(z;x),

= ∇2
zG0(z − x),

= δ(z − x).

Hence, ∇2
zv = 0 unless z = x. Indeed, far from z = x, v(z) will be a smooth function. Similarly,

∇2
zw = 0 unless z = y, and far from z = y, the function w(z) will also be smooth.

Consider therefore the following set:

Vε = {z ∈ R2|z ∈ D − [B(x, ε) ∪B(y, ε)]}.
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On this set, the functions v(z) and w(z) are smooth, so Green’s theorem applies:∫
Vε

[
v∇2

zw − w∇2
zv
]

d2z = 0,

=

∫
∂Vε

[
v
∂w

∂nz
− w ∂v

∂nz

]
dSz.

Thus, ∫
∂Vε

[
v
∂w

∂nz
− w ∂v

∂nz

]
dSz = 0.

But ∫
∂Vε

=

∫
∂D

−
[∫

∂B(x,ε)

+

∫
∂B(y,ε)

]
,

and v = 0 and w = 0 on ∂D. Hence,∫
∂B(x,ε)

[
∂w

∂nz
v − ∂v

∂nz
w

]
dSz +

∫
∂B(y,ε)

[
∂w

∂nz
v − ∂v

∂nz
w

]
dSz = 0,

or ∫
∂B(x,ε)

[
∂w

∂nz
v − ∂v

∂nz
w

]
dSz = −

∫
∂B(y,ε)

[
∂w

∂nz
v − ∂v

∂nz
w

]
dSz.

Multiply both sides by (−1) to obtain the following identity:∫
∂B(x,ε)

[
∂v

∂nz
w − ∂w

∂nz
v

]
dSz =

∫
∂B(y,ε)

[
∂w

∂nz
v − ∂v

∂nz
w

]
dSz.

We show that LHS = w(x) and that RHS = v(y). Start with the LHS. Consider first the term∫
∂B(x,ε)

∂w

∂nz
v dSz.

The function w(z) is smooth near z = x (recall, ∇2
zw = δ(z−y), so w(z) will only be problematic

near z = y). Thus, in the ball B(x, ε), we have∣∣∣∣ ∂w∂nz
∣∣∣∣ ≤ C(x, ε), ∀z ∈ B(x, ε),

where C is some positive upper bound. Thus,∣∣∣∣∫
∂B(x,ε)

∂w

∂nz
v dSz

∣∣∣∣ ≤ C(x, ε)

∣∣∣∣∫
∂B(x,ε)

v dSz

∣∣∣∣ .
Now, v = (2π)−1 log |z−x|+ h(z;x), where h(z;x) is a smooth function. Thus, as |z−x| → 0,

we have

|v| ∼ 1

2π
|log |z − x|| .
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But |z − x| = ε for z ∈ ∂B(x, ε), hence

|v| ∼ 1

2π
| log ε|, z ∈ ∂B(x, ε).

Also for z ∈ ∂B(x, ε), dSz = εdθ, hence∣∣∣∣∫
∂B(x,ε)

∂w

∂nz
v dSz

∣∣∣∣ ≤ C(x, ε)

∣∣∣∣∫
∂B(x,ε)

v dSz

∣∣∣∣ ,
∼ C(x, ε)

∣∣∣∣∫
∂B(x,ε)

(
1

2π
log ε

)
ε dθ

∣∣∣∣ ,
= C(x, ε)ε log ε,

hence ∣∣∣∣∫
∂B(x,ε)

∂w

∂nz
v dSz

∣∣∣∣→ 0, as ε→ 0.

Thus, in the limit as ε→ 0, we are left with

LHS =

∫
∂B(x,ε)

∂v

∂nz
w dSz.

But

v(z) = G0(z − x) + h(z;x),

and w(z) is smooth near z = x. Also, h(z,x) is smooth everywhere for z ∈ D. Thus,∫
∂B(x,ε)

∂h

∂nz
w dSz → 0 as ε→ 0.

Thus, we are left with

LHS =

∫
∂B(x,ε)

∂G0(z − x)

∂nz
w(z) dSz.

We proceed by direct computation:

LHS =

∫
∂B(x,ε)

∂G0(z − x)

∂nz
w(z) dSz,

=
1

2π

[∫ 2π

0

(
∂

∂ρ
log ρ

)
ρ=|z−x|

w(z) ρ dθ

]
|z−x|=ε

,

=

(
1

2π

∫ 2π

0

w(z)dθ

)
|z−x|=ε

,

→ w(x), as ε→ 0.

Similarly, we obtain

RHS = v(y) as ε→ 0,



3.4. Checking that the convolution works 49

hence w(x) = v(y), and the result is shown.

3.4 Checking that the convolution works

We solve the following problem:

∇2u(x) = 0, x ∈ D,

u(x) = f(x), x ∈ ∂D, (3.4)

on the domain D. We know that the answer should involve a Green’s function, obtained in the

following manner:

1. Construct the fundamental solution G0(x,y) on the whole space (e.g. by Fourier transforms);

2. Add a regular solution that solves ∇2
xh(x,y) = 0 to soak up the boundary conditions.

3. Call the answer G(x;y). Then,

∇2
xG(x;y) = δ(x− y), x ∈ D,

G(x;y) = 0, x ∈ ∂D.

To solve Equation (3.4) , we propose the following convolution solution:

u(x) =

∫
∂D

f(y)n̂(y) · ∇yG(x;y) dSy,

n̂(y) is the outward-pointing normal on the boundary ∂D, and dSy is an element of area. Let’s

check this ansatz. We work with x ∈ D first:

∇2
xu(x) = ∇2

x

∫
∂D

f(y)n̂(y) · ∇yG(x;y) dSy,

=

∫
∂D

f(y)n̂(y) · ∇y

[
∇2
xG(x;y)

]
dSy,

=

∫
∂D

f(y)n̂(y) · ∇y δ(x− y) dSy.

We assume x ∈ D, hence, if y ∈ ∂D it is impossible for x− y = 0, since a boundary point and an

interior point cannot coincide. Thus, δ(x− y) = 0 in the second integral, and

∇2
xu(x) = 0.
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We now work on the boundary condition, taking x ∈ ∂D. On the boundary,

u(x ∈ ∂D) =

∫
∂D

f(y)n̂(y) · ∇yG(x;y) dSy.

But we have,∫
∂D

f(y)n̂(y) · ∇yG(x;y) dSy =

∫
∂D

f(y)n̂(y) · ∇yG(x;y) dSy −
∫
∂D

G(x;y)n̂(y) · ∇yf(y) dSy︸ ︷︷ ︸
=0, x∈∂D

,

=

∫
∂D

n̂(y) · [f(y)∇yG(x;y)−G(x;y)∇yf(y)] dSy,

=

∫
D

∇y · [f(y)∇yG(x;y)−G(x;y)∇yf(y)] d2y,

(by Gauss’s theorem)

=

∫
D

[
f(y)∇2

yG(x;y)−G(x;y)∇2
yf(y)

]
d2y,

x ∈ ∂D; G(x,y) vanishes on the boundary

=

∫
D

[
f(y)∇2

yG(x;y)− 0×∇2
yf(y)

]
d2y,

=

∫
D

f(y)
[
∇2
yG(x;y)

]
d2y,

=

∫
D

f(y)
[
∇2
yG(y;x)

]
d2y, (by symmetry)

=

∫
D

f(y)δ(x− y) d2y,

= f(x).

Hence,

u(x ∈ ∂D) = f(x),

and the convolution is valid.
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3.5 Worked Examples

The aim of this exercise is to compute the so-called Poisson kernel for the Poisson problem on the

unit disc. Specifically, we seem to solve the following problem:

∇2u = 0, x ∈ D,

u = f(x), x ∈ ∂D, (3.5)

where D is the unit disc in R2 centred at the origin. The proposed approach is a brute-force type

effort.

1. Solve Equation (3.5) by completing the following sequence of steps.

(a) Solve∇2u = 0 on the unit disc by sepration of variables, in polar coordinates, without

regard for the boundary conditions.

Hint: For the ODE r2R′′ + rR′ − n2R = 0, attempt a trial solution R = rα, where

α is to be determined.

Answer clue:

u(r, θ) =
∞∑

n=−∞

cnr
|n|einθ,

where the cn ∈ C are arbitrary constants.

Solution: Write ∇2u = 0 as

urr +
1

r
ur +

1

r2
uθθ = 0,

and take u = R(r)Θ(θ) to obtain(
R′′ +

1

r
R′
)

Θ +
1

r2
RΘ′′ = 0.

Rearrange:
r2

R

(
R′′ +

1

r
R′
)

+
Θ′′

Θ
= 0.

Obtain Θ = einθ, with n ∈ Z. Back-substitution:

r2R′′ + rR′ − n2R = 0.
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Attempt a solution R = rα. Obtain

α(α− 1) + α− n2 = 0,

hence

α = ±n.

Choose α = |n| to obtain a bounded solution at r = 0. Hence, the general solution is

u(r, θ) =
∞∑

n=−∞

cnr
|n|einθ,

where the cn ∈ C are arbitrary constants.

(b) Write down formulae for the cn’s in terms of the boundary function f . Deduce that

u(r, θ) =
1

2π

∞∑
n=−∞

r|n|eiθ

∫ 2π

0

f(ϕ)e−inϕdϕ.

We have

f(θ) =
∞∑

n=−∞

cneinθ,

since r = 1 at the boundary. But this is a Fourier series, hence

cn =
1

2π

∫ 2π

0

e−inθf(θ).

Hence,

u(r, θ) =
1

2π

∞∑
n=−∞

r|n|eiθ

∫ 2π

0

f(ϕ)e−inϕdϕ.
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(c) By reversing the order of the summation in Part (2), as well as other operations,

show that

u(r, θ) =
1

2π

∫ 2π

0

f(ϕ)

(
1− r2

1− 2r cos(θ − ϕ) + r2

)
dϕ. (3.6)

Take ∆ = θ − ϕ. We have

∞∑
n=−∞

r|n|ei∆n =
0∑

n=−∞

r|n|ei∆n +
∞∑
n=0

r|n|ei∆n − 1,

=
∞∑
n=0

rne−i∆n +
∞∑
n=0

rnei∆n − 1,

=
1

1− re−i∆
+

1

1− rei∆
− 1, . . . r < 1,

=
1− rei∆n + 1− re−i∆n

1− 2r cos ∆ + r2
− 1,

=
2− 2r cos ∆

1− 2r cos ∆ + r2
− 1,

=
2− 2r cos ∆− 1 + 2r cos ∆− r2

1− 2r cos ∆ + r2
,

=
1− r2

1− 2r cos ∆ + r2
,

=
1− r2

1− 2r cos(θ − ϕ) + r2
.

Thus,

u(r, θ) =
1

2π

∞∑
n=−∞

r|n|eiθ

∫ 2π

0

f(ϕ)e−inϕdϕ,

=
1

2π

∫ 2π

0

f(ϕ)
∞∑

n=−∞

r|n|ei(ϑ−ϕ)n,

=
1

2π

∫ 2π

0

f(ϕ)

(
1− r2

1− 2r cos(θ − ϕ) + r2

)
dϕ.
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(d) Identify
∂G(r, θ; s, ϕ)

∂s
:=

1

2π

s2 − r2

s2 − 2sr cos(θ − ϕ) + r2
.

Write x = r(cos θ, sin θ) and y = s(cosϕ, sinϕ). Show that

∂G(x,y)

∂s
=

1

2π

|y|2 − |x|2

|x− y|2
.

Hence, conclude that

u(x) =

∫
∂D

f(y)∇yG(x,y) · d`, (3.7)

where D is the unit disc.

For the first part, we have |x|2 = r2 and |y|2 = s2. Also,

|x− y|2 = |x|2 − 2x · y + |y|2,

= r2 − 2rs cosα + s2,

where α is the angle between x and y. But from a sketch of x and y or from experience,

cosα = cos(θ − ϕ), hence

|x− y|2 = r2 − 2rs cos(θ − ϕ) + s2.

Hence,
∂G(r, θ; s, ϕ)

∂s
=

1

2π

s2 − r2

s2 − 2sr cos(θ − ϕ) + r2
=

1

2π

|y|2 − |x|2

|x− y|2
.

For the second part, consider

u(r, θ) =

∫ 2π

0

f(ϕ)

(
1− r2

1− 2r cos(θ − ϕ) + r2

)
dϕ,

=

∫ 2π

0

f(ϕ)

[
∂G(r, θ; s, ϕ)

∂s

]
s=1

dϕ.

On the unit circle s = 1, and let n̂ be the outward-pointing unit normal to the unit

circle. We have

∇yΦ(s, ϕ) · d` = ∇yΦ(s, ϕ) · n̂ dϕ,

=

(
∂Φ

∂s

)
s=1

dϕ.
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Hence,

u(x) =

∫
∂D

f(y)∇yG(x,y) · d`,

where x = (r cos θ, r sin θ), y = (s cosϕ, s sinϕ), and where s = 1 on ∂D.

The convolution result in Parts (4)–(5) is particular case of the general solution already derived for

the Green’s function of the Laplace problem. The kernel in Part (4) is called the Poisson kernel.

Recall, in general, to solve the problem

∇2u = 0, x ∈ D, u(x) = f(x), x ∈ ∂D,

for a bounded, open, simply-connected domain D ∈ Rn, one solves the auxiliary problem

∇2
xG(x,y) = δ(x− y), x ∈ D,

G(x,y) = 0, x ∈ ∂D.

Then, the solution to the full Poisson problem is available by convolution as follows:

u(x) =

∫
∂D

f(y)n̂(y) · ∇yG(x,y)dSy, (3.8)

where dSy is an element of surface area on the surface ∂Ω. We have already sketched this more

general result in the previous sections of the present Chapter; the particular result of these exercises

has been to compute a definite form for Green’s function (or equivalently, the Poisson kernel) for

the case when the domain D is the unit disc in R2.
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Quantitative example

2. Solve Equation (3.5) with the following quantitative boundary data:

u(r = 1, ϕ) = h(ϕ) :=

1, if 0 < ϕ < π,

0, otherwise.

Using the Poisson kernel results in a horrible integral that is difficult to evaluate. Thus, you

might prefer to obtain an equivalent answer by going through the following sequence of steps:

(a) As in Question 1, use Fourier series to show that

u(r, ϕ) =
∞∑

n=−∞

cnr
|n|einϕ,

with

cn =
1

2π

∫ π

0

e−inϕdϕ.

Hence, deduce that c0 = 1/2 and that

cn =

 1
iπn
, n = ±1,±3, · · · ,

0, n = ±2,±4, · · · .

We have

cn =
1

2π

∫ 2π

0

f(ϕ)e−inϕdϕ,

=
1

2π

∫ π

0

e−inϕ.

For n = 0 this is 1/2. Otherwise, we have

cn = − 1

2πni

(
e−inπ − 1

)
If n is odd, then e−inπ = −1. If n is even, then e−inπ = 1. Thus,

cn =

 1
iπn
, n odd,

0, n even,

and the result is shown.
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(b) Hence, show that

u(r, ϕ) = 1
2

+
1

iπ

[
∞∑
p=0

1

2p+ 1

(
reiϕ

)2p+1 − cc

]
, r < 1.

Hence, show that

u(r, ϕ) = 1
2

+
1

iπ

[
tanh−1(reiϕ)− cc

]
.

Note that g(z) = tanh−1(z) has branch cuts emanating from z = ±1, but |z| = r <

1, so the proposed solution is given on an open set on which g(z) is well defined.

From the series solution, we have

u(r, ϕ) = 1
2

+
∑
n6=0

cnr
|n|einϕ,

= 1
2

+
∑
n 6=0
n odd

1

iπn
r|n|einϕ,

= 1
2

+
1

iπ

∑
n=1,3,···

1

n
rneinϕ +

1

iπ

∑
n=−1,−3,···

1

n
r|n|einϕ,

= 1
2

+
1

iπ

∞∑
p=0

1

2p+ 1
(reiϕ)2p+1 − 1

iπ

∞∑
p=0

1

2p+ 1
(re−iϕ)2p+1,

= 1
2

+
1

iπ

[
∞∑
p=0

1

2p+ 1
(reiϕ)2p+1 − cc

]
.

The series should now be obvious. Recall from Leaving Cert.,

1

1− x2
= 1 + x2 + x4 + · · · , x2 < 1,∫

1

1− x2
dx = C + x+ 1

3
x3 + 1

t
x5 + · · · ,

tanh−1 x = C + x+ 1
3
x3 + 1

5
x5,

and the constant is obviously zero because tanh−1(0) = 0. Hence,

tanh−1 x =
∞∑
p=0

1

2p+ 1
x2p+1, x2 < 1.

Putting it all together,

u(r, ϕ) = 1
2

+
1

iπ

(
tanh−1(reiϕ)− cc

)
, r < 1.
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(c) Use trigonometric identities (e.g. Abramowitz and Stegun, Chapter 4) and rewrite

the solution as

u(r, ϕ) = 1
2

+
1

π

[
tan−1

(
2y

1− r2

)
+ kπ

]
, (3.9)

where y = r sinϕ and where k is arbitrary and will be fixed in what follows.

We have (cf. Abramowitz and Stegun, 4.6.28),

tanh−1(z1)± tanh−1(z2) = tanh−1(z)

(
z1 ± z2

1± z1z2

)
+ kπi, k ∈ Z.

Again using notation from Section 4.6 of Abramowitz and Stegun, we have hence

tanh−1(reiϕ)− cc = tanh−1

(
2iy

1− r2

)
+ kπi, y = r cosϕ,

:= Arctanh(Z), Z =
2iy

1− r2
,

= −i Arctan(iZ),

= +i Arctan

(
2y

1− r2

)
,

= i

[
arctan

(
2y

1− r2

)
+ kπ

]
,

and finally,

u(r, ϕ) = 1
2

+
1

π

[
tan−1

(
2y

1− r2

)
+ kπ

]
.

(d) Use the following formula for A real:

tan−1A =

−1
2
π − tan−1 (1/A) , A < 0,

1
2
π + tan−1 (1/A) , A > 0,

Use this formula and various values of k in the upper and lower half planes y > 0

and y < 0 respectively to deduce the following functional form for the solution:

u(r, ϕ) =


1− 1

π
tan−1

(
1−r2

2y

)
, y > 0,

1
2
, y = 0,

− 1
π

tan−1
(

1−r2
2y

)
, y < 0.

Plot the solution.



3.5. Worked Examples 59

For y < 0, we have

u(r, ϕ) = 1
2

+

[
−1

2
− 1

π
tan−1

(
1− r2

2y

)
+ k1

]
,

= − 1
π

tan−1

(
1− r2

2y

)
+ k1.

For y > 0, we have

u(r, ϕ) = 1
2

+

[
1
2

+ 1
π

tan−1

(
1− r2

2y

)
+ k2

]
,

= − 1
π

tan−1

(
1− r2

2y

)
+ (1 + k2).

The solution should be continuous across y = 0. Also, given (y = 0 =⇒ ϕ = 0, π) and

starting with

u(r, ϕ = 0, π) = 1
2

+
1

iπ

[
tanh−1(±r)− cc

]
= 0

the solution should be equal to 1/2 at y = 0. With these observations, we take y → 0

through negative values, we get

u(r, ϕ) = k1 −
[

1
π

lim
y→0−

tan

(
1− r2

2y

)]
,

= k1 + 1
2
,

hence k1 = 0. Also, take y → 0 through positive values:

u(r, ϕ) = (1 + k2)−
[

1
π

lim
y→0+

tan

(
1− r2

2y

)]
,

= 1 + k2 − 1
2
,

= 1
2

+ k2.

hence k2 = 0. Put it all together:

u(r, ϕ) =


1− 1

π
tan−1

(
1−r2

2y

)
, y > 0,

1
2
, y = 0,

− 1
π

tan−1
(

1−r2
2y

)
, y < 0.

The full two-dimensional solution is plotted in Figure 3.1. The solution is plotted at fixed

x = 1/2 as a function of y in Figure 3.2. The Matlab codes are also provided.
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Figure 3.1: Solution of Laplace problem with piecewise boundary conditions.

Figure 3.2: Slice of solution of Laplace problem with piecewise boundary conditions through x = 1/2.

The corresponding y-range is y ∈ (−
√

3/2,
√

3/2).
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Matlab functions

function [x,y,mysln]=my_laplace(dx)

x=-1:dx:1;

y=-1.1:dx:1.1;

mysln=zeros(length(x),length(y));

for i=1:length(x)

for j=1:length(y)

x_val=x(i);

y_val=y(j);

r_val=x_val*x_val+y_val*y_val;

%******************************************************************

if(r_val<1)

if(y_val>0)

argtan=(1-r_val)/(2*y_val);

mysln(i,j)=1-(1/pi)*atan(argtan);

elseif(y_val<0)

argtan=(1-r_val)/(2*y_val);

mysln(i,j)=-(1/pi)*atan(argtan);

else

mysln(i,j)=1/2;

end

end

%******************************************************************

end

end
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Plot commands

[x,y,M]=my_laplace(.001);

[~,hhh]=contourf(x,y,M’)

set(hhh,’edgecolor’,’none’)

axis equal

colorbar

colormap hot

yup=sqrt(1-x.^2);

hold on

plot(x,yup,x,-yup,’color’,’red’,’linewidth’,3)

xlim([-1 1])

ylim([-1 1])

set(gca,’fontsize’,18,’fontname’,’times new roman’)

xlabel(’x’)

ylabel(’y’)

Poisson kernel – further properties

For completeness, we describe further important properties of the Poisson kernel

P (r, θ) =
1− r2

1− 2r cos θ + r2
, 0 ≤ r < 1. (3.10)

Theorem 3.2 For P (r, θ) as given in Equation (3.10), we have

P (r, θ) = Re

(
1 + reiθ

1− reiθ

)
.

The proof is a straightforward computation.

Also:

Theorem 3.3 For P (r, θ) as given in Equation (3.10), we have∫ 2π

0

P (r, θ) dθ = 1, 0 < r < 1.

We compute

I =
1

2π

∫ 2π

0

(
1 + reiθ

1− reiθ

)
dθ.
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Let z = reiθ. On the circle C(r, 0) of radius r and centre zero, we have

dz = ireiθdθ = izdθ,

hence
dz

iz
= dθ,

and

I =
1

2πi

∮
C(0,r)

(
1 + z

1− z

)
dz

z
.

The function

f(z) =
1

z

(
1 + z

1− z

)
has simple poles at z = 0 and z = 1. However, the circle C(0, r) does not enclose the pole located

at z = 1. Thus, the only pole to consider is at z = 0. Near z = 0, f(z) has the Laurent expansion

f(z) =
1

z

(
1 + z

1− z

)
=

1

z
(1 + z)

∞∑
n=0

zn =
1

z
+ Taylor series,

hence Res(f, 0) = 1, hence by Cauchy’s theorem,

I = 1,

and the result is shown.

Crucially, we have the following ‘Green’s function type result’ for the Poisson kernel:

Theorem 3.4 Let

∇2u = 0, (x, y) ∈ D0,

u = h(x, y), (x, y) ∈ ∂D0

have the candidate Poisson-kernel solution

u(r, ϕ) =
1

2π

∫ 2π

0

h(θ)
1− r2

1− 2r cos(θ − ϕ) + r2
dθ. (3.11)

Also, let h(ϕ) be continuous. Then, by direct computation,

lim
r→1

u(r, ϕ) = h(ϕ).

Proof: If the denominator in the expression (3.11) is nonzero, then the limit would be vanishing.

Thus, the integral in Equation (3.11) has nonzero contributions only for certain ranges of the angle
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θ. In detail, the integral has nonzero contributions only in the neighbourhood of that θ-value such

that

1− 2 cos(θ − ϕ) + 1 = 0 =⇒ θ = ϕ.

Thus,

1

2π
lim
r→1

∫ 2π

0

h(θ)
1− r2

1− 2r cos(θ − ϕ) + r2
dθ = =

1

2π
lim
r→1

∫ ϕ+ε

ϕ−ε
h(θ)

1− r2

1− 2r cos(θ − ϕ) + r2
dθ,

=
1

2π
h(ϕ) lim

r→1

∫ ϕ+ε

ϕ−ε

1− r2

1− 2r cos(θ − ϕ) + r2
dθ,

=
1

2π
h(ϕ) lim

r→1

∫ 2π

0

1− r2

1− 2r cos(θ − ϕ) + r2
dθ,

=
1

2π
h(ϕ) lim

r→1
(2π) ,

= h(ϕ).



Chapter 4

Conformal Mapping

Overview

You may already be familiar with the ‘morphisms’ for particular mathematical objects. Morphisms

are invertible maps between mathematical structures, such that the structure is preserved under the

mapping. In linear algebra, (invertible) linear transformations are the relevant morphisms, in group

theory, group homomorphisms; in topology, homeomorphpisms, in differential geometry, diffeomor-

phisms and so on. In complex analysis, the relevant morphisms are called conformal maps. These

are invertible, differentiable maps that connect one complex domain to another. These maps will

enable us to solve Laplace’s equation in arbitrary domains, by conformally mapping the problem to

the open unit disc, where the solution is known, via Poisson’s kernel.

4.1 Analytic maps

Let

g : D → D′, (4.1)

z 7→ g(z) := ζ (4.2)

be an analytic function on the open domain D ∈ C. We specify further that g(z) should be invertible

with an analytic inverse defined on the (open) set D′. (Note: D′ is necessarily open – why?). In

other words, we specify that g−1(ζ) exists and is analytic on D′. This requirement means that D

cannot contain any critical points of g(z):

Theorem 4.1 Let g(z) be given as in Equation (4.2). Then the domain D contains no critical

points: g′(z) 6= 0, for all z ∈ D.

65
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Proof:

We have

g−1(g(z)) = z.

Differentiate both sides and use the Chain Rule:

1 =

[
d

dζ
g−1(ζ)

]
dg

dz
.

Hence,
d

dζ
g−1(ζ) =

1

g′(z)
, (4.3)

as in ordinary real-variable calculus. By assumption, (d/dζ)g−1(ζ) exists everywhere in D′, hence

the R.H.S. of Equation (4.3) exists, hence g′(z) 6= 0.

Definition 4.1 We call a map between domains D and D′ of the type (4.2) an analytic map.

Examples

1. Consider the following translation:

ζ = z + β = (x+ a) + i(y + b), (4.4)

where β = a + ib is a constant complex number. The effect of this map is to translate the

entire complex plane by the distance and by the direction specficied by the vector (a, b)T .

Also, the map (4.4) maps the disc |z + β| < 1 of radius 1 and centre −β to the unit disc

|ζ| < 1.

2. The scaling

ζ = ρz = ρ(x+ iy), ρ ∈ R+

maps the disc |z| < 1/ρ to the unit disc |ζ| < 1.

3. The rotation

ζ = eiϕz, ϕ ∈ R,

maps the unit disc to the unit disc, and rotates an arbitrary point z by an angle ϕ about the

origin.

4. The affine transformation

ζ = αz + β, α 6= 0 (4.5)
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is an invertible map analytic on the entire complex plane, with inverse

z = α−1 (ζ − β) ,

also analytic on the entire complex plane. Note also that the affine transformation is a

composition:

• First, a rotation, through an angle arg(α).

• Next, a scaling, by an amount ρ = |α|.

• Finally, a translation, through β.

The affine transformation (4.5) maps the disc |αz + β| < 1 centred at −β/α and of radius

1/|α| to the unit disc |ζ| < 1.

5. Consider the following map:

ζ =
1

z
.

Or, writing ζ = ξ + iη and z = x+ iy,

ξ =
x

x2 + y2
, η = − y

x2 + y2
.

If we take D to be the punctured complex plane (with the origin removed), then g(z) = 1/z

is analytic on D. Also, the inverse exists, with

z =
1

ζ
.

Hence, g(z) = 1/z maps the punctured complex plane to itself. Also,

dg

dz
= − 1

z2
6= 0, z ∈ D,

hence the map is analytic on D.

Consider also the set E = {|z| > ρ}. Then the image of this set under the map g(z) is the

set

g(E) = {ζ| |ζ| < ρ}.

Thus, in particular, g(z) maps the exterior of the unit disc to the punctured unit disc and as

such, g(z) can be thought of as in ‘inversion’ of the complex plane.

6. Consider the complex exponential:

ζ = g(z) = ez.
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This function satisfies the condition g′(z) 6= 0 everywhere on the complex plane, and moreover,

g(z) is itself analytic on the entire complex plane. However, the exponential function is not

one-to-one, since

ez+2πin = ez n ∈ Z.

Thus, the condition g′(z) 6= 0 is necessary but not sufficient for a generic map g(z) to be

invertible.

However, if we restrict the domain D to be the horizontal open strip

D = {z = x+ iy ∈ C| −∞ < x <∞, 0 < y < 2π},

then g(z) is one-to-one on this (open) domain, hence g(z) is an analytic map on D. Note the

strict inequalities here: these are needed to make D into an open domain.

We compute the image of D under g(z). We write ζ = ξ + iη and z = x+ iy. We have

ξ = ex cos y, η = ex sin y, 0 < y < 2π.

Letting x run over the entire real line and y run between the closed interval [0, 2π], all points

in R2 are traced out. However, we are not allowed to do this, as y = 0, 2π is excluded. Thus,

the line ξ > 0 is excluded from D′. Also, the point (ξ, η) = (0, 0) is excluded, since this

corresponds to x = −∞ in D. Thus, D′ is the set

D′ = C− {ξ ≥ 0}.

Thus, D′ contains a branch cut – precisely the same branch cut that was required to make

the complex-valued logarithm into a single-valued function. This is not a coincidence (why?).

Consider now instead the following strip:

D = {z = x+ iy ∈ C| −∞ < x <∞, 0 < y < a},

where 0 < a < 2π. As before, under the exponential map, points in D are given the following

ζ-coordinates:

ξ = ex cos y, η = ex sin y, 0 < y < a,

where −∞ < x <∞. Thus, D′ is a wedge (‘pizza slice’). Using polar coordinates (ρ, θ), the

wedge D′ extends from the origin out to ρ =∞, and extending also from θ = 0 to θ = a.
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4.2 Conformal maps

Definition 4.2 Let g(z) : D → D′ be an analytic map. Then g(z) is called conformal if it

preserves angles.

Now, we need to clarify what we mean by ‘preserving angles’. For, it is not necessary that g(z) be a

linear function. Thus, vectors in R2 will not necessarily be mapped to vectors under g(z). However,

the angle between curves is a well-defined quantity both before and after the transformation g(z).

We therefore develop the notion of curves in C and formulate the notion of the angle between two

curves, at a point of intersection.

As in real space, a curve γ in C is a one-parameter smooth map:

γ : I → C,

t 7→ z = γ(t),

where I is a closed interval, γ(t) is a differentiable function of the single real variable t, and where

γ̇(t) 6= 0, for all t ∈ I. As usual, we write the parametrized curve as γ(t) ≡ zγ(t) ≡ z(t). We

identify z(t) with the relevant coordinate pair (x(t), y(t)): this is a point on the curve. Similarly, ż(t)

is identified with the pair (ẋ(t), ẏ(t)); this is a tangent vector to the curve at the point (x(t), y(t)).

The unit tangent vector is

t̂ =
(ẋ(t), ẏ(t))√
ẋ(t)2 + ẏ(t)2

=
(ẋ(t), ẏ(t))

|ż|
.

Thus, the curve is degenerate at a point if |ż| = 0 there, since then a unit tangent vector cannot

be ascribed to the curve at the same point (e.g. cusps).

Suppose that two curves, written here as z1(t) and z2(t) intersect at a point t0:

z1(t0) = z2(t0) := z0.

The angle between the x-axis and the tangent vector of the z1-curve at t0 is

θ1 = arg(ż1(t0));

similarly,

θ2 = arg(ż2(t0)).

The angle between the two curves at their point of intersection is thus

θ = θ2 − θ1 = arg(ż2(t0))− arg(ż1(t0)).
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Next, consider the effect of an analytic map ζ = g(z) on the curves z1 and z2. The curve z1 will

be mapped two a new curve ζ1(t) = g(z1(t)); similarly, we shall obtain a second mapped curve

ζ2 = g(z2(t)). We compute the velocity vectors of the new curves using the chain rule:

ζ̇i(t) = g′(zi(t))żi(t), i = 1, 2, g′(zi(t)) 6= 0. (4.6)

Interestingly,

|ζ̇i| = |g′(z)||żi|, i = 1, 2.

Thus, the speed of the mapped curve is proportional to the speed of the original curve, and the

proportionality factor is totally independent of the details of the particular curve and depends

only on location in space. In other words, all curves passing through a particular point z are sped up

or slowed down by the same factor, |g′(z)|. Similarly, for from Equation (4.6) applied to arguments,

arg(ζ̇i(t)) = arg(g′(z)) + arg(żi(t)), i = 1, 2.

Thus, the tangent vectors for all curves passing through a particular point z get rotated by the same

amount, arg(g′(z)), independent of the details of the curves themselves! Calling ψi = arg(ζi(t0)),

we have

ψ2 − ψ1 = arg(ζ̇2(t0))− arg(ζ̇1(t0))

= [arg(g′(z0)) + arg(ż2(t))]− [arg(g′(z0)) + arg(ż1(t))] = arg(ż2(t0))− arg(ż1(t0)) = θ,

which is the same as the angle between the two original curves. Thus, we have shown the following

result:

Theorem 4.2 If ζ = g(z) is an analytic map, then it is a conformal map.

The converse is also true: all angle-preserving planar transformations can be associated with an

analytic map. This is given below in the worked examples.

Finally, conformal mapping is extremely useful, because of the celebrated Riemann mapping the-

orem, which we merely state here:

Theorem 4.3 (Riemann) Let D ⊂ C be a simply-connected open subset of C, with D 6= C.

Then, there exists an analytic map that maps D to the open unit disc.

This is an extremely powerful theorem that states that any open simply-connected subset of the

complex plane (but not the complex plane itself) can be mapped conformally to the open unit disc.

The proof of the theorem is an existence-type proof, and gives no hint of how to construct the

conformal map. Also, the analytic map is not unique. For example, suppose I have a conformal map
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g between the domain D and the open disc D0. I could choose first to map D to itself conformally,

and then to map D conformally to an intermediate domain D′, followed by a further conformal map

to D0. Just for good measure, I could then conformally map D0 to itself by a further conformal

map. The composition of these maps would be another conformal map from D to D0, different

from g. Indeed, there is an infinite variety of such combinations. Thus, conformal maps from a

domain D to the unit disc are far from unique. Also, in practice, finding the conformal map is very

difficult. But at least we know it is possible.

4.3 Application to Harmonic Functions and Laplace’s Equa-

tion

We have shown already that conformal mapping preserves both the analytical and the geometrical

structures in the complex plane. We now show that conformal mapping also preserves harmonicity.

Thus, given an analytic map and a harmonic function on a certain domain, then the mapped function

on the mapped domain is also harmonic. This is a very useful result (which we prove below), because

instead of solving the Laplace problem in a complicated domain, we can choose instead to map the

problem conformally to a relatively simple domain, where the solution is known.

We start with the following theorem:

Theorem 4.4 Let ζ = ξ + iη and let U(ξ, η) be a harmonic function of ζ, η, and let the following

analytic map be given:

ζ = g(z), z = x+ iy.

Then the composition

u(x, y) = U(ξ(x, y), η(x, y))

is a harmonic function of x and y.

The proof is a straightforward application of the chain rule:

∂u

∂x
=
∂U

∂ξ

∂ξ

∂x
+
∂U

∂η

∂η

∂x
,

∂u

∂y
=
∂U

∂ξ

∂ξ

∂y
+
∂U

∂η

∂η

∂y
.

Also,

∂2u

∂x2
=

∂2U

∂ξ2

(
∂ξ

∂x

)2

+
∂2U

∂η2

(
∂η

∂x

)2

+ 2
∂2U

∂η∂ξ

∂η

∂x

∂ξ

∂x
+
∂U

∂ξ

∂2ξ

∂x2
+
∂U

∂η

∂2η

∂x2
,

∂2u

∂y2
=

∂2U

∂ξ2

(
∂ξ

∂y

)2

+
∂2U

∂η2

(
∂η

∂y

)2

+ 2
∂2U

∂η∂ξ

∂η

∂y

∂ξ

∂y
+
∂U

∂ξ

∂2ξ

∂y2
+
∂U

∂η

∂2η

∂y2
.
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Now, ζ = ξ + iη = g(z) is an analytic function, hence

∂ξ

∂x
=
∂η

∂y
,

∂ξ

∂y
= −∂η

∂x
.

Thus, the expressions for uxx and uyy are re-arranged as follows:

∂2u

∂x2
=

∂2U

∂ξ2

(
∂ξ

∂x

)2

+
∂2U

∂η2

(
∂η

∂x

)2

+ 2
∂2U

∂η∂ξ

∂η

∂x

∂ξ

∂x
+
∂U

∂ξ

∂2ξ

∂x2
+
∂U

∂η

∂2η

∂x2
,

∂2u

∂y2
=

∂2U

∂ξ2

(
∂ξ

∂y

)2

+
∂2U

∂η2

(
∂η

∂y

)2

− 2
∂2U

∂η∂ξ

∂η

∂x

∂ξ

∂x
+
∂U

∂ξ

∂2ξ

∂y2
+
∂U

∂η

∂2η

∂y2
.

Add them up in an obvious way now:

∂2u

∂x2
+
∂2u

∂y2
=
∂2U

∂ξ2

[(
∂ξ

∂x

)2

+

(
∂ξ

∂y

)2
]

+
∂2U

∂η2

[(
∂η

∂x

)2

+

(
∂η

∂y

)2
]

+
∂U

∂ξ

(
∂2ξ

∂x2
+
∂2ξ

∂y2

)
+
∂U

∂η

(
∂2η

∂x2
+
∂2η

∂y2

)
.

The terms along the bottom line here vanish: ζ = ξ + iη = g(z) is an analytic function, hence

ξ(x, y) and η(x, y) are harmonic. Also, by Cauchy–Riemann,(
∂ξ

∂x

)2

+

(
∂ξ

∂y

)2

=

(
∂ξ

∂x

)2

+

(
∂η

∂x

)2

=

∣∣∣∣∂g∂x
∣∣∣∣2 =

∣∣∣∣dgdz
∣∣∣∣2 ,

where the last result follows because the complex derivative is indendent of approach. Similarly,(
∂η

∂x

)2

+

(
∂η

∂y

)2

=

∣∣∣∣dgdz
∣∣∣∣2 ,

hence

∇2u = |g′(z)|2∇2U.

Thus, if U is harmonic in the (ξ, η) variables, then u is harmonic in the (x, y) variables. Conformal

mapping preserves harmonicity.

The way forward for solving Laplace’s problem is now clear. Suppose we are to solve the following

difficult Dirichlet problem:

∂2u

∂x2
+
∂2u

∂y2
= 0, (x, y) ∈ D, u = h(x, y), (x, y) ∈ ∂D,

where D 6= C is an open simply connected (but not necessarily bounded) domain. We endeavour to

construct a conformal mapping (which must exist, by the Riemann Mapping Theorem), ζ = g(z),

such that g(D) = D0, where D0 is the open unit disc. Under the conformal map, we have
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U(ξ, η) = u(x(ξ, η), y(ξ, η)), and

∂2U

∂ξ2
+
∂2U

∂η2
= 0, (ξ, η) ∈ D0, (4.7a)

with the following boundary data on the unit circle:

U = h(x(ξ, η), y(ξ, η)) := H(ξ, η), (ξ, η) ∈ ∂D0. (4.7b)

Equation (4.7) is relatively easy to solve – we have already done so, using the Poisson kernel. Thus,

the strategy is clear:

1. Start with Laplace’s equation on a ‘difficult’ simply-connected domain D 6= C.

2. Find a conformal mapping to map D to the unit disc D0 (difficult, but it must exist).

3. Solve Laplace’s equation on the unit disc using the Poisson kernel.

4. Invert the transformation to find the solution valid on the original domain D.

We consider two examples of this procedure in the remainder of this section.

Example 1 Consider the following Dirchlet problem on the positive half-plane:

∇2u = 0, x > 0, u(x = 0, y) = h(y).

In the worked examples below, it is shown in detail that the map ζ = g(z), with

g(z) =
z − 1

z + 1

takes the positive half-plane in xy-space into the open unit disc in ξη space. Thus, we let

U(ξ, η) = u(x(ξ, η), y(ξ, η)),

with

∇2U = 0, (ξ, η) ∈ D0.

Polar coordinates in (ξ, η) are appropriate for the boundary of D0: we let ξ =
√
ξ2 + η2 cosϕ and

η =
√
ξ2 + η2 sinϕ. Thus, on the boundary,

U = H(ϕ), (ξ, η) ∈ ∂D0, 0 ≤ ϕ < 2π.

It is instructive to connect H(ϕ) to the original boundary condition involving the function h(y).
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From the worked examples in Section 4.5 below, we have

ξ =
x2 + y2 − 1

(x+ 1)2 + y2
, η =

2y

(x+ 1)2 + y2
.

However, the inverse of this relation is more useful here. We have

ζ =
z − 1

z + 1
=⇒ z =

1 + ζ

1− ζ
=

(1 + ζ)(1− ζ)

|1− ζ|2
=

1 + ζ − ζ − |ζ|2

|1− ζ|2
.

With ζ = ξ + iη, this becomes

z = x+ iy =
1− ξ2 − η2 + 2iη

(ξ − 1)2 + η2
. (4.8)

Hence,

y =
2η

(ξ − 1)2 + η2
.

Now, on the boundary ∂D0, we have

y =
2 sinϕ

(cosϕ− 1)2 + sinϕ2
=

2 · 2 sinϕ/2 cosϕ/2

2(1− cosϕ)
=

2 sinϕ/2 cosϕ/2

1− cosϕ
=

2 sinϕ/2 cosϕ/2

2 sin2 ϕ/2
= cotϕ/2.

Hence, the boundary data on ∂D0 are

H(ϕ) = h(cotϕ/2),

and the simple problem to solve is now the following:

∇2U = 0, (ξ, η) ∈ D0, U = h(cotϕ/2), (ξ, η) = (cosϕ, sinϕ) ∈ ∂D0.

Let us be specific and take the following example of a particular boundary function, with

h(y) =

1, y > 0,

0, y < 0.

In the transformed coordinates,

H(ϕ) =

1, 0 < ϕ < π,

0, π < ϕ < 2π.
(4.9)

We shudder at applying Poisson’s kernel directly to Equation (4.9); instead, we use the results from
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the worked examples in Chapter 3

U(ξ, η) = 1
2

+
1

π

[
tan−1

(
2η

1− ξ2 − η2

)
+ kπ

]
where (ξ, η) = ρ(cosϕ, sinϕ), and k is our old friend the arbitrary integer. Using Equation (4.8),

this simpifies to

u(x, y) = 1
2

+
1

π

[
tan−1(y/x) + kπ

]
,

and the explicit dependence on the variable integer k is removed by rewriting this as

u(x, y) = 1
2

+
1

π
Arg(x+ iy), (4.10)

with branch cut placed on the negative real axis (i.e. conveniently located outside of the domain of

the PDE); Equation (4.10) is the solution to ∇2u = 0 on the half plane x > 0 and −∞ < y <∞.

4.4 Mapping to the annulus

The Riemann Mapping Theorem does not apply to non-simply-connected domains: it is impossible

to map a non-simply-connected domain to the unit disc in a smooth way. In this section we consider

conformal maps from non-simply-connected domains to a two-parameter annulus

Ar,R = {r < |ζ| < R}, (4.11)

assumed to be centred at the origin. The case r = 0 corresponds to a punctured disc, while setting

R =∞ gives the exterior of a disc of radius r. It can be shown that any other domain with a single

hole can be conformally mapped to an annulus. The annular radii r, R are not uniquely specified:

in particular, the linear map ξ = αz maps the annulus (4.11) to a rescaled annulus Aρr,ρR, with

ρ = |α|, where the inner and outer radii have both been scaled by a factor ρ = |α|. Note, however,

the ratio r/R of the inner to outer radii is still uncahged. Indeed, this is uniquely specified, and

annuli with different ratios cannot be mapped to each other by a conformal map. Here, if r = 0 or

r =∞ (but not both), then r/R = 0 by convention. The punctured plane, with r = 0 and R =∞
is a separate case.

In the following example a conformal mapping is constructed that takes us from an annulus where

the two bounding circles are non-concentric, to a concentric annulus of the form (4.11). Thus, we

start with the domain

D − {|z| < 1 and |z − c| > c}

with c real and c < 1/2 such that the inner, offset circle |z − c| < c stays firmly inside the outer
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circle of radius 1, centred at the origin. Note that the centre of the inner circle lies at x = c, y = 0,

with one extremity of the circle coinciding with the origin. Looking again at the worked examples

in Section 4.5 below, we see that the linear fractional mapping

ζ = g(z), g(z) =
z − α
αz − 1

, |α| < 1,

maps the unit disc to itself, yet shifts the origin by an amount α. This map therefore seems like a

good candidate to take the off-centre annulus into a concentric one. In particular, we would like the

extremities of the mapped inner circle to lie at ±r along the x-axis. In other words,

z = (0, 0)→ r, z = (2c, 0)→ −r.

Thus,

r = g(0),

= α,

and

−r = g(2c),

=
2c− α
2cα− 1

.

One eliminates r to find

−α =
2c− α
2c− 1

,

or

α =
1±
√

1− 4c2

2c
.

Now, the linear fractional map maps the unit disc to itself (see Section 4.5 below, Question 3),

hence the extremities of the outer circle at x = ±1 are preserved. Thus, the mapped inner circle,

now centred at the origin, must be of radius r < 1. Since 0 < c < 1/2 is positive, the positive sign

is therefore inadmissible here, hence

α =
1−
√

1− 4c2

2c
,

and

ζ = g(z), g(z) =
z − 1 +

√
1− 4c2

(1−
√

1− 4c2)z − 2c
.

Note, the radius of the mapped inner circle is r = α 6= c, so that the size of the inner circle is not

preserved under the mapping. Note, however, that the outermost circle, being the boundary of the
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unit disc, is preserved.

Finally, for the following example, we note that taking c = 2/5 gives the conformal map

g(z) =
2z − 1

z − 2
.

We now use this theory to solve the following PDE:

∇2u = 0, (x, y) ∈ D,

where D is the open annular domain enclosed within the following circles:

Cin :
∣∣z − 2

5

∣∣ = 2
5
,

Cout : |z| = 1,

and where the following boundary conditions are imposed:

on Cin : u = b,

on Cout : u = a.

We conformally map the domain D to the annulus D′ where the bounding circles are concentric,

with

C ′in : |ζ| = r,

C ′out : |ζ| = 1;

with

r =
1−
√

1− 4c2

2c
, c = 2

5
=⇒ r = 1

2
.

For the concentric annulus, the only radially-symmetric solution of Laplace’s equation is

U(ξ, η) = A log |ζ|+B, |ζ| =
√
ξ2 + η2,

= 1
2
A log(ξ2 + η2) +B,

where A and B are complex constants. The boundary conditions are

on C ′in : U = b,

on C ′out : U = a.
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Hence,

U(ξ, η) =
b− a
2 log 2

log(ξ2 + η2) + b.

Using the results from the worked examples below in Section 4.5, with α = r = 1/2, this becomes

u(x, y) =
b− a
2 log 2

log

(
(2x− 1)2 + 4y2

(x− 2)2 + y2

)
+ b.

4.5 Worked examples

1. Recall the following problem from the previous work on Laplace’s equation:

Consider the following Dirichlet problem:

∇2Φ = 0, (x, y) ∈ D,

Φ = Const., (x, y) ∈ ∂D,

where D ⊂ Rn is open, bounded, simply connected. Show that Φ = Const.

everywhere in D.

Specialize to dimension n = 2 and extend to all simply-connected domains D 6= C. Use

the Riemann Mapping Theorem and the Poisson kernel to construct an equivalent proof

of this statement in this particular special case.

By the Riemann mapping theorem there exists an analytic map ζ = g(z), such that g(D) =

D0, the open unit disc. Take ζ = ξ + iη, and let

U(ξ, η) = Φ(x(ξ, η), y(ξ, η)).

Thus, U is harmonic on the open unit disc. Take Φ = h(x, y) on ∂D, with h = Cont..

U(ξ, η) = h(x(ξ, η), y(ξ, η)) = Const., (ξ, η) ∈ ∂D0.

Take U(ξ, η) = C on ∂D0. By the Poisson kernel,

U(r, ϕ) =

∫ 2π

0

C

[
r2 − 1

r2 − 2r cos(θ − ϕ) + 1

]
dϕ = C, r < 1, 0 ≤ ϕ < 2π.
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Hence,

U(ξ, η) = C, (ξ, η) ∈ D0.

But

Φ(x(ξ, η), y(ξ, η)) = U(ξ, η) = C,

hence Φ(x, y) = C on D also, and the result is shown.

2. Consider the following map:

ζ = g(z), g(z) =
z − 1

z + 1
.

(a) Let z = x+ iy and ζ = ξ + iη. Show that

ξ =
x2 + y2 − 1

(x+ 1)2 + y2
, η =

2y

(x+ 1)2 + y2
.

(b) Obtain the domain D and the image g(D) that make g(z) into an analytic map.

(c) Show that the map g(z) maps the positive half-plane {Re(z) > 0} into the unit disc

|ζ| < 1.

(a) We have

ξ + iη =
z − 1

z + 1
,

=
(z − 1)(z + 1)

(z + 1)(z + 1)
,

=
|z|2 − 1 + z − z
|z|2 + 1 + z + z

,

=
|z|2 − 1 + 2i Im(z)

|z|2 + 1 + 2 Re(z)
,

=
x2 + y2 − 1 + 2yi

x2 + y2 + 1 + 2x
,

=
x2 + y2 − 1 + 2yi

(x+ 1)2 + y2
.

Equate real and imaginary parts:

ξ =
x2 + y2 − 1

(x+ 1)2 + y2
, η =

2y

(x+ 1)2 + y2
.
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(b) The point z = −1 must be excluded from the domain. Also,

g′(z) =
(z + 1)− (z − 1)

(z + 1)2
,

=
2

(z + 1)2
,

which is never zero. Thus, D = C − {1}. By straightforward computation, the inverse

is

z =
1 + ζ

1− ζ
,

hence ζ 6= 1. Thus, the domain D is mapped to itself, and

g(z) : D → D, D = C− {1}

is an analytic map.

(c) Take |ζ| < 1. Thus, |z − 1| < |z + 1|, hence

(x− 1)2 + y2 < (x+ 1)2 + y2,

hence x2− 2x+ 1 < x2 + 2x+ 1, hence −4x < 0, hence x > 0, with y arbitrary. Thus,

|ζ| < 1 is mapped to the right half-plane under the map g−1(ζ) and by invertibility, the

right-half-plane is mapped to the unit disc.

3. Consider

ζ = g(z), g(z) =
z − α
αz − 1

, |α| < 1,

where α is a complex constant.

(a) Show that g(z) is an analytic map on an appropriate domain.

(b) Show also that g(z) maps the unit disc |z| < 1 to itself.

(c) Show that the origin z = 0 is moved to the point ζ = α. Explain why this does not

contradict (b).

(d) For the particular case where α is real, let ζ = ξ + iη, z = x + iy, and η = g(z).

Hence, show that

ξ2 + η2 =

(
1
α
x− 1

)2
+ 1

α2y
2(

x− 1
α

)2
+ y2

.

Hint: An explicit computation of ξ and η is not necessary.
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Note that z = 1/α is a singularity. Hence,

D = C−
{

1

α

}
is the relevant domain. Also,

g′(z) =
(αz − 1)− (z − α)α

(αz − 1)2
,

=
|α|2 − 1

(αz − 1)2
,

and this is nonzero because |α| < 1. Finally, the inverse map is obtained by straightforward

algebraic computations:

z =
ζ − α
αζ − 1

,

hence,

g : D → D,

with g′(z) and (d/dζ)g−1(ζ) nowhere zero on D is an analytic map.

For the second part, let z = reiϕ and let α = r0eiϕ0 . We compute

ζ =
reiϕ − r0eiϕ0

rr0e−iϕ0eiϕ − 1
,

= eiϕ0
reiϕe−iϕ − r0

rr0e−iϕ0eiϕ − 1
, (4.12)

(4.13)

Hence,

|Num.|2 = r2 + r2
0 − 2rr0 cos(ϕ− ϕ0),

|Den.|2 = r2r2
0 + 1− 2rr0 cos(ϕ− ϕ0).

Thus,

|Num.|2 − |Den.|2 = r2 + r2
0 − r2r2

0 − 1,

= −(1− r2
0)(1− r2) < 0,

where the strict inequality follows because 0 ≤ r < 1 and 0 ≤ r0 < 1. Thus,

|Num.| < |Den.|,
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hence

|ζ| < 1,

and the unit disc in z-space is mapped to the unit disc in ζ-space. Finally, under the conformal

map,

ζ0 = g(0),

=
−α
−1

,

= α.

The origin is mapped to the point α under the conformal map. This does not contradict the

fact that the unit disc is mapped to itself: a further point

z1 = α

is mapped to the origin in ζ-space: the conformal map ‘twists’ the unit disc such that the

origin is shifted by an amount α, but a further point z1 is also shifted and takes its place at

the origin in the mapped space. Check:

g(z1) =
α− α
|α|2 − 1

, |α| < 1,

= 0.

For the last part, we have

ζ =
(z − α)(αz − 1)

(αz − 1)(αz − 1)
,

=
(z − α)(αz − 1)

(αz − 1)(αz − 1)
,

=
α|z|2 − z − α2z + α

α2|z|2 + 1− α(z + z)
,

=
α(x2 + y2)− (x+ iy)− α2(x− iy) + α

α2(x2 + y2) + 1− 2αx
.

Hence,

ξ =
α [(x2 + y2) + 1]− x(1 + α2)

α2(x2 + y2) + 1− 2αx
,

η =
y(1− α2)

α2(x2 + y2) + 1− 2αx
.
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For the final part, instead of evaulating ξ2 + η2 by direct computation, we start instead from

Equation (4.13), such that we obtain the followiong expressions:

ξ2 + η2 =
r2 + α2 − 2α0x

r2α2 + 1− 2x
,

=
(x2 + y2) + α2 − 2αx

α2(x2 + y2) + 1− 2αx
,

=
(x− α)2 + y2

(αx− 1)2 + α2y2
,

=

(
1
α
x− 1

)2
+ 1

α2y
2(

x− 1
α

)2
+ y2

.

4. Show that every planar conformal map comes from a complex analytic function with

nonvanishing derivative. You may use any method you like. However, the following

method is suggested:

(a) Prove the following lemma:

Let T : Rn → Rn be a linear angle-preserving map. Then T is a scalar

multiple of an orthogonal matrix.

Hints:

• Choose an orthonormal basis ei. Compute the image of the basis under the

linear transformation, fi = Tei. Argue that the fi’s are an orthogonal basis for

Rn (but not necessarily orthonromal).

• Let D = T TT , and construct the matrix Dij = 〈ei, Dej〉. Show that

Dij = ‖fi‖2
2δij, no sum over i.

• Define θ = angle(e1, e1 + ek), with k 6= 1. Show that

cos θ = 1√
2
.

• Using the angle-preserving nature of the map T , show that

cos θ =
‖f1‖2

2

‖f1‖2

√
‖f1‖2

2 + ‖f2‖2
2

= 1√
2
,

hence deduce that ‖f1‖2 = ‖fk‖2, for all k = 1, · · · , n, and finally, deduce that

D = λI, for some scalar lambda.

• Conclude that T is a scalar multiple of an orthogonal matrix. Rule out improper
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rotations, such that T is a scalar multiple of a rotation matrix.

(b) Using the lemma from part (a), start with two curves x(t) and y(t) in R2, and let

g(x) be an angle-preserving map, such that

x̃(t) = g(x(t)) = (g1(x(t), y(t)), g2(x(t), y(t))) ,

and similarly for ỹ(t). We proceed as follows, where all calculations are performed

at a point of intersection of the two curves:

• Show that
d

dt
x̃(t) = Jẋ, J =

(
∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y

)
.

• Compute

cos θ̃ =
〈Jẋ, J ẏ〉
‖Jẋ‖2‖J ẏ‖2

.

Deduce, using the angle-preserving property of the map g, that J takes the

following form:

J = λ

(
cos Φ − sin Φ

sin Φ cos Φ

)
,

where λ is a scalar.

• Hence, show that the components of the map g satisfy the Cauchy–Riemann

conditions, and conclude the proof.

For part (a), choose an orthnormal basis ei, ane let fi = Tei Consider

fi · fj = ‖fi‖‖fj‖angle(fi,fj),

= ‖fi‖‖fj‖angle(ei, ej),

= ‖fi‖‖fj‖ei · ej,

= ‖fi‖‖fj‖δij,

= ‖fi‖2δij,

Hence, the fi’s are an orthogonal basis for Rn.
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Next, consider

Dij = (ei) · (Dej),

= eTi T
TTej,

= (Tei)
T (Tej),

= fi · fj,

= ‖fi‖2δij.

Consider

θ = angle(e1, e1 + ek), k 6= 1.

We have

e1 · (e1 + ek) = e1 · e1 + e1 · ek,

= 1,

= ‖e1‖2‖e1 + ek‖2 cos θ,

=
√
e2

1 + 2e1 · ek + e2
k cos θ,

=
√

2 cos θ,

hence

cos θ =
1√
2
.

However, using the angle-preserving map, we also have

θ = angle(f1,f1 + fk)

Also,

f1 · (f1 + f2) = f 2
1 = ‖f1‖2

2,

= ‖f1‖‖f1 + f2‖2 cos [angle(f1,f1 + fk)] ,

= ‖f1‖2‖f1 + fk‖2 cos θ,

= ‖f1‖2

√
f 2

1 + 2f1 · f2 + f 2
k cos θ,

= ‖f1‖2

√
‖f1‖2

2 + ‖fk‖2
2 cos θ,

hence

cos θ =
‖f1‖2

2

‖f1‖2

√
‖f1‖2

2 + ‖fk‖2
2

=
1√
2
.
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Tidy up this last result now to obtain

‖f1‖2√
‖f1‖2

2 + ‖fk‖2
2

=
1√
2
.

Square both sides:
‖f1‖2

2

‖f1‖2
2 + ‖fk‖2

2

= 1
2
.

Hence,

‖f1‖2
2 = 1

2
‖f1‖2

2 + 1
2
‖fk‖2

2,

hence

‖fk‖2
2 = ‖f1‖2

2, k = 2, · · · , n.

Hence, each fi-vector has the same length – say ‖fk‖2 = λ, for all k = 1, · · · , n, hence

Dij = λδij.

But D = T TT , hence

T TT = λI,

hence T is a constant times an orthogonal matrix. In order to rule out the possibility that

vectors are ‘flipped’ (i.e. θ → θ′ = −θ, but with cos θ′ = cos θ), we rule out improper

rotations, such that T must be a constant times a special orthogonal matrix, i.e. a constant

times a rotation matrix. This concludes the proof.

For Part (b), take x and x̃ to be column vectors, and start with

x̃(t) = g(x(t)) =

(
g1(x(t), y(t))

g2(x(t), y(t))

)
,

hence

d

dt
x̃(t) =

(
d
dt
g1(x(t), y(t))

d
dt
g2(x(t), y(t))

)
,

=

(
∂g1
∂x
ẋ+ ∂g1

∂y
ẏ

∂g2
∂x
ẋ+ ∂g2

∂y
ẏ

)
,

=

(
∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y

)(
ẋ

ẏ

)
,

:= Jẋ,
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where

J =

(
∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y

)
, ẋ =

d

dt

(
x

y

)
.

Thus, consider the point of intersection of two curves x(t) and y(t), such that

x(t0) = y(t0).

In the mapped space, we have

g(x(t0)) = g(y(t0)),

i.e.

x̃(t0) = ỹ(t0).

The unit tangent vectors of the mapped curves at the point of intersection are

t̃1 =
dx̃
dt

‖dx̃
dt
‖

=
Jẋ

‖Jẋ‖
, t = t0,

and

t̃2 =
dỹ
dt

‖dỹ
dt
‖

=
J ẏ

‖J ẏ‖
, t = t0.

hence the angle θ̃ between the tangent vectors in the mapped space is

cos θ̃ = t̃1 · t̃2.

Note that we must take Jẋ and J ẏ 6= 0. In addition, to construct tangent vectors to the original

curves x(t) and y(t), we must have ẋ and ẏ 6= 0 at the point of intersection. Thus, it is required

that the kernel of J should be trivial, in other words J should be an invertible map, hence

∂g1

∂x

∂g2

∂y
− ∂g1

∂y

∂g2

∂x
6= 0. (4.14)

But by the inverse function theorem, the condition for the vector-valued function to be invertible is

the non-vanishing of the determinant of the Jacobian. Since invertibility is assumed, condition (4.14)

is guaranteed.
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In any case, by the angle-preserving property, we have, at t = t0,

〈Jẋ, J ẏ〉
‖Jẋ‖2‖J ẏ‖2

= t̃1 · t̃2,

= cos θ̃,

= cos θ,

= t1 · t2,

=
〈ẋ, ẏ〉
‖ẋ‖2‖ẏ‖2

.

Thus, for the general point of intersection,

〈Jẋ, J ẏ〉
‖Jẋ‖2‖J ẏ‖2

=
〈ẋ, ẏ〉
‖ẋ‖2‖ẏ‖2

.

From Part (a) it follows that J is a constant times a rotation matrix:

J = λ

(
cos Φ − sin Φ

sin Φ cos Φ

)
,

hence

∂g1

∂x
= λ cos Φ,

∂g1

∂y
= −λ sin Φ,

∂g2

∂x
= λ sin Φ,

∂g2

∂y
= λ cos Φ.

Matching up the terms, we have

∂g1

∂x
=
∂g2

∂y
,

∂g1

∂y
= −∂g2

∂x
.

Hence, (g1(x, y), g2(x, y)) satisfies the Cauchy–Riemann conditions. Also, (g1(x, y), g2(x, y)) is

assumed to be smooth, hence all partial derivatives exist are continuous. Thus, the complex-valued

map

F (z) = g1(x, y) + ig2(x, y), z = x+ iy

is a holomorphic function. This completes the proof.
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As an aside, apply the Cauchy–Riemann conditions to Equation (4.14). Thus,(
∂g2

∂x

)2

+

(
∂g2

∂y

)2

6= 0,

and (
∂g1

∂x

)2

+

(
∂g1

∂y

)2

6= 0.

In other words, the condition for the angle-preserving map to be invertible boils down to

|∇g1|2 + |∇g2|2 6= 0.



Chapter 5

Laplace Transforms

We define the Laplace transform and specify the class of functions for which it exists. We demon-

strate how Laplace transforms can be inverted. The procedure for computing Laplace-transform and

inverse-Laplace-transform pairs is very similar to the analogous procedure in Fourier Analysis. Ex-

amples of these calculations are provided. The associated homework assignment show the range of

applications in which Laplace transforms can be used to reduce seemingly difficult calculus problems

into simple algebraic ones.

Overview

5.1 The Definition

In this Chapter, let

F : [0,∞) → C,

t 7→ F (t) (5.1)

be a complex-valued function of a real variable.

Definition 5.1 Let The function F (t) is at most exponentially diverging if there exist real

numbers (λ0,M > 0) such that

|e−λ0tF (t)| ≤M, as t→∞;

we call λ0 the divergence parameter.

90
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Definition 5.2 Let F (t) be at most exponentially diverging, with divergence parameter λ0. Laplace-

transform of F (t) is defined as follows:

F̂λ ≡ L(F ) :=

∫ ∞
0

e−λtF (t)dt, Re(λ) > λ0.

Theorem 5.1 The Laplace transform is linear, in the sense that

L(αF (t) + βG(t)) = αL(F ) + βL(G),

where α and β are complex constants and the functions F and G are functions of type (5.1) whose

Laplace transforms exist.

5.2 Simple examples

1. We compute the Laplace Transform of F (t) = ekt, with k > 0 real.

We have

F̂λ =

∫ ∞
0

e(k−λ)tdt,

= lim
L→∞

[
1

k − λ
(
e(k−λ)L − 1

)]
. (5.2)

Obviously, we need Re(λ) > k for this integral to exist, hence

F̂λ =
1

λ− k
, Re(λ) > k.

The transform has a simple pole at λ = k, which is connected to the failure of the integral (5.2)

to exist for Re(λ) sufficiently small. See Figure 5.1 for a sketch of the λ-domain where L(ekt)

is well-defined.

2. Consider F (t) = sinh kt, with k > 0 real. We compute the Laplce transform of F (t) as

follows:

L(ekt) =

∫ ∞
0

e(k−λ)t,

=
1

λ− k
, Re(λ) > k.
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Figure 5.1: Domain of existence of the complex Laplace transform of ekt.

Also,

L(e−kt) =

∫ ∞
0

e(−k−λ)tdt,

=
1

λ+ k
, Re(λ) > −k.

By linearity,

L(sinh kt) = 1
2

(
1

λ− k
− 1

λ+ k

)
, Re(λ) > k,

where the first inequality trumps the second one. Finally,

L(sinh kt) =
k

λ2 − k2
, Re(λ) > k.

3. Let F (t) = sin kt, with k > 0 real. We compute

L(eikt) =

∫ ∞
0

e(ik−λ)tdt,

= lim
L→∞

[
1

ik − λ
(
e(ik−λ)L − 1

)]
,

=
1

λ− ik
, Re(λ) > 0.

Similarly,

L(e−ikt) =
1

λ+ ik
, Re(λ) > 0.
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By linearity,

L(sin kt) = 1
2i

(
1

λ− ik
− 1

λ+ ik

)
, Re(λ) > 0,

=
k

λ2 + k2
, Re(λ) > 0.

Note that

lim
λ→0

F̂λ = 1/k.

Thus, we can assign a value to
∫∞

0
sin(kt) dt as∫ ∞

0

sin(kt)dt :=
1

k
, k 6= 0

in the sense of a limiting process determined by Laplace transforms.

4. Let F (t) = tn, where n = 0, 1, · · · is an integer. We have

F̂λ =

∫ ∞
0

e−λttndt,

=
1

λn+1

∫ ∞
0

e−ttndt, Re(λ) > 0,

=
n!

λn+1
.

5. Let F (t) = δ(t− t0), with t0 > 0. We have

F̂λ =

∫ ∞
0

eλtδ(t− t0)dt = eλt0 .

We take t0 ↓ 0 and define

L(δ(t)) = 1.

5.3 Inverting Laplace transforms

Let

F : [0,∞) → C,

t 7→ F (t)
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be a complex-valued function of a real variable, and moreover, let F (t) be at worst exponentially

diverging, with exponential parameter λ0. We re-write F (t) as

F (t) = eγtG(t),

where limt→∞G(t) = 0. Such a G-function exists; we take

G(t) = F (t)e−(λ0+ε)t,

for ε arbitrary and positive (hence, γ = λ0 + ε). We have

|G(t)| = |F (t)|e−λ0t−εt,

≤ Meλ0te−λ0t−εt, as t→∞,

≤ Me−εt,

→ 0, as t→∞.

Also, define G(t) = 0 for t < 0. It follows that G is L2 square integrable. Subject to the usual

further conditions on G (i.e. piecewise differentiable for t ∈ R), G can be written in Fourier

transform notation:

G(t) =

∫ ∞
−∞

dω

2π
eiωtĜω,

=

∫ ∞
−∞

dω

2π
eiωt

[∫ ∞
−∞

ds e−iωsG(s)

]
Multiply across by eγt:

eγtG(t) =
eγt

2π

∫ ∞
−∞

dω eiωt

[∫ ∞
−∞

ds e−iωsG(s)

]
,

F (t) =
eγt

2π

∫ ∞
−∞

dω eiωt

[∫ ∞
0

ds e−iωsF (s)e−γs
]
,

=
eγt

2π

∫ ∞
−∞

dω eiωt

[∫ ∞
0

ds e−λsF (s)

]
︸ ︷︷ ︸

=F̂λ

.

Let λ = γ + iω, hence ω = (λ− γ)/i.

F (t) =
eγt

2π

∫ ∞
−∞

(
dω eiωt

)
ω=λ−γ

i

F̂λ.
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Effecting the change of variables, this is

F (t) =
1

2π

∫ ∞
−∞

(
dω e(γ+iω)t

)
ω=λ−γ

i

F̂λ,

=
1

2πi

∫ γ+i∞

γ−i∞
dλ eλtF̂λ.

The contour

B = {z ∈ C|z = γ + iy, y ∈ R}

is called the Bromwich contour. It is sketched in Figure 5.2.

Figure 5.2: Definition sketch – the Bromwich contour

Suppose now that

lim
λ→∞
|eλtF̂λ| = 0, t > 0

and consider the contour C +B in Figure 5.3. For now, we consider the case where the singularities

of eλtF̂λ are poles; branch-cut singularities are considered on a case-by-case basis in the examples to

follow. Also, we use the notation C to denote the limiting contour associated with a semi-circle of

radius R centred at (γ, 0), with R→∞. In this limit, the semi-circle encloses all of the singularities

(poles) of F̂λ. Also,
∫
C eλtF̂λdλ = 0. Hence,

1

2πi

∫
C+B

eλtF̂λ =
∑

enclosed residues,

=
1

2πi

(∫
C

dλ+

∫
B

dλ

)
eλtF̂λ,

=
1

2πi

(
0 +

∫
B

dλ

)
eλtF̂λ.

Hence,

F (t) =
∑

enclosed residues, (5.3)

where ‘residues’ refers to the residues of eλtF̂λ in the half-plane to the left of the line Re(λ) = γ.
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Figure 5.3: Integration along the Bromwich contour using the Residue Theorem

5.4 Examples of Laplace-Transform inversion

1. Let f(λ) = k/(λ2 − k2), with k > 0 real. If f(λ) is a Laplace transform, compute the

generating function of the transform.

We compute

F (t) =
1

2πi

∫
B

keλt

λ2 − k2
dλ,

where B is the Bromwich contours: it is a straight line parallel to the imaginary axis to the

right of the singularities of the integrand

keλt

λ2 − k2
. (5.4)

Since the singularites of Equation (5.4) are λ = ±k, the Bromwich contour is

B = {z ∈ C|z = (k + ε) + iy, y ∈ R, ε > 0}.
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Using the residue theorem, we have

F (t) = Res

(
keλt

λ2 − k2
, k

)
+ Res

(
keλt

λ2 − k2
,−k

)
= lim

λ→k

[
(λ− k)

keλt

λ2 − k2

]
+ lim

λ→−k

[
(λ+ k)

keλt

λ2 − k2

]
= 1

2

(
ekt − e−kt

)
= sinh(kt),

in agreement with Example 2 in Section 5.1.

2. Let f(λ) = λ−1/2 be the Laplace transform of a function. Find the generating function.

The function f(λ) has a branch cut along the curve

{z = x+ 0iy|x ≤ 0}.

Consider the closed contour C shown in Figure 5.4. Since C encloses no singularities, we have

Figure 5.4: Integration along the Bromwich contour for a function with branch cut along the negative
real axis

∫
C

eλt

λ1/2
dλ = 0.

Moreover, the contour C can be regarded as being made up of many parts:
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• The Bromwich contour;

• A small semi-circle of radius ε centred at zero.

• The lines surrounding the branch cut.

• Semi-circular parts (centred at zero) of radius R, with R→∞.

• Small linear parts with z = x± iR, and x ∈ [0, 2ε] (say).

We consider these parts separately now, starting with the semi-circle of radius ε. This evaluates

to ∫ π/2

−π/2
(ε i dθ)

eεt cos θ+iεt sin θ

ε1/2eiθ/2
,

which vanishes as ε1/2 as ε→ 0. Also, the semi-circular parts of radius R contain contributions

such as ∫
(R i dθ)

eRt cos θ+iRt sin θ

R1/2eiθ/2
.

The limits of integration are unspecified; however, they are in the second and third quadrants

where cos θ < 0. Thus, these contributions vanish as

R1/2e−Rα, α ∈ R+,

as R→ 0 (we take t > 0). The linear parts vanish similarly. It follows then that

F (t) =
1

2πi

∫
B

eλt

λ1/2
dλ = − 1

2πi

(∫
L1

dλ+

∫
L2

dλ

)
eλt

λ1/2
, (5.5)

where L1 and L2 are the contributions from the linear contours surrounding the branch cut.

Consider the integral along L1. We have

λ = |λ|e+iπ,

= (−x)e+iπ,

λ1/2 = (−x)1/2eiπ/2 = i(−x)1/2

We also have λ = x on L1, and we use whichever form is convenient in the following string

of relations: ∫
L1

eλt

λ1/2
dλ =

∫ 0

−∞

ext

(−x)1/2i
dx,

=
1

i

∫ ∞
0

e−yt

y1/2
dy.
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Let X = (ty)1/2 to get ∫
L1

eλt

λ1/2
dλ =

2

it1/2

∫ ∞
0

e−X
2

dX,

=
2

i

(
1
2

√
π/t
)
,

=
1

i

√
π/t.

We make similar arguments for the second linear contour, L2. We have

λ = |λ|e−iπ,

= (−x)e−iπ,

λ1/2 = (−x)1/2e−iπ/2.

We also have λ = x on L2. Hence,∫
L2

eλt

λ1/2
dλ =

∫ −∞
0

ext

(−x)1/2e−iπ/2
dx,

=
1

i

∫ ∞
0

e−yt

y1/2
dy,

=
1

i

√
π/t.

Starting with Equation (5.6), we assemble the results as follows:

F (t) = − 1

2πi

(∫
L1

dλ+

∫
L2

dλ

)
eλt

λ1/2
= − 1

2πi

(
2

i

√
π/t

)
=

1√
πt
.

5.5 Laplace transforms – further properties

Throughout this section, let (F (t), F̂λ) be a valid Laplace-transform pair:

F̂λ =

∫ ∞
0

F (t)e−λtdt, F (t) =
1

2πi

∫
B
F̂λe

λt,

where B is the Bromwich contour.

Theorem 5.2 (Substitution) Let a ∈ C, and let f(λ) := F̂λ denote the Laplace transform of the

function F . Then

f(λ− a) = L
(
eatF (t)

)
.
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Proof: By direct calculation we have

f(λ− a) = F̂λ−a,

=

∫ ∞
0

e−(λ−a)tF (t)dt,

=

∫ ∞
0

e−λt
[
eatF (t)

]
dt,

= L
(
eatF (t)

)
.

Theorem 5.3 (Translation) Let a be a real positive number and let f(λ) := F̂λ. Then

e−bλf(λ) =

∫ ∞
0

e−λtF (t− b)H(t− b)dt,

where H(·) is the unit step function,

H(x) =

1, x > 0,

0, x < 0.

Proof: We have

e−bλf(λ) =

∫ ∞
0

e−bλe−λtF (t) dt,

=

∫ ∞
0

e−(b+t)λF (t) dt.

Let τ = b+ t, with τlw = b and τup =∞. Hence,

e−bλf(λ) =

∫ ∞
b

e−λτF (τ − b) dτ.

However, consider

F (τ − b)H(τ − b) =

F (τ − b), τ > b

0, τ < b.

Hence,

e−bλf(λ) = 0×
∫ b

0

e−λτF (τ − b) dτ + 1×
∫ ∞
b

e−λτF (τ − b) dτ

=

∫ ∞
0

e−λτF (τ − b)H(τ − b) dτ.

Theorem 5.4 (Differentiation in real space) F (t) be a C1 function of t, with F and its deriva-



5.5. Laplace transforms – further properties 101

tive at worst exponentially diverging. Then ̂(dF/dt)λ exists and

(̂
dF

dt

)
λ

=

∫ ∞
0

λe−λtF (t)dt− F (0).

Proof: By assumption, dF/dt is at worst exponentially diverging, and its Laplace transform exists,

at least for appropriate λ-values. Also by definition,

(̂
dF

dt

)
λ

=

∫ ∞
0

e−λt
dF

dt
dt,

=

∫ ∞
0

[
d

dt

(
e−λtF

)
+ λe−λtF

]
dt,

= lim
L→∞

e−λLF (L)− F (0) +

∫ ∞
0

λe−λtF (t)dt.

For Re(λ) sufficiently large and positive, the limiting boundary term vanishes, and

(̂
dF

dt

)
λ

=

∫ ∞
0

λe−λtF (t)dt− F (0),

as required.

Theorem 5.5 (Differentiation in transform space) F (t) be piecewise differentiable with respect

to t. Then f(λ) := F̂λ is differentiable with respect to λ and, moreover,

f ′(λ) = L (−tF (t)) .

Proof: For suitable λ, the integral

f(λ) =

∫ ∞
0

e−λtF (t)dt

is well-defined and is uniformly convergent and may be differentiated under the integral sign with



102 Chapter 5. Laplace Transforms

respect to λ. We compute:

f ′(λ) =
d

dλ

∫ ∞
0

e−λtF (t)dt,

=

∫ ∞
0

[
∂

∂λ
e−λt

]
F (t)dλ,

=

∫ ∞
0

e−λt [−tF (t)] dt,

= L (−tF (t)) .

Definition 5.3 (Convolution) Let F (t) and G(t) be at-worst exponentially diverging. The con-

volution of F and G is defined as

(F ∗G)(t) =

∫ t

0

F1(t− τ)F2(τ)dτ.

Theorem 5.6 (by Faltung) Let F (t) and G(t) be at-worst exponentially diverging, with Laplace

transforms F̂λ and Ĝλ respectively. Then

F̂λĜλ = L [(F ∗G)(t)]

Proof: By direct computation, we have

F̂λĜλ =

∫ ∞
0

e−λtF (t) dt

∫ ∞
0

e−λsG(s) ds.

We first of all re-write the integral as follows:

F̂λĜλ = lim
L→∞

∫ L

0

e−λtF (t)dt

∫ L

0

e−λsG(s) ds.

The trick is to re-write this further as

F̂λĜλ = lim
L→∞

∫ L

0

e−λtF (t) dt

∫ L−t

0

e−λsG(s) ds.

In fact, we have changed the region of integration from an L× L square to a triangle with vertices

at (0, 0), (0, L), and (L, 0). However, leaving out half the domain of integration does not matter, as

the omitted region is ‘filled in’ as L→∞ (e.g. Figure 5.5). Now, we proceed by direct calculation.

We want only one free variable in the exponential argument. We do not modify the variable s;

instead we define

t+ s = τ =⇒ t = s− τ
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Figure 5.5: Sketch for the change-of-variables in the Convolution Theorem

Again referring to Figure 5.5, we have

• Line Segment 1 (s = 0) is mapped to s = 0;

• Line Segment 2 (s = L− t) implies that τ = t+ (L− t) = L (constant); hence line-segment

2 is mapped to a vertical line segment passing through τ = L.

• The condition on Line Segment 3 (t = 0) implies s = τ , hence line segment 3 is mapped to

the straight line of slope 45o passing through the origin.

Also, consider the transformation, expressed correctly here as

τ = t+ s,

s′ = s,

with inverse

t = τ − s′,

s = s′.

We have

dt ds =

∣∣∣∣∣ ∂t
∂τ

∂t
∂s′

∂s
∂τ

∂s′

∂s

∣∣∣∣∣︸ ︷︷ ︸
=J

dτ ds′.

J =

∣∣∣∣∣ 1 −1

0 1

∣∣∣∣∣ = 1,
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hence

dt ds = dτ ds′.

Putting it all together, we have

F̂λĜλ = lim
L→∞

∫ L

0

e−λtF (t) dt

∫ L−t

0

e−λsG(s) ds,

= lim
L→∞

∫ L

0

dt

∫ L−t

0

ds e−λtF (t)e−λsG(s),

= lim
L→∞

∫ L

0

dτ

∫ τ

0

ds F (τ − s)e−λ(τ−s)G(s)e−λs,

= lim
L→∞

∫ L

0

dτ e−λτ
∫ τ

0

ds F (τ − s)G(s),

=

∫ ∞
0

dτ e−λτ
[∫ τ

0

ds F (τ − s)G(s)

]
,

=

∫ ∞
0

dτ e−λτ (F ∗G)(τ),

= L[(F ∗G)(τ)].

Example

Compute the inverse transform of

f(λ) =
1− e−aλ

λ
, a ∈ R+.

We break it up into two parts. Consider

I1 =
1

2πi

∫
B

eλt

λ
dλ.

The Bromwich contour is a straight line parallel to the imaginary axis passing through z = 0 + iε,

with ε ↓ 0. The integrand has a single simple pole at λ = 0, with

Res

(
eλt

λ
, 0

)
= 1.

Hence,

I1 = 1, t > 0.

On the other hand, if t < 0, to get a convergent integral we would have to close the contour by

forming a semi-circle on the right of the Bromwich line. However, such a contour encloses no

singularities, hence

I1 = 0, t < 0.
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We do the second integral by considering

I2 =
1

2πi

∫
B

e(t−a)λ

λ
dλ.

The integrand is
eλr(t−a)eλi(t−a)

λ

The Bromiwch contour is the same as before. For the B-contour given there are two possibilities:

1. t− a > 0 – chose λr < 0 – close the contour on the left. Thus, a contribution to the integral

is picked up from the pole at λ = 0.

2. t−a < 0 – chose λr > 0 – close the contour on the right. Thus, there are no pole-contributions

to the integral and the integral vanishes.

In other words,

I2 =

1, if t > a,

0, if t < 1.

Finally, the answer is

F (t) = H(t)−H(t− a).

However, from a sketch, this can be seen to be a top-hat function:

F (t) =


0, if t < 0,

1, if 0 < t < a,

0, if t > a.

There is another way of getting at the second integral I2. From the translation theorem, we have

e−aλφ̂λ =

∫ ∞
0

e−λtφ(t)H(t− a)dt,

Taking φ(t) = H(t), with φ̂λ = 1/λ, we have

e−aλ

λ
=

∫ ∞
0

e−λtH(t)H(t− a)dt,

=

∫ ∞
0

e−λtH(t− a)dt.

Hence, the Laplace transform of H(t− a) is e−aλ/λ, hence

1

2πi

∫
B

(
e−aλ

λ

)
eλtdλ = H(t− a),
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as computed already, using a direct approach.

5.6 Worked example

Let f(λ) = λ−1/p be the Laplace transform of a function, where p ∈ {2, 3, · · · } is an integer.

Find the generating function.

The function f(λ) has a branch cut along the curve

{z = x+ 0iy|x ≤ 0}.

Consider the closed contour C shown previously in Figure 5.4. Since C encloses no singularities, we

have ∫
C

eλt

λ1/p
dλ = 0.

Moreover, the contour C can be regarded as being made up of many parts:

• The Bromwich contour;

• A small semi-circle of radius ε centred at zero.

• The lines surrounding the branch cut.

• Semi-circular parts (centred at zero) of radius R, with R→∞.

• Small linear parts with z = x± iR, and x ∈ [0, 2ε] (say).

We consider these parts separately now, starting with the semi-circle of radius ε. This evaluates to∫ π/2

−π/2
(ε i dθ)

eεt cos θ+iεt sin θ

ε1/peiθ/p
,

which vanishes as ε1−(1/p) = ε(p−1)/p as ε → 0. Also, the semi-circular parts of radius R contain

contributions such as ∫
(R i dθ)

eRt cos θ+iRt sin θ

R1/peiθ/p
.

The limits of integration are unspecified; however, they are in the second and third quadrants where

cos θ < 0. Thus, these contributions vanish as

R(p−1)/pe−Rα, α ∈ R+,
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as R→ 0 (we take t > 0). The linear parts vanish similarly. It follows then that

F (t) =
1

2πi

∫
B

eλt

λ1/p
dλ = − 1

2πi

(∫
L1

dλ+

∫
L2

dλ

)
eλt

λ1/p
, (5.6)

where L1 and L2 are the contributions from the linear contours surrounding the branch cut.

Consider the integral along L1. We have

λ = |λ|e+iπ,

= (−x)e+iπ,

λ1/p = (−x)1/peiπ/p.

We also have λ = x on L1, and we use whichever form is convenient in the following string of

relations: ∫
L1

eλt

λ1/p
dλ =

∫ 0

−∞

ext

(−x)1/peiπ/p
dx,

= e−iπ/p

∫ ∞
0

e−yt

y1/p
dy.

Let y = z2, with dy = 2z dz. Then,∫ ∞
0

e−yt

y1/p
dy = 2

∫ ∞
0

e−z
2t

z2/p
z dz,

= 2

∫ ∞
0

e−z
2tz1−2/pdz,

= 2

∫ ∞
0

z2ne−z
2tdz, n = 1

2
− 1

p
,

=
Γ(n+ 1

2
)

tn+(1/2)
,

= Γ(1− 1
p
)t−(1−(1/p)),

= Γ(1− 1
p
)
t1/p

t
.

Whew!

Next, consider the integral along L2. We have

λ = |λ|e−iπ,

= (−x)e−iπ,

λ1/p = (−x)1/pe−iπ/p.
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We also have λ = x on L2. Hence,∫
L2

eλt

λ1/2
dλ =

∫ −∞
0

ext

(−x)1/pe−iπ/p
dx,

= −eiπ/p

∫ ∞
0

e−yt

y1/p
dy.

Putting it all together and using Equation (5.6), we get

F (t) = − 1

2πi

(∫
L1

dλ+

∫
L2

dλ

)
eλt

λ1/2
,

= − 1

2πi

(
e−iπ/p − eiπ/p

)
Γ
(

1− 1
p

) t1/p
t
,

=
Γ
(

1− 1
p

)
π

sin(π/p)
t1/p

t
.

But

Γ(x)Γ(1− x) =
π

sin πx
.

Hence,
sin πx

π
=

1

Γ(x)Γ(1− x)

Take x = 1/p to obtain

F (t) = Γ
(

1− 1
p

) sin(π/p)

π

t1/p

t
,

= Γ
(

1− 1
p

) 1

Γ(1/p)Γ(1− (1/p))

t1/p

t
,

=
1

Γ(1/p)

t1/p

t
.

Check against standard formula:

t̂1/n =
Γ(1 + (1/n))

λ(1/n)+1
,

1

Γ(1 + (1/n))
t̂1/n =

1

λ(1/n)+1
,

Take (1/n) + 1 = 1/p, hence 1/n = (1/p)− 1, hence

1

Γ(1/p)
̂t(1/n)−1 =

1

λ(1/p)
,

and our result is confirmed.



Chapter 6

The steepest-descent method

Overview

The solution to many problems in Applied Mathematics and Mathematical Physics can be written as

an integral involving a parameter. Typically, these integrals are difficult if not impossible to evaluate.

However, generic techniques exist to evaluate these integrals in the limit of large parameter values.

The first such technique is called Laplace’s method, and the same method, applied to complex

parameters, is called the saddle-point or steepest-descent method. Both techniques are discussed

here, with the complex case following naturally from the simpler real case.

6.1 Laplace’s asymptotic method for integrals

The idea of this method is to find asymptotic expressions for integrals such as

I(λ) =

∫ b

a

F (t)e−λg(t)dt, as λ→∞. (6.1)

Here, λ is a real parameter, and the function g attains a strict minimum at c in the interior of

[a, b], such that

• g′(c) = 0,

• g′′(c) > 0,

• F (t) is continuous, with F (t) 6= 0.

We rewrite Equation (6.1) as

I(λ) = e−λg(c)
∫ b

a

F (t)e−λ[g(t)−g(c)]dt (6.2)

109
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The main idea of Laplace’s method is to observe that as λ→∞, the dominant contribution to the

integral (6.2) comes from a small neighbourhood of the minimum at x = c. Looked at in another

way, the argument of the exponential

−λ[g(t)− g(c)]

is negative or zero. At large λ, and for t 6= c, the phase is very negative and e(argument) is small and

does not contribute. Thus,

I(λ) ∼ e−λg(c)
∫ c+ε

c−ε
F (t)e−λ[g(t)−g(c)]dt as λ→∞,

where ε is a small positve number. We compute the integral as follows:

I(λ) ∼ e−λg(c)
∫ c+ε

c−ε
F (t)e−λ[g(t)−g(c)]dt as λ→∞,

≈ e−λg(c)
∫ c+ε

c−ε
F (t)e−λ(1/2)g′′(c)(t−c)2dt,

≈ e−λg(c)F (c)

∫ c+ε

c−ε
e−λ(1/2)g′′(c)(t−c)2dt.

The integrand is now a pure Gaussian integral, whose width is proportional to λ−1/2. Thus, the

Gaussian integrand is approximately zero outside of the small region [c − ε, c + ε], and we can

therefore extend the limits of integration, incurring only vanishing errors in the process:

I(λ) ≈ e−λg(c)F (c)

∫ ∞
−∞

e−λ(1/2)g′′(c)(t−c)2dt as λ→∞,

= e−λg(c)F (c)

√
2π

λg′′(c)

Thus,

I(λ) ∼ e−λg(c)F (c)

√
2π

λg′′(c)
as λ→∞, (6.3)

and the leading-order behaviour of Equation (6.1) is captured.

Modification – minimum attained at boundary

Suppose that g(t) attains its minimum at t = a (i.e. a = c). We rewrite Equation (6.1) as

I(λ) = e−λg(a)

∫ b

a

F (t)e−λ[g(t)−g(a)]dt (6.4)
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Again by the argument where the ‘phase’ is minimized, the integral is approximated by

I(λ) ∼ e−λg(a)

∫ a+ε

a

F (t)e−λ[g(t)−g(a)]dt

Proceeding as before, we have

I(λ) ∼ e−λg(a)F (a)

∫ a+ε

a

e−λ(1/2)g′′(a)(t−a)2dt,

= e−λg(a)F (a)

∫ ε

0

e−λ(1/2)g′′(a)τ2dτ,

∼ e−λg(a)F (a)

∫ ∞
0

e−λ(1/2)g′′(a)τ2dτ as λ→∞,

= 1
2
e−λg(a)F (a)

√
2π

λg′′(a)
,

hence

I(λ) ∼ e−λg(a)F (a)

√
π

2λg′′(a)
as λ→∞,

Example: Evaulate

I(λ) =

∫ 1

−1

sin t

t
e−λ cosh tdt,

as t→∞.

We identify g(t) = cosh t. This has a global minimum at t = c = 0, contained entirely in the

domain of integration. Also, F (t) := sin(t)/t is continuous, provided we take F (0) = 1, consistent

with L’Hôpital’s Rule. Finally, g′′(t) = cosh(t), hence g′′(0) = 1. We read off the answer directly

from the formula (6.3):

I(λ) ∼ e−λ
√

2π

λ
as λ→∞.
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6.2 Stirling’s Approximation

We show that

n! ∼
√

2πnn+1/2e−n as n→∞.

We start with the integral definition of the factorial function:

n! =

∫ ∞
0

tne−tdt

=

∫ ∞
0

en log te−tdt,

=

∫ ∞
0

en log t−tdt,

=

∫ ∞
0

en(log t−t/n)dt,

= n

∫ ∞
0

en(log(nz)−z)dz, z = t/n,

= nen logn

∫ ∞
0

en(log z−z)dz,

= nn+1

∫ ∞
0

en(log z−z)dz.

We now consider the asymptotic integral

I(n) =

∫ ∞
0

e−n(z−log z)dz.

We identify F (z) = 1 and g(z) = z− log z. The g-function has a minimum at z = 1, with g(1) = 1

and g′′(1) = 1. This is clearly a minimum, as g(z)→∞ as z → 0 and as z →∞. Thus, Laplace’s

method applies, and

I(n) ∼ e−n
√

2π

n
as n→∞.

Putting it all together,

n! ∼
√

2πnn+1/2e−n as n→∞.

6.3 Higher-order approximations

In order for Laplace’s method to work, we required that F (c) 6= 0 at the location of the (strict)

minimum t = c. However, this condition can be lifted quite readily, provided F (c) is differentiable.
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As before, we start with Equation (6.1) and re-write it as

I(λ) = e−λg(a)

∫ b

a

F (t)e−λ[g(t)−g(a)]dt (6.5)

The dominant contribution to the integral comes from a small neighbourhood of the strict minimum

t = c (with g′(c) = 0 and g′′(c) > 0). Thus, the equation is re-written further as

I(λ) ∼ e−λg(c)
∫ c+ε

c−ε
F (t)e−λ[g(t)−g(c)]dt as λ→∞.

We exapnd F (t) and g(t) in Taylor series centred at t = c:

I(λ) ∼ e−λg(c)
∫ c+ε

c−ε
F (t)e−λ[g(t)−g(c)]dt as λ→∞,

≈ e−λg(c)
∫ c+ε

c−ε

[
F (c) + F ′(c)(t− c) + 1

2
F ′′(c)(t− c)2

]
e−λ(1/2)g′′(c)(t−c)2dt.

As before, the Gaussian factor e−λg
′′(c)(t−c)2 has width proportional to λ−1/2, and hence contributions

to the integral from regions outside of [c− ε, c+ ε] are vanishingly small. Thus,

I(λ) ∼ e−λg(c)
∫ ∞
−∞

[
F ′(c)(t− c) + 1

2
F ′′(c)(t− c)2

]
e−λ(1/2)g′′(c)(t−c)2dt as λ→∞.

Change variables: τ = t− c:

I(λ) ∼ e−λg(c)
∫ ∞
−∞

[
F ′(c)τ + 1

2
F ′′(c)τ 2

]
e−λ(1/2)g′′(c)τ2dτ as λ→∞,

= e−λg(c)F ′(c)

∫ ∞
−∞

τe−λ(1/2)g′′(c)τ2 dτ + 1
2
e−λg(c)F ′′(c)

∫ ∞
−∞

τ 2e−λ(1/2)g′′(c)τ2 dτ,

= 1
2
e−λg(c)F ′′(c)

∫ ∞
−∞

τ 2e−λ(1/2)g′′(c)τ2 dτ,

= 1
2
e−λg(c)F ′′(c) [λg′′(c)/2]

−3/2

∫ ∞
−∞

s2e−s
2

ds,

But consider

J(γ) =

∫ ∞
−∞

e−γs
2

ds =
√
π/γ.

Hence,

−dJ
dγ

= 1
2

√
πγ−3/2 =

∫ ∞
−∞

s2e−γs
2

ds.

Set γ = 1 to obtain

1
2

√
π =

∫ ∞
−∞

s2e−s
2

ds,
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hence

I(λ) ∼ 1
4

√
πe−λg(c)F ′′(c) [λg′′(c)/2]

−3/2
.

Tidying up, this is

I(λ) ∼ F ′′(c)e−λg(c)

√
π/2

[λg′′(c)]3
as λ→∞.

6.4 The method of steepest descents

In this section, we are interested in integrals of the form

I(λ) =

∫
C

f(z)eλg(z) dz, (6.6a)

where f(z) and g(z) are non-constant and analytic for all z ∈ C, and where C is some contour in

the complex plane. Call

F : C× R → C,

(z, λ) 7→ f(z)eλg(z). (6.6b)

Because F (z, ·) is analytic, it admits no poles or branch cuts. Hence, Equation (6.6a) admits no

contributions from the Residue Theorem, or from other applications of Cauchy’s Integral Theorem.

Moreover, |F (z)| has no maxima in the complex plane, and therefore the contributions to the

integral (6.6a) come neither from singularities nor maxima. Indeed, we have the following result:

Theorem 6.1 (Jensen) Let φ(z) : C → C be non-constant and analytic in the entire complex

plane. Then |φ(z)|2 has no maxima and, moreover, its minima extend down to zero.

We now consider the integral in Equation (6.6a). It turns out that the next feature to provide a

dominant contribution to the integral (6.6a) is the saddle point. We first of all demonstrate this

result for the test case g(z) = a + (1/2)bz2, with f(0) 6= 0, and then proceed to the general case

where g(z) admits a saddle point at z0, g′(z0) = 0.

Test case

We start with

g(z) = a+ 1
2
bz2, f(0) 6= 0,

where F (z, λ) = f(z)eλg(z). We assume that the contour C is open with endpoints at α and β

(the endpoints can be located at infinity). It is a straightforward consequence of Cauchy’s integral
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theorem that ∫
C

(· · · )dz =

∫
C′

(· · · )dz

where the contour C ′ is a deformation of the contour C that leaves the endpoints unchanged. The

switch to the new contour is legitimate provided that we do not traverse any singularities of the

integrand in doing the deformation. Because F (z, λ) is assumed to be analytic, this deformation is

always legitimate in the framework in which we work.

We note that g(z) has a regular saddle point at z = z0 := 0: g′(z0) = 0, with g′′(z0) 6= 0. We

simply choose the contour C ′ such that

• C ′ passes through z0;

• The curve C ′ is defined such that

gi(z) = Const. = gi(z0),

as C ′ passes through z0 (curve of constant phase).

But

gr(z) = ar + 1
2

[
br

(
x2 − y2

)
− 2bixy

]
,

gi(z) = ai + 1
2

[
bi

(
x2 − y2

)
+ 2brxy

]
,

and z0 = (x0, y0) = 0, hence gi(z0) = ai, which defines at least a portion of the curve C ′ as

bi

(
x2 − y2

)
+ 2brxy = 0.

Hence,

y =
xbr ± |x||b|

bi

.

All possibilities for the precise definition of the curve are enumerated by the following two cases:

y =
x(|b|+ br)

bi

, y = −x(|b| − br)

bi

. (6.7)
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For, consider[
y − x

bi

(|b|+ br)

] [
y +

x

bi

(|b| − br)

]
= y2 +

yx

bi

(|b| − br − |b| − br)−
x2

b2
i

(|b|+ br) (|b| − br)

= y2 − 2

(
br

bi

)
xy − x2

b2
i

(
|b|2 − b2

r

)
= y2 − 2

(
br

bi

)
xy − x2

= − 1

bi

[
bi(x

2 − y2) + 2brxy
]
,

Upon setting the left-hand side to zero, the original definition of the curve is recovered. Furthermore,

the two lines in Equation (6.7) are orthogonal. For, consider y1 = x(|b|+ br)/bi and y2 = −x(|b| −
br)/bi, with slopes m1 = (|b|+ br)/bi and m2 = −(|b| − br)/bi respectively. Then

m1m2 =
−(|b|+ br)(|b| − br)

b2
i

,

=
−(|b|2 − b2

r )

b2
i

,

= −1.

We shall show that these lines correspond to the so-called lines of steepest descent and ascent (in

no particular order) in what follows.

It now remains to choose the appropriate case from Equation (6.7). We have

gr(z) = ar + 1
2

[
br(x

2 − y2)− 2bixy
]
,

= ar + 1
2

[
−2br

(
br

bi

)
xy − 2bixy

]
,

= ar − xy
(
b2

r + b2
i

bi

)
,

= ar − x2

(
b2

r + b2
i

b2
i

)(|b|+ br),

−(|b| − br)
.

We have

gr,xx(z0) = −2

(
b2

r + b2
i

b2
i

)(|b|+ br), case 1

−(|b| − br), case 2
.

and we choose case 1, such that

gr,xx(z0) = −2

(
b2

r + b2
i

b2
i

)
(|b|+ br), (6.8)

which forces g′′r (z0) < 0, thereby making x = 0 into a maximum. In more detail then, the contour
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C ′ is chosen such that

• C ′ passes through z0;

• The curve C ′ is defined such that

gi(z) = Const. = gi(z0),

as C ′ passes through z0 (curve of constant phase), and gr(z) appears to attain a maximum

along C ′.

We note that superficially gr(z) attains a maximum along C ′. However, i in the full complex-analytic

landscape, this point is a saddle point. The (case 1) path dy/dx = (|b|+ br)/bi is called the curve

of steepest descent: among all possible curves through z0,the decrease in gr(z) m away from z0

is the most rapid along the curve of steepst descent.

We now conclude the derivation: C ′ has been chosen to make the integral∫
C′
f(z)eλg(z)dz

‘look like’ the integral in Laplace’s method. Thus, we now perform straightforward calculations in

the spirit of Section 6.1: we set gi(z) = constant and pick up a contribution to the integral only in

the neighbourhood of the C ′-maximum, at z0 = 0:∫
C′
f(z)eλg(z)dz = egi(z)

∫ z0+ηε

z0−ηε
f(z)eλgr(z)dz.

where η is a constant phase determined from Equation (6.8). We compute:∫
C′
f(z)eλg(z)λdz ∼ f(z0)eigi(z0)λ

∫ z0+ηε

z0−ηε
eλgr(z)dz,

where ε is a positive constant. We now change over to the real x-variable, thereby enabling us to

invoke the arguments in Laplace’s method. We have

dz =
dz

dx
dx,

=

(
1 + i

dy

dx

)
dx,

=

(
1 + i

|b|+ br

bi

)
dx.
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Hence, ∫
C′
f(z)eλg(z)λdz ∼ f(z0)eigi(z0)λ

∫ z0+ηε

z0−ηε
eλgr(z)dz,

= f(z0)eigi(z0)λ

(
1 + i

|b|+ br

bi

)∫ x0+δ

x0−δ
eλgr(x)dx,

where x0 = 0, and where δ is a second positive constant. We also have – by construction, gr,xx(x0) <

0. Hence,∫
C′
f(z)eλg(z)λdz ∼ f(z0)eigi(z0)λ

(
1 + i

|b|+ br

bi

)∫ x0+δ

x0−δ
eλgr(x)dx,

= f(z0)eigi(z0)λ

(
1 + i

|b|+ br

bi

)∫ x0+δ

x0−δ
eλ[gr(x0)+gr,x(x0)(x−x0)+(1/2)gr,xx(x−x0)2]dx,

= f(z0)eigi(z0)λ

(
1 + i

|b|+ br

bi

)
egr(x0)λ

∫ x0+δ

x0−δ
eλgr,xx(x−x0)2/2dx,

= f(z0)eg(z0)λ

(
1 + i

|b|+ br

bi

)∫ x0+δ

x0−δ
e−λ|gr,xx|x

2/2dx,

The calculation continues as follows:∫
C′
f(z)eλg(z)dz ∼ f(z0)eλg(z0)

(
1 + i

|b|+ br

bi

)∫ δ

−δ
e−λ|gr,xx(x0)|x2/2dx,

=
f(z0)eλg(z0)√
λ|gr,xx(x0)|/2

(
1 + i

|b|+ br

bi

)∫ +δ|gr,xx(x0)|1/2λ1/2/
√

2

−δ|gr,xx(x0)|1/2λ1/2/
√

2

e−s
2

ds,

∼ f(z0)eλg(z0)√
λ|gr,xx(0)|/2

(
1 + i

|b|+ br

bi

)∫ ∞
−∞

e−s
2

ds,

=

√
2π

|gr,xx(0)|λ
f(z0)eλg(z0)

(
1 + i

|b|+ br

bi

)
. (6.9)

There remains one further calculation:

1√
|gr,xx(0)|

(
1 + i

|b|+ br

bi

)
=

1√
|gr,xx(0)|

[
2|b|

(
|b|+ br

b2
i

)]1/2

eiθ

where m1 = dy1/dx = (|b|+br)/bi = tan θ and θ is the angle of the line of steepest descent relative
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to the x-axis. Thus,

1√
|gr,xx(0)|

(
1 + i

|b|+ br

bi

)
=

1[
2 |b|

2

b2i
(|b|+ br)

]1/2

[
2|b|

(
|b|+ br

b2
i

)]1/2

eiθ,

=
1√
|b|

eiθ =
1√
|gzz(z0)|

eiθ.

Thus, Equation (6.9) becomes

∫
C

f(z)eλg(z)dz =

∫
C′
f(z)eλg(z)dz ∼ f(z0)eλg(z0)eiθ

√
2π

λ|gzz(x0)|
.

This concludes the derivation.

General case

In the general case, where g(z) is some generic analytic function with a saddle point at z0, the

results of the test case carry through directly. We expand g(z) in the neighbourhood of the saddle

point, writing

g(z) = g(z0) + 1
2
gzz(z0) (z − z0)2 +O

(
(z − z0)3

)
,

where gz(z0) = 0. The results of the previous section carry over directly, and the formula

∫
C

f(z)eλg(z)dz ∼ f(z0)eλg(z0)eiθ

√
2π

λ|gzz(x0)|
. (6.10)

is preserved. The curve of steepest descent is still the path Im(g(z)) = Im(g(z0)), which in the

neighbourhood of the saddle point, still resembles the line dy/dx = tan θ, where tan θ = (|b|+br)/bi,

and where b = gzz(z0) as before.
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6.5 Worked examples

1. Consider the Fresnel integral

F (x) = C(x) + iS(x) =

∫ x

0

eit2dt.

Compute the asymptotic (x→∞) leading-order behaviour in two different ways: first by

direct evaluation of ∫ x

0

eit2dt

using Cauchy’s integral theorem and a contour like that in Figure 6.5. In the second way,

consider the integral ∫ 1

0

eixt2dt

and apply the saddle-point method.

For the first method, we consider the contour C, taken in the anticlockwise sense. This

contour encloses no singularities of eit2 , hence∫
C

eit2dt = 0.

Consider the segment of C consisting of t = eiθ0s, with s ∈ [R, 0] (direction implied). We

have

eit2 = ei(cos 2θ0+i sin 2θ0)s2 = ei cos 2θ0e− sin 2θs2 .

Choose 2θ0 = π/2, hence θ0 = π/4, hence eit2 = e−s
2
. Thus,

0 =

∫ R

0

eit2dt+

∫ π/4

0

eiz2
∣∣
z=Reiθ

Ridθ +

∫ 0

R

e−s
2

dseiθ0 . (6.11)
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Consider ∫ π/4

0

eiz2
∣∣
z=Reiθ

Rdθ =

∫ π/4

0

eiR2(cos 2θ+i sin 2θ)Rdθ,

=

∫ π/4

0

eiR2 cos 2θe−R
2 sin 2θRdθ.

Since 0 < sin 2θ < 1 on 0 < θ < π/4, we have e−R
2 sin 2θR → 0 on 0 < θ < π/4. Thus,

Equation (6.11) becomes

0 =

∫ R

0

eit2dt+ eiθ0

∫ 0

R

e−s
2

ds, as R→∞.

Hence, ∫ ∞
0

eit2dt = eiπ/4

∫ ∞
0

e−s
2

ds,

=
1 + i√

2

√
π

2
,

=

√
π

8
(1 + i).

Thus, C(x), S(x)→
√
π/8 as x→∞.

For the second approach, consider I =
∫ 1

0
eixt2dt along with the transformation xt2 = z2,

hence

I =
1

x1/2

∫ x1/2

0

eiz2dz =
F (x1/2)

x1/2
,

hence x1/2I = F (x1/2).

I =

∫ 1

0

eixt2dt =

∫ 1

0

eg(t)xdt,

with g(t) = it2. This function has a saddle point at t = 0. We choose a path t = αs with s

real such that

it2 = iα2s2 = −s2,

hence

iα2 = −1 =⇒ α2=i =⇒ α = eiπ/4.

Thus,

I = α

∫
e−xs

2

ds.

Care is needed now with the limits because the contour actually starts from the saddle point:

taking the limits on the integral to be ±∞ would mean that the integrand would sample parts
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of the complex plane beyond those implied by the original integration path. Hence,

I ∼ eiπ/4

∫ ∞
0

e−xs
2

ds, as x→∞,

= 1
2
eiπ/4

√
π/x,

So we are left with

I ∼ eiπ/4

√
π

2

1√
x
.

But I = F (
√
x)/
√
x, hence

eiπ/4

√
π

2

1√
x
∼ F (

√
x)/
√
x as x→∞,

hence

F (
√
x) ∼ 1

2
eiπ/4
√
π as x→∞,

and finally,

F (x) ∼ 1
2
eiπ/4
√
π as x→∞,

in agreement with the first solution.

2. Recall the factorial integral,

s! =

[∫ ∞
0

es(log z−z)dz

]
ss+1,

valid for s real. Show that for s complex, a saddle-point-type method can be used to

evaluate

s! ∼
√

2πse−sss, with Re(s)→∞.

Consider

J(s) =

∫ ∞
0

es(log z−z)dz.

Let g(z) = log z− z. There is a saddle point at g′(z) = 0, hence (1/z)− 1 = 0, hence z = 1.

Now, let z = 1 + w. We have

g(w) = log(1 + w)− (1 + w),

= w − 1
2
w2 − (1 + 1) +O(w3),

= −1− 1
2
w2 +O(w3).
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Hence,

J(s) = e−s
∫ ∞
−1

e−sw
2/2+O(w3)dw.

The contour looks like the one in Figure 6.1.

Figure 6.1:

Deflect the contour: choose a path w = αt in the neighbourhood of w = 0 such that

sw2 = sα2t2 = |s||α|2t2.

But

sα2t2 = |s||α|2eiϕ+2iθt2,

where ϕ = arg(s) and θ = arg(α), hence

θ = −ϕ/2.

Thus,

J(s) ∼ e−s
∫

e−|s||α|
2t2/2αdt,

where the limits of integration are now filled in by selecting the steepest-descent contour, and
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by letting |s| → ∞:

J(s) ∼ e−sα

∫ ∞
−∞

e−|s||α|
2t2/2αdt, |s| → ∞,

=
e−sα

|α|

√
2π

|s|
,

=
e−seiθ√
|s|
√

2π,

=
e−se−iϕ/2√
|s|
√

2π,

= e−s
√

2π
1

eiϕ/2
√
|s|
,

=
e−s
√

2π√
s

.

Putting it all together,

s! = J(s)ss+1 ∼

(
e−s
√

2π

s1/2

)
sss, as |s| → ∞,

with Re(s) > 0

s! ∼
√

2πse−sss, as |s| → ∞,

again, with Re(s) > 0.
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3. This question is similar in spirit to Question 3, except that a new special function is

considered:

Ai(x) =
1

2πi

∫
C

e(t3/3)−xtdt,

where C is the contour shown in Figure 6.2. Evaluate Ai(x) as x→∞.

Figure 6.2: Contour for the Airy integral Ai(x)

We write

Ai(x) =
1

2πi

∫
C

eg(t)dt,

with g(t) = (t3/3)−xt. We seek a saddle point g′(t) = 0, hence t2−x = 0, hence t = ±x1/2.

Since x is real and positive, the t-location of the saddle point lies along the real axis. Also,

in view of the contour C, the positive sign is to be taken. So take t = x1/2 at the pertinent

saddle point.

The integral will have a contribution only in the neighbourhood of the saddle point t0 = x1/2.
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So let t = t0 + w, with |w| � 1. We have

g(w) = 1
3
(t0 + w)3 − x(t0 + w),

= 1
3
t30 + t20w + t0w

2 +O(w3)− xt0 − xw,

= 1
3
x3/2 + xw + x61/2w2 − x3/2 − xw,

= −2
3
x3/2 + x1/2w2.

Hence,

Ai(x) ∼ 1

2πi

∫
e−(2/3)x3/2ex

1/2w2

dw,

as x→∞, where the limits can be left unspecified for now. Tidying up, we have

Ai(x) ∼ 1

2πi
e−(2/3)x3/2

∫
ex

1/2w2

dw.

We choose the path of steepest descent: let w = αt, with w2 = α2t2 = −t2 and t a real

parameter. Thus, α2 = −1, hence α = ±i. In order for th el ine z = αt to deflect smoothly

into the curve C, choose α = +i, with t going from negative to positive values. Thus,

Ai(x) ∼ 1

2πi
e−(2/3)x3/2 i

∫ ∞
−∞

e−(x1/2)t2dt,

where now the limits have been filled in by taking the steepest-descent contour along with

x→∞.

The remain function evaluation is easy: we obtain

Ai(x) ∼ e−(2/3)x3/2

2π

√
π

x1/2
,

hence

Ai(x) ∼ e−(2/3)x3/2

2
√
πx1/4

as x→∞.



Chapter 7

The solution of an ODE as a contour

integral

Overview

Complex analysis has provided us with methods to solve Ordinary Differential Equations (ODEs)

using Laplace Transforms. In this chapter we will extend the concept of transform through a more

general use of contour integration.

7.1 Contour integrals depending on a parameter

We have seen the benefits of transforms through the Laplace transform

F̂λ = F̂ (λ) =

∫ ∞
0

e−λtf(t) dt

with inversion formula

f(t) =
1

2πi

∫
γ

eλtF̂ (λ) dλ

where γ is a contour in the complex plane as described in Chapter 5 and, for a slightly different

class of functions, the Fourier transform

f̃(ω) =
1√
2π

∫ ∞
−∞

e−iωtf(t) dt

127
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with inversion formula

f(t) =
1√
2π

∫
γ

eiωtf̃(ω) dω.

In both cases the structure of the term ezt, with z = λ for Laplace and z = −iω for Fourier, turns

derivatives with respect to t into algebraic multiplication by z inside the integral. In this Chapter, we

will extend this idea by considering seeking solutions of ordinary differential equations by introducing

the ansatz

f(t) =

∫
γ

etp(z)q(z) dz (7.1)

and making suitable choices for the functions p(z) and q(z) and contour γ. [Note that a change of

variable z̄ = p(z) so dz̄ = p′(z)dz can make this look like a Laplace transform but such a change

of variable may not be possible or natural.]

Let us consider the general second order linear differential equation

L
[
f(t)

]
= a2(t)f ′′(t) + a1(t)f ′(t) + a0(t)f(t) = 0

then with our ansatz (7.1)

L
[
f(t)

]
=

∫
γ

etp(z)
[
a2(t)p(z)2 + a1(t)p(z) + a0(t)

]
q(z) dz. (7.2)

Our challenge is that we want the integrand in Equation (7.2) to be such that the integral vanishes

by, for example,

1. being a total derivative integrated around a closed contour,

2. being a total derivative integrated along an infinite contour chosen so that the integrated

function vanishes at the limits,

3. being a complex analytic function integrated around a contour containing no poles,

while the integrand in Equation (7.1) does not behave in this way and so does not give a trivial

solution.



7.2. Constant Coefficient Equation 129

7.2 Constant Coefficient Equation

Start with the simplest example

L
[
f(t)

]
= f ′′(t)− (α + β)f ′(t) + αβf(t) = 0

Taking the simple choice p(z) = z we have

f(t) =

∫
γ

etzq(z) dz

and

L
[
f(t)

]
=

∫
γ

etz
[
z2 − (α + β)z + αβ

]
q(z) dz =

∫
γ

etz(z − α)(z − β)q(z) dz.

The obvious choices for the second integrand to be analytic while the first is not is

q1(z) =
1

z − α
q2(z) =

1

z − β
if α 6= β

and

q1(z) =
1

z − α
q2(z) =

1

(z − α)2
if α = β.

The corresponding integrand for L
[
f(t)

]
is analytic everywhere and so vanishes if we take γ to be

any closed contour. On the other hand if the contour encloses α in an anti-clockwise direction we

find

f1(t) =

∫
γ

etz

z − α
dz = 2πi Res

z=α

etz

z − α
= 2πi eαt

and likewise for β, while in the case of repeated roots (α = β) we have

f2(t) =

∫
γ

etz

(z − α)2
dz = 2πi Res

z=α

etz

(z − α)2
= 2πi Res

z=α

eαt(1 + t(z − α) + . . . )

(z − α)2
= 2πi teαt.

7.3 Laplace’s Linear Equation

As our next example consider the second order version of Laplace’s linear equation

L
[
f(t)

]
= (a2t+ b2)f ′′(t) + (a1t+ b1)f ′(t) + (a0t+ b0)f(t) = 0.
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Again taking the choice p(z) = z we have

L
[
f(t)

]
=

∫
γ

etz
[(
a2z

2 + a1z + a0

)
t+
(
b2z

2 + b1z + b0

)]
q(z) dz.

Suppose the integrand is a total derivative
d

dz

[
etzr(z)

]
= etz [r(z)t+ r′(z)], say, then

r′(z) = (b2z
2 + b1z + b0)q(z) r(z) = (a2z

2 + a1z + a0)q(z).

Hence

r′(z)

r(z)
=

b2z
2 + b1z + b0

a2z2 + a1z + a0

.

Assuming a2z
2 +a1z+a0 = a2(z−α)(z−β) has distinct roots we can split this in partial fractions

as

r′(z)

r(z)
= k0 +

k1

z − α
+

k2

z − β
,

and conclude

ln r(z) = k0z + k1 ln(z − α) + ln(z − β) + c

=⇒ r(z) = Aek0z(z − α)k1(z − β)k2

Correspondingly,

q(z) =
A

a2

ek0z(z − α)k1−1(z − β)k2−1.

and

f(t) =

∫
γ

e(t+k0)z(z − α)k1−1(z − β)k2−1 dz

where we have dropped the irrelevant multiplicative constant.

7.3.1 Choice of contour

In general, k1 and k2 will not be integers and correspondingly we will need to work in the plane with

cuts from α and β which we take to extend to infinity in a direction for which (t+ k0)z is negative.

Then we may take the contour to come in from infinity along one side of the cut and return out

along the other side as illustrated. We have one such for each root and corresponding generate two
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independent solution (or more generally n for the obvious extension to an nth-order equation).

Example

L
[
f(t)

]
= tf ′′(t) + 2af ′(t)− tf(t) = 0 (a > 0).

We have

a2z
2 + a1z + a0 = z2 − 1 = (z + 1)(z − 1) b2z

2 + b1z + b0 = 2az

so

r′(z)

r(z)
=

2az

(z + 1)(z − 1)
=

a

z + 1
+

a

z − 1
,

meaning

ln r(z) = a ln(z + 1) + a ln(z − 1) ⇒ r(z) = (z + 1)a(z − 1)a

and then

q(z) =
r(z)

(z + 1)(z − 1)
= (z + 1)a−1(z − 1)a−1.

Hence our solution will be

f(t) =

∫
γ

etz(z + 1)a−1(z − 1)a−1 dz (7.3)

if we can find suitable contours so that r(z) vanishes at the endpoints.

Since a > 0 an obvious choice is the section of the real axis from −1 to 1, that is our first solution

is

f1(t) =

1∫
−1

etz(1 + z)a−1(1− z)a−1 dz

A second choice is shown in Figure 7.1. We first of all let z → −z in Equation (7.3) (and neglect

the resulting overall minus sign) to obtain

f2(t) =

∫
γ2

e−tz(z + 1)a−1(z − 1)a−1 dz

On γ2, the small semicircular arc gives 0 contribution in the limit ε → 0 (as a > 0), on the upper
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1-1

Figure 7.1: The contour defining f2(t).

section we have z = 1 + sei0, where s goes from 0 to ∞ and on the lower section z = 1 + se2πi

where s goes from ∞ to 0. For Re t > 0 the ends at infinity tend to zero and so our solution is

f2(t) = (1− e2πia)

∞∫
0

et(1+s)(2 + s)a−1sa−1 ds.

Note that if we let f(t) = t−a+
1
2 g(t), then

f ′(t) = t−a−
1
2
(
tg′(t)− (a− 1

2
)g(t)

)
,

f ′′(t) = t−a−
3
2
(
t2g′′(t)− (2a− 1)tg′(t) + (a2 − 1

4
)g(t)

)
so our equation is equivalent to

t2f ′′(t) + tf ′(t) +
(
−t2 − (a− 1

2
)2
)
f(t) = 0.

This is a variation of Bessel’s equation

LB [f(t)] = t2f ′′(t) + tf ′(t) + (t2 − ν2)f(t) = 0,

(just let t→ it).

7.4 Bessel’s Equation

An alternative representation of the Bessel function can be given by writing

f(t) =

∫
γ

P (θ)e−it sin θ dθ



7.4. Bessel’s Equation 133

then

LB [f(t)] =

∫
γ

(
−t2 sin2 θ − it sin θ + (t2 − ν2)

)
P (θ)e−it sin θ dθ

=

∫
γ

(
t2 cos2 θ − it sin θ − ν2

)
P (θ)e−it sin θ dθ.

We now look for a function Q(θ) such that

d

dθ

[
Q(θ)e−it sin θ

]
= (Q′(θ)− it cos θ Q(θ)) e−it sin θ

=
(
t2 cos2 θ − it sin θ − ν2

)
P (θ)e−it sin θ.

We can check that

Q(θ) = (it cos θ + iν) eiνθ with P (θ) = eiνθ,

giving

f(t) =

∫
γ

e−it sin θ+iνθ dθ

provided we can choose the contour so that Q(θ)e−it sin θ vanishes at the end-points.

Taking Re t > 0 this vanishes along Re θ = nπ and

Im θ →

∞ n odd

−∞ n even

A natural choice is then to take n = 0, so starting at −i∞ and ending with n = −1 or n = 1 that

is at −π + i∞ or π + i∞ as shown in Figure 7.4.

The corresponding complex solutions H
(1)
ν (t) and H

(2)
ν (t) are called the Hankel functions and rep-

resent the combinations Jν(t)± iYν(t) . Integral representation of this make the use of the method

of steepest descent very natural for determining the asymptotic behaviour of the solutions.

Note that these forms are ideally suited to the use of the method of steepest descent to determine

their asymptotic behaviour.
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-Π Π

Γ1 Γ2

Figure 7.2: The choice of contours for the Hankel functions. The contour γ1 is used to define
H

(1)
ν (t) while the contour γ2 is used to define H

(2)
ν (t).

7.5 Airy Functions

Airy’s equation is given by

LAi

[
f(t)

]
= f ′′(t)− tf(t) = 0.

This is a degenerate case of Laplace’s linear equation with

r′(z)

r(z)
=

z2

(−1)
⇒ ln r(z) = −1

3
z3

so

f(t) =

∫
γ

ezt−
1
3
z3 dz.

and clearly

LAi

[
f(t)

]
=

[
−ezt−

1
3
z3
]
γ

.

To have a solution we are then left with the requirement of finding a non-trivial choice of contour

such that ezt−
1
3
z3 vanishes at the end-points. As the function is entire the only way we can achieve
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Γ3

Γ1

Γ2

Figure 7.3: The choice of contours for the Airy function.

this is for the contour to end at infinity. For large |z| the cubic term in the exponential dominates

and has modulus exp(−1
3
|z|3 cos 3θ) where θ is the argument of z. This will then vanish as |z| → ∞

if and only if cos 3θ > 0 corresponding to θ ∈ (5
6
π, 1

2
π), θ ∈ (−1

6
π, 1

6
π), θ ∈ (1

2
π, 5

6
π) as shown in

the figure.

If we go in and out of the same sector we can distort the path to 0 and get the trivial solution but

we cannot do that if we leave from a different sector as shown. Thus we have 3 natural contours

γ1, γ2 and γ3, and clearly γ1 + γ2 + γ3 can be shrunk to zero so only two are independent. By

convention, two combinations are generally taken and called Airy functions:

Ai(t) =
1

2πi

∫
γ1

ezt−
1
3
z3 dz. (7.4)

and

Bi(t) =
1

2π

∫
γ2

ezt−
1
3
z3 dz − 1

2π

∫
γ3

ezt−
1
3
z3 dz.

Since we can rotate the contours into one another by a 2π
3

rotation we may show that

Bi(t) = e−iπ/6Ai(te−2πi/3) + eiπ/6Ai
(
te2πi/3

)

These forms are ideally suited to the use of the method of steepest descent to determine their
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-20 -15 -10 -5 5 10

-0.4

-0.2

0.2

0.4

Figure 7.4: The Airy function Ai(t) showing exponential decay as t→∞ but oscillatory behaviour
for t < 0.

asymptotic behaviour although in this case we must first do a change of variable z = t1/2z̄ so

Ai(t) =
t1/2

2πi

∫
γ1

et
3/2(z̄−1

3
z̄3) dz̄.

so ensure that the saddle point does not move with t. Assuming the saddle point at z̄ = −1 gives

the dominant contribution as t→∞ we now show that

Ai(t) ∼ 1

2
√
π
t−1/4e−

2
3
t3/2 as t→∞.

For large negative t we first rewrite our solution with z = (−t)1/2z̄ as

Ai(t) =
(−t)1/2

2πi

∫
γ1

e−(−t)3/2(z̄+
1
3
z̄3) dz̄.

In this case the saddle points are at ∓i giving contributions

1

2i
√
π

(−t)−1/4e±i( 2
3

(−t)3/2+π/4),

which together give the asymptotic expansion

Ai(t) ∼ 1√
π

(−t)−1/4 sin
(

2
3
(−t)3/2 + π

4

)
as t→ −∞.

It can be noted that the definition (7.4) differs superficially from the one previously given in the
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worked examples in Chapter 6. However, these two definitions are the same, as Ai(t) is a real-valued

function for t real, and the integral in Equation (7.4) is therefore invariant under the transformation

z = −w∗, which transforms Equation (7.4) into

Ai(t) =
1

2πi

∫
γ′1

e(1/3)w3−wtdt, (7.5)

where γ′1 denotes the contour γ1 under a reflection through the y axis, and where Equation (7.5)

agrees exactly with the definition of Ai(t) given earlier in Chapter 6. Filling in the details of the

outlined calculations is left as an exercise for the reader.
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7.6 Worked examples

1. Find all solutions of Legendre’s equation

(1− t2)y′′ − 2ty′ + n(n+ 1)y = 0 (n ∈ N)

in the form

y(t) =

∫
γ

(z − t)α+1P (z)dz.

Show that one particular solution is

y1(t) =
1

2n+1πi

∫
γ

(z2 − 1)n

(z − t)n+1
dz.

where γ is any simple closed contour enclosing z = t. This is known as Schläfli’s integral

form of Pn(t).

Show that a second linearly independent solution can be given by

y2(t) = Qn(t) =
1

2n+1

1∫
−1

(1− z2)n

(t− z)n+1
dz, (t ∈ R, t /∈ [−1, 1]).

Use integration by parts to show that

Qn(t) =
1

2

1∫
−1

Pn(z)

t− z
dz.

Inserting the trial form into the differential equation we find

LLe[y] =

∫
γ

(z − t)α−1
[
α(α + 1)(1− z2) + (z − t)2z(1 + α)2

+(z − t)2(n+ 2 + α)(n− 1− α)
]
P (z)dz. (7.6)

We want this to be a total derivative with respect to z but the only way we can get the

combination (z − t)α−1 is for this to be of the form

d

dz
[(z − t)αQ(z)] = (z − t)α−1 [αQ(z) +Q′(z)(z − t)] .
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Comparing we see we have no (z − t)2 term and therefore we must choose α = −n − 2 or

α = n− 1 and correspondingly the integrand in Equation (7.8) becomes

(n+ 1)(z − t)α−−1
[
α−(z2 − 1) + 2(n+ 1)z(z − t)

]
α− = −n− 2

(−n)(z − t)α+−1
[
α+(z2 − 1)− 2nz(z − t)

]
α+ = n− 1

From this we can read off Q′(z)/Q(z) with (α + 1)(1 − z2)P (z) = Q(z) and immediately

integrate to get of two solutions

y−(t) =

∫
γ−

(z2 − 1)n

(z − t)n+1
dz with LLe[y−] =

[
(z − t)−n−2(z2 − 1)n+1/(n+ 1)

]
γ−

y+(t) =

∫
γ+

(z − t)n

(z2 − 1)n+1
dz with LLe[y+] =

[
(z − t)n−1(z2 − 1)−n/(−n)

]
γ+

where we most choose the contours either to be closed or to vanish at the limits and ensure

that we get a non-trivial solution. Note that since we have specified that n ∈ N we do

not have to cut the plane for either solution. (We can also consider Legendre’s equation for

non-integer n and this is the only difference in that case.)

To be specific,

• for y−(t) we choose any closed contour enclosing the pole at z = t. As we have (z−t)n+1

in the denominator the corresponding residue is

1

n!

dn

dzn
(z2 − 1)n

∣∣∣∣
z=t

which gives Rodriques’s formula for the Legendre polynomials - note the result is clearly

a polynomial of degree n in t:

Pn(t) =
1

2nn!

dn

dzn
(z2 − 1)n

∣∣∣∣
z=t

=
1

2nn!

dn

dtn
(t2 − 1)n.

• we can take contours encircling the poles at z = ±1 but these clearly give polynomial

solutions and we already have found those an alternative is to start at z = t and heading

to∞, these clearly are singular as t→ ±1 and are the irregular Legendre function Qn(t).

We may also clearly get a solution using the first class of integral and taking a contour running

from z = −1 to z = +1. In addition, this clearly becomes logarithmically divergent as t→ ±1

and so is independent of our polynomial solution. The given y2(t) precisely falls in this class.
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Now Rodriques’s formula

1

2

1∫
−1

Pn(z)

t− z
dz =

1

2n+1n!

1∫
−1

1

t− z
dn

dzn
(z2 − 1)n dz

=
1

2n+1n!

[ 1

t− z
dn−1

dzn−1
(z2 − 1)n

]1

−1

−
1∫

−1

1

(t− z)2

dn−1

dzn−1
(z2 − 1)n dz



and the boundary term clearly vanishes at both limits as (z2 − 1)n = (z − 1)n(z + 1)n.

Continuing we may integrate by parts n times in total to give

1

2

1∫
−1

Pn(z)

t− z
dz =

1

2n+1n!

(−1)n
1∫

−1

n!

(t− z)n+1
(z2 − 1)n dz

 = Qn(t).

2. Consider Laguerre’s equation

ty′′ + (1− t)y′ + ny = 0 (n ∈ N).

Seeking solutions in the form

y(t) =

∫
γ

etzP (z)dz.

show that a solution is given by

y(t) =

∫
γ

etzz−n−1(z − 1)ndz.

where γ is any contour such that [etzz−n(z − 1)n+1]γ = 0

Inserting the trial form into the differential equation we find

LLa[y] =

∫
γ

[
tz2 + (1− t)z + n

]
P (z)dz. (7.7)

We want this to be a total derivative with respect to z and to get the combination etz the

simplest form would be

d

dz

[
etzQ(z)

]
= etz [Q′(z) + tQ(z)] .
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Comparing we see we would need

Q(z) = z(z − 1)P (z), Q′(z) = (z + n)P (z)

which implies

Q′(z)/Q(z) =
z + n

z(z − 1)
=
n+ 1

z − 1
− n

z
⇒ lnQ(z) = (n+ 1) ln(z − 1)− n ln z

giving

Q(z) = z−n(z − 1)n+1, and P (z) = z−n− 1(z − 1)n.

So we have a solution provided we choose our contour such that

[
etzQ[z)

]
γ

=
[
etzz−n(z − 1)n+1

]
γ

= 0.

3. Find the solutions of Hermite’s equation

y′′ − 2ty′ + 2ny = 0 (n ∈ N).

in the form y(t) =
∫
γ

etzP (z) dz.

The function Hn(t) is the solution of Hermite’s equation defined by

Hn(t) =
n!

2πi

∫
γ

e2tz−z2

zn+1
dz

where γ is any simple closed contour enclosing the origin. Use the definition to show that

(a)
∞∑
n=0

1

n!
unHn(t) = e2tu−u2 u ∈ C

(b) Hn(t) = (−1)net
2 dn

dtn
e−t

2

Rodriques’ definition.

Inserting the trial form y(t) =
∫
γ

e2tzP (z) dz (with change of variable/apologies) into the

differential equation we find

LHe[y] =

∫
γ

[
4z2 − 4tz + 2n

]
e2tzP (z)dz. (7.8)

We want this to be a total derivative with respect to z and to get the combination e2tz the
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simplest form would be

d

dz

[
e2tzQ(z)

]
= e2tz [Q′(z) + 2tQ(z)] .

Comparing we see we would need

Q(z) = −2zP (z), Q′(z) = (4z2 + 2n)P (z)

which implies

Q′(z)/Q(z) = −2z2 + n

z
= −2z − n

z
⇒ lnQ(z) = −z2 − n ln z

giving

Q(z) =
e−z

2

zn
, and P (z) = − e−z

2

2zn+1
.

The Hermite function, which is clearly a polynomial, is clearly just this solution taking the

contour to encircle the pole at the origin with some appropriate normalization.

(a) Given an u ∈ C choose γ to be the circle |z| = |u| + 1 say so u lies inside the contour

and |u/z| < 1 then

∞∑
n=0

1

n!
unHn(t) =

1

2πi

∞∑
n=0

un
∫
γ

e2tz−z2

zn+1
dz

=
1

2πi

∫
γ

e2tz−z2

z

∞∑
n=0

(u
z

)n
dz

=
1

2πi

∫
γ

e2tz−z2

z − u
dz

= e2tzu−u2

where we may interchange the sum and integration as we have absolute convergence

within the limit of convergence and the last line is simply an application of Cauchy’s

residue theorem with the one simple pole at z = u which lies inside the contour.

(b) Because the pole is of order n+ 1 the residue of the integrand is given by

1

n!

dn

dzn
e2tz−z2

∣∣∣∣
z=0

= e−t
2 1

n!

dn

dzn
e(t−z)2

∣∣∣∣
z=0

= e−t
2 1

n!

dn

dtn
e(t−z)2

∣∣∣∣
z=0

= e−t
2 1

n!

dn

dtn
et

2

.

Inserting the normalizations we arrive at Rodriques’ formula for Hermite polynomials.



Chapter 8

The WKB (Green-Liouville) approximation

Overview

The WKB approximation is a kind of singular perturbation theory for finding approximate solutions

to linear partial differential equations with spatially varying coefficients. In this section we introduce

the basic idea behind the method and apply it to solving eigenvalue problems and finding Greens’s

functions in ordinary differential equations where a certain parameter is very large.

8.1 Solution in amplitude-phase form

Consider differential equations of one of the form:

d2y

dt2
+ λ2q(t)y = 0

where q(t) is some given function and λ ≡ 1/ε is a large constant.

Example: The time independent Schrödinger equation is

Eψ(x) = − ~2

2m

d2ψ

dx2
+ V (x)ψ(x) ⇒ − ~2

2m

d2ψ

dx2
+

2m

~2

(
E − V (x)

)
ψ(x) = 0,

where if quantum effects are considered to be small ‘~� 1’ the the corresponding λ� 1.

If q(t) = k (constant) then solution is y(t) = Aeiλ
√
kt; this suggests in the general case looking for

a solution in amplitude-phase form

y(t) = A(t)eiλψ(t).

143
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Taking this form we find

y′(t) = (iλψ′A+ A′)eiλψ

y′′(t) = [(iλψ′)(iλψ′A+ A′) + iλ(ψ′′A+ ψ′A′) + A′′] eiλψ

so

0 = (y′′ + λ2qy)/eiλψ = −λ2(ψ′)2 + iλ(ψ′′A+ 2ψ′A′) + A′′ + λ2qA

We may ask that the ‘real’ and ‘imaginary’ parts separately vanish so

0 = −λ2(ψ′)2A+ A′′ + λ2qA

and

0 = ψ′′A+ 2ψ′A′.

(We use inverted commas here as, in fact, this expansion is equally useful when q(t) is imaginary.)

0 = ψ′′A+ 2ψ′A′ =⇒ ψ′′

ψ′
= −2

A′

A
=⇒ ln |ψ′| = −2 lnA

so

A =
1

|ψ′|1/2

Then ‘real’ part becomes

0 = (ψ′)2 − q − λ−2A′′/A

= (ψ′)2 − q − λ−2

(
−1

2

ψ′′′

ψ′
+ 3

4

(ψ′′)2

(ψ′)2

)
To lowest order as λ→∞ we neglect the third term to give ψ′ = ±√q:

A(t) =
1

|q(t)|1/4
ψ(t) = ±

∫ t√
q(s) ds

and so

y(t) ≈ 1

|q(t)|1/4
exp

(
±iλ

∫ t√
q(s) ds

)
.
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8.2 Comparison with Exact Solutions

So the idea is simple - but how good are the results?

There are many examples from quantum mechanics available (with the WKB nomenclature dating

from then) but we want to emphasize the general usefulness of the method (which was actually

discovered by Green and Liouville long before the advent of quantum mechanics) and so give different

examples here based around the equation

d2y

dt2
+ λ2e2ty = 0. (8.1)

Initial and Boundary Value Problems

Since q(t) = e2t our two solutions are

yWKB(t) ≈ e−t/2 exp
(
±iλet

)
,

so we can write our general (leading order) WKB solution in real form as

yWKB(t) ≈ Ae−t/2 cos
(
λet
)

+Be−t/2 sin
(
λet
)
.

In this case, we can show that the exact solution is

yWKB(t) ≈ CJ0

(
λet
)

+DY0

(
λet
)
.

the Bessel functions of order 0 (BesselJ[0,t] and BesselY[0,t] in Mathematica) so we can

compare solutions. For definiteness let us compare the solutions satisfying

1. initial conditions y(0) = 0 and y′(1) = 1

2. boundary conditions y(0) = 1 and y(1) = 0

Green functions

Given that we have two independent approximate solution we can also use them to construct a

Green function by the method of variation of parameters, for example, if we consider the boundary
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Figure 8.1: The comparison between the WKB solutions (blue) and exact solutions (red) for λ = 3;
the plot in (a) is for the given initial value problem the plot in (b) is for the boundary value
problem. Although the solution was only derived under the assumption for λ � 1 if we take λ to
be significantly larger that this the lines overlap at this resolution!

0.2 0.4 0.6 0.8 1.0

-0.30

-0.25
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-0.15

-0.10

-0.05

Figure 8.2: The comparison between the WKB Green function (blue) and Green function (red) for
s = 1

2
and λ = 1.

value problem y(0) = 0 and y(1) = 0 we have independent approximate homogeneous solutions

uWKB(t) = e−t/2 sin
[
λ(et − 1)

]
,

qWKB(t) = e−t/2 sin
[
λ(et − e)

]
,

with Wronskian W [uWKB, qWKB] = λ sin [λ(e− 1)] so the WKB Green function is given by

GWKB(s, t) =
e−(s+t)/2

λ sin [λ (e− 1)]

sin [λ(es − 1)] cos [λ(et − e)] , s < t,

sin [λ(et − 1)] cos [λ(es − e)] , s > t.

Comparison with the exact Green function (in terms of Bessel functions) is shown in Fig. 8.2 (again

even for λ = 1 the agreement is remarkable).
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Eigenvalue Problems

It is clear from our plot (and the positive nature of the potential) that our solutions oscillate so

we can look for approximate eigenvalues of a Sturm-Liouville problem, for example, values of λ2 for

which we have non-trivial solutions of satisfying y(0) = 0 and y(1) = 0. In the previous subsection,

we constructed the solutions uWKB(t) and qWKB(t) that satisfy the boundary condition at t = 0

and t = 1, respectively. We have an eigenvalue when these two solutions are the same and that is

determined by vanishing of the Wronskian

W [uWKB, qWKB] = λWKB sin [λWKB(e− 1)] ,

(in which case the Green function does not exist and we have either no solution or infinitely many

solutions differing by a multiple of the eigenfunction corresponding to the Fredholm alternative).

Thus our WKB approximations to the eigenvalues here are given by λ = nπ/(e − 1). The corre-

sponding exact eigenvalues are determined by the transcendental equation

2J0(λ)Y0(eλ)− 2Y0(λ)J0(eλ) = 0.

A comparison of the exact and approximate eigenvalue is given in Figure 8.2. Again it is remarkable

how accurate the approximate eigenvalue is even for the lowest possible values of λn.

10 20 30 40 50

1 ´ 10-5

5 ´ 10-5

1 ´ 10-4

5 ´ 10-4

0.001

0.005

0.010

Figure 8.3: The relative error in the eigenvalues λWKB and the exact eigenvalue λ for mode number
n = 1 to n = 50.
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8.3 Higher order terms

To be more systematic we can look for an expansion of the form

exp(λψ1(t) + ψ0(t) + ψ−1(t)/λ+ ψ−2(t)/λ2 + · · · )

and consider the more general differential equation

d2y

dt2
+
(
λ2q2(t) + λq1(t) + q0(t)

)
y = 0

Since we can write A(t) = elnA(t) we can include A(t) within this expansion, in fact, we will see our

ansatz above corresponds to

A(t) = expψ0(t) = exp
(
−1

4
ln |q2(t)|

)
when q1 = q0 = 0

Differentiating

y(t) ∼ exp
(
λψ1(t) + ψ0(t) + λ−1ψ−1(t) + . . .

)
y′(t) ∼

(
λψ′1(t) + ψ′0(t) + λ−1ψ′−1(t) + . . .

)
exp

(
λψ1(t) + ψ0(t) + λ−1ψ−1(t) + . . .

)
y′′(t) ∼

((
λψ′′1(t) + ψ′′0(t) + λ−1ψ′′−1(t) + . . .

)
+
(
λψ′1(t) + ψ′0(t) + λ−1ψ′−1(t) + . . .

)2
)
×

exp
(
λψ1(t) + ψ0(t) + λ−1ψ−1(t) + . . .

)
=
(
λ2 (ψ′1(t))

2
+ λ (ψ′′1(t) + 2ψ′1(t)ψ′0(t)) +

(
ψ′′0(t) + (ψ′0(t))

2
+ 2ψ′1(t)ψ′−1(t)

)
+ . . .

)
×

exp
(
λψ1(t) + ψ0(t) + λ−1ψ−1(t) + . . .

)
So equating order by order

(ψ′1(t))
2

+ q2(t) = 0

ψ′′1(t) + 2ψ′1(t)ψ′0(t) + q1(t) = 0

⇒ ψ′0(t) = − ψ′′1(t)

2ψ′1(t)
− q1(t)

2ψ′1(t)

ψ′′0(t) + (ψ′0(t))
2

+ 2ψ′1(t)ψ′−1(t) + q0(t) = 0
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and solving order by order

ψ1(t) = ±i
∫ t

q2(t′)1/2 dt′

ψ0(t) = −1
2

ln |ψ′1(t)| ± 1
2
i

∫ t q1(t′)

q2(t′)1/2
dt′

= −1
4

ln |q2(t)| ± 1
2
i

∫ t q1(t′)

q2(t′)1/2
dt′ + const.

For validity we need ψ0(t)� λψ1(t), λ−1ψ−1(t)� ψ0(t) as λ→∞.

It is clear that we can continue to any order we wish and that it is

1. horrible by hand!

2. trivial for computer algebra!

8.4 Solution behaviour and Stokes lines

Things start to get interesting if we consider the WKB solution to the Airy equation

d2f

dt2
− λ2tf = 0, (8.2)

where we introduce the parameter λ as a convenience.

Sticking to the lowest order solution we have

y±(t) ≈ 1

t1/4
exp

(
±iλ

∫ t

(−s)1/2 ds

)
= t−1/4 exp

(
∓iλ2

3
(−t)3/2

)
.

If we recall that in Chapter 7

Ai(t) ∼ 1

2
√
π
t−1/4e−

2
3
t3/2 as t→∞,

we see perfect agreement with

Ai(t) ∼ 1

2
√
π
y−(t) as t→∞.

On the other hand we might equally recall that

Ai(t) ∼ 1√
2π

(−t)−1/4 sin
[

2
3
(−t)3/2 + π

4

]
as t→ −∞,
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we see perfect agreement with

Ai(t) ∼ 1

2
√
π

[
eiπ/4y−(t)− e−iπ/4y+(t)

]
as t→ −∞.

Notice that if we write

Ai(t) ∼ A−y−(t) + A+y+(t),

then we need

A− ∼
1

2
√
π

A+ ∼ 0, for t→∞

and

A− ∼
1

2
√
πi

A+ ∼ −
1

2
√
πi
, for t→ −∞.

In hindsight we may notice that the WKB solution is singular and can’t possibly be right at t = 0

and indeed our solution has a cut in the complex plane. In fact, this has saved us as our real solution

Ai(t) must have real coefficients when y−(t) and y+(t) are real (t > 0) and complex coefficients

when y−(t) and y+(t) are complex (t < 0).

A full understanding of what is going on here was provided by Stokes by considering the behaviour

of the solution in the complex t-plane. We start with a simpler example showing the same jump in

behaviour. Write

1

sinh t
∼ A−e−t + A+et,

then we need

A− ∼ 2 A+ ∼ 0, for t→∞

and

A− ∼ 0 A+ ∼ 2, for t→ −∞.

Indeed it is clear that if we consider t in the complex plane et grows and dominates e−t in the right

half plane Re(t > 0) while e−t grows and dominates et in the left half plane Re(t < 0) and as our

solution decreases along any radial line excluding the imaginary axis the coefficient of the dominant

term must exactly vanish in the corresponding half plane. The transition occurs along the imaginary

axis where neither solution e−it and eit dominates. (In this case, there is no particular reason to
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consider writing our expansion as a linear sum in this way but clearly for WKB we do.)

Returning to our example of the Airy function Ai(t) and writing t = reiθ we have

y±(t) ≈ r1/4e−iπ/4 exp
[
∓λ2

3
r3/2(cos 3

2
θ − i sin 3

2
θ)
]
.

Again we see that one term dominates the other as r →∞ depending on whether cos 3
2
θ is positive or

negative. The dividing lines where the two terms are both of equal magnitude, are called Stokes’ line,

and represent the lines along which the coefficients may jump. In the current case this corresponds

to cos 3
2
θ = 0, that is the radial lines θ = 1

3
π, π and θ = 5

3
π with the 2

3
π rotations reflecting the

symmetry of Fig. (7.5). In general, for WKB approximations we identify the Stokes lines as being

the lines on which the real part of the argument of exponential vanishes.

8.5 Transition points

Returning to our simplest potential
d2y

dt2
+ λ2q(t)y = 0

suppose that we have q(t) > 0 for t < a and q(t) < 0 for t > a then we have WKB approximations

y(t) ∼ 1

|q(t)|1/4
exp

(
±iλ

∫ a

t

√
|q(s)| ds

)
t < a,

y(t) ∼ 1

|q(t)|1/4
exp

(
±λ
∫ t

a

√
|q(s)| ds

)
t > a,

where we have chosen a lower limit on our integrals for definiteness. Hence our solution is oscillatory

on the right and a combination of real exponentials on the right, of the transition point t = a where

q(a) = 0. In most (Note that this is reminiscent of our plot of the Airy function.)

The WKB approximation clearly breaks down near points where x = a but in such a region we can

approximate our equation by
d2y

dt2
+ λ2q′(a)(t− a)y = 0

which with a simple change of variable x = α(t − a), where α = (λ2q′(a))1/3, is precisely Airy’s

equation. This suggest the hope that we might use the Airy functions and in particular their
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aa

Airy

WKB WKB

Figure 8.4: The principle of matching asymptotic solutions is to find a range of values in which both
solutions are valid.

asymptotics

Ai(x) ∼ 1

2
√
π
x−1/4e−

2
3
x3/2 as x→∞,

Ai(x) ∼ 1√
π

(−x)−1/4 sin
[

2
3
(−x)3/2 + π

4

]
as x→ −∞,

Bi(x) ∼ 1√
π
x−1/4e

2
3
x3/2 as x→∞.

Bi(x) ∼ − 1√
π

(−x)−1/4 cos
[

2
3
(−x)3/2 + π

4

]
as x→ −∞

to bridge between our two WKB solutions. If we can get far enough away still using q(t) = α3(t−a)

then
∫ t
a

√
|q(s)| ds = 2

3
α3/2|t− a|3/2 and our WKB forms correspond precisely to those of the Airy

functions.

Some fairly hard analysis is required to show that there is indeed a range of parameters for which

these expansions are simultaneously valid and is part of the wider theory of matched asymptotic

expansions. For the justification of the matching procedure (and much else) the book Advanced

Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory

by C.M. Bender and S.A. Orszag (Springer) is highly recommended.

The precise details depend on the problem to be solved - let us take for definiteness the case where

we want just the decreasing exponential to the right of the transition point then it is precisely Ai(s),

then to the left we must have the linear WKB combination

y(t) ∼ 2

|q(t)|1/4
sin

[
λ

∫ a

t

√
|q(s)| ds+ 1

4
π

]
(note the phase).

Example: For a potential with an infinite wall at t = 0 and with q(t) = 1
2
ω2(a2 − t2), (t > 0). To
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match to the decaying exponential we have

y(t) ∼ 2× 21/4

[ω(a2 − t2)]1/2
sin

[
λ

∫ a

t

1√
2
ω(a2 − s2)1/2 ds+ 1

4
π

]
∼ 2× 21/4

[ω (a2 − t2)]1/2
sin

{
− 1

2
√

2
λω
[
t
(
a2 − t2

)1/2
+ a2

(
sin−1(t/a)− π

2

)]
+ 1

4
π

}
This solution vanishes at t = 0 as required for an infinite wall if and only if

λω =
(
n− 1

4

) 4
√

2

a2
, E =

(4n− 1)2

a4
.

We can extend this idea to match to a decaying exponential to the left of a turning point b of an

decreasing potential matches to the linear WKB combination

y(t) ∼ 2

|q(t)|1/4
sin

(
λ

∫ t

b

√
|q(s)| ds+ 1

4
π

)
.

This enables us to consider the problem of bound states for a potential increasing at both sides but

for consistency these solutions and their derivatives must both match across the range so we require

A

|q(t)|1/4
sin

(
λ

∫ a

t

√
|q(s)| ds+ 1

4
π

)
=

B

|q(t)|1/4
sin

(
λ

∫ t

b

√
|q(s)| ds+ 1

4
π

)
,

and

A|q(t)|1/4 cos

(
λ

∫ a

t

√
|q(s)| ds+ 1

4
π

)
= B|q(t)|1/4 cos

(
λ

∫ t

b

√
|q(s)| ds+ 1

4
π

)
.

where we have neglected the slow change of the amplitude compared to the phase. For a non-trivial

Oscillatory

Exponentially Exponentially
decreasing decreasing

Figure 8.5: Matching left and right gives a quantisation condition.
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solution the Wronskian must vanish and this becomes

sin

(
λ

∫ a

b

√
|q(s)| ds+ 1

2
π

)
= 0

giving

λ

∫ a

b

√
|q(s)| ds = (n− 1

2
)π.
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8.6 Worked examples

1. (a) Show that the large eigenvalues of

y′′(t) + λ2q(t)y = 0, y(0) = 0, y(1) = 0

are given by λn = nπ
[∫ 1

0

√
q(s) ds

]−1

.

(b) Show that the large eigenvalues of

y′′(t) + λ2q(t)y = 0, y(0) = 0, y′(1) = 0

are given by λn = (n+ 1
2
)π
[∫ 1

0

√
q(s) ds

]−1

.

We write down the lowest-order WKB approximation of the generic ODE y′′(t)+λ2q(t)y = 0,

with solution

yWKB(t) =
1

|q(t)|1/4
exp

(
±iλ

∫ t

0

√
q(s)ds

)
,

which more particularly can be taken to be

yWKB(t) =
1

|q(t)|1/4
sin

(
λ

∫ t

0

√
q(s)ds+ ϕ

)
, (8.3)

where ϕ ∈ R is a phase. Equation (8.3) can also be viewed as the solution of the eigenvalue

problem. We need yWKB(0) = 0, hence ϕ = 0. Also, for part (a), we need yWKB(1) = 0,

hence

λ

∫ t

0

√
q(s)ds = nπ, n ∈ N,

hence

λn =
nπ∫ 1

0

√
q(s)ds

.

For part (b), we need y′WKB(1) = 0, hence

−1
4
q′(t)q(t)−5/4 sin

(
λ

∫ 1

0

√
q(s)ds

)
+ λq(t)−1/4q(t)1/2 cos

(
λ

∫ 1

0

√
q(s)ds

)
= 0.

Here, the second term is proportional to λ and hence dominates in the limit as λ → ∞.

Hence, to leading order, the boundary condition reads

λq(t)−1/4q(t)1/2 cos

(
λ

∫ t

0

√
q(s)ds

)
= 0,
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hence

cos

(
λ

∫ 1

0

√
q(s)ds

)
and thus

λn =
π
(
n+ 1

2

)∫ 1

0

√
q(s)ds

, n ∈ N ∪ {0}.

2. The Weber-Hermite differential equation

y′′(t) + (ν + 1
2
− λ2t2)y(t) = 0, (8.4)

has solutions known as parabolic cylinder functions. Determine the higher order WKB

approximation to terms to order λ−1. Also, identify the Stokes lines for these solutions.

The extended WKB method in Section 8.3 applies directly to Equation (8.4), with

q2(t) = −t2,

q1(t) = 0,

q0(t) = ν + 1/2.

From Section 8.3 we have

ψ0(t) = −1
4

ln |q2(t)| ± 1
2
i

∫ t q1(t′)

q2(t′)1/2
dt′ + Const.,

= −1
4

ln t2,

= −1
2

ln |t|.

Also,

ψ1(t) = ±i

∫ t

q2(t′)1/2dt′,

= ±i

∫ t

(−t′2)1/2dt′,

= ±
∫ t

t′dt′,

= ±1
2
t2.

The WKB solution is

y(t) = exp
(
λψ1(t) + ψ0(t) + ψ−1(t)/λ+ ψ−2(t)/λ2 + · · ·

)
.
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Including only terms of order λ and λ0 in the expansion, we are left with

y(t) ∼ exp (λψ1(t) + ψ0(t)) , λ→∞,

= exp
[
±1

2
λt2 − 1

4
ln t2

]
,

= t−1/2 exp
(
±λt2/2

)
.

Stokes lines occur in the complex t-plane where neither of the solutions t−1/2 exp(±λt2/2)

dominates the other as λ → ∞. This happens when t2 is purely imaginary, that is on radial

lines with argument π/4, 3π/4, 5π/4, 7π/4.

At next order, we have

ψ′′0 + (ψ′0)2 + 2ψ′1ψ
′
−1 + q0 = 0.

We have

ψ′0 = − 1

2t
,

ψ′′0 =
1

2t2
,

ψ′1 = ±t,

q0 = ν + 1
2
,

hence
1

2t2
+

1

4t2
± 2tψ′1 + (ν + 1/2) = 0,

and

±ψ′−1 = −1
2
(ν + 1

2
)
1

t
− 3

4·2
1

t2
,

hence

ψ−1 = ±1
8

[
−(1 + 2ν) ln t+ 3

8

1

t2

]
,

and the solution to order λ−1 reads

y ∼ t−1/2 exp

[
±λt2 ± 1

8λ

(
−(1 + 2ν) ln t+ 3

8

1

t2

)]
The previous discussion about Stokes Lines still applies, as the Stokes lines refer to the dom-

inant term in the solution that is O(λ).

3. Find the WKB approximation to the eigenvalues of normalizable functions satisfying

y′′(t) + (E − t4)y = 0. (8.5)
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Also, compute the relative error for En given the ‘exact’ values are given in Table 8.2.

n 0 2 4 6 8 10

En 1.060 7.456 16.262 26.528 37.923 50.256

Table 8.1: First few eigenvalues for the equation (8.5)

The theory in Section 8.5 applies here, upon taking λ2q(t) = E − t4. The turning points are

at E = t4, hence t = ±E1/4. We require the following condition

∫ E1/4

−E1/4

√
E − t4dt =

(
n+ 1

2

)
π, n ∈ N ∪ {0}.

Let s = t/E1/4. The condition now reads∫ 1

−1

√
1− s4ds = E−3/4

(
n+ 1

2

)
π.

The integral on the left-hand side can be evaluated in terms of elliptic integrals:∫ √
1− x4dx = x(1− x4)1/2 + 2

3
F
(
sin−1(x)| − 1

)
,

where F (z|m) is an elliptic integral of the first kind. Thus,

I =

∫ 1

−1

√
1− x4dx,

= 2

∫ 1

0

√
1− x4dx,

= 4
3

[
F (sin−1(1)| − 1)− F (sin−1(0)| − 1)

]
,

= 4
3

[
F (sin−1(1)| − 1)− F (0| − 1)

]
,

= 4
3
F (sin−1(1)| − 1)

where F (z|m) is the complete elliptic integral of the first kind, with F (0|m) = 0. Also, using

tables,

F (sin−1(z)| − 1) = z 2F1

(
1
4
, 1

2
; 4

4
; z4
)
.

Thus,

I = 4
3 2
F1

(
1
4
, 1

2
; 4

4
; 1
)
.
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Again using tables (e.g. Abramowitz and Stegun, 15.1.20),

I = 4
3

Γ(5/4)Γ(1/2)

Γ(3/4)
,

=
Γ(5/4)Γ(1/2)

(3/4)Γ(3/4)
,

=
Γ(5/4)

√
π

Γ(7/4)
,

≈ 1.748038369528080.

where Γ(·) is the Gamma function. Thus, the eigenvalues are

E =

[(
n+ 1

2

)
π

I

]4/3

,

and in a double-precision approximation this is

E =

[ (
n+ 1

2

)
π

1.748038369528080

]−3/4

.

Numerical results are tabulated here:

n 0 2 4 6 8 10

En (true) 1.060 7.456 16.262 26.528 37.923 50.256

En (WKB) 0.867 7.414 16.233 26.507 37.9055 50.241

True-WKB 0.1928 0.0420 0.0283 0.0215 0.0182 0.0154

(True-WKB)/True 18% 0.56% 0.17% 0.08% 0.05% 0.03%

Table 8.2: First few eigenvalues for the equation (8.5) and comparison with WKB theory



Chapter 9

The model Poisson equation – theoretical

background

Overview

We consider analytical solutions to a two-dimensional Poisson problem. The reason for examining

this particular problem are manifold: it is a minimal model that nonetheless has a small amount of

complexity sufficient to warrant the use of a number of interesting numerical methods. Also, its

analytical solution is rather interesting, as it requires plenty of favourite techniques in PDE theory.

Finally, analytical solutions in this section will be used as benchmarks for future numerical simulation

studies. Throughout the course, the problem considered in this section will be referred to as the

model Poisson equation.

9.1 The model Poisson equation

We are interested in solving the following elliptic partial differential equation (PDE), given here in

non-dimensional form as follows:

∇2u+ s(x, y) = 0 (x, y) ∈ Ω, (9.1a)

where

Ω = (0, Lx)× (0, Ly), (9.1b)

and ∇2 = ∂2
x + ∂2

y is the Laplacian. The partial differential equation is subject to the following

Dirichlet boundary conditions:

u(x = 0, y) = α(y), u(x = Lx, y) = 0, (9.1c)

160
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and

u(x, y = 0) = 0, u(x, y = Ly) = 0. (9.1d)

9.2 Decomposition

It is sensible to split the solution into two parts:

u(x, y) = u0(x, y) + u1(x, y),

where

• u0(x, y) satisfies Laplace’s equation ∇2u0 = 0 with inhomogeneous boundary conditions

u0(x = 0, y) = α(y), u0(x = Lx, y) = 0, u0(x, y = 0) = 0, u0(x, y = Ly) = 0.

• u1(x, y) satisfies Poisson’s equation ∇2u1 = −s(x, y) with homogeneous boundary conditions

u1(x = 0, y) = 0, u1(x = Lx, y) = 0, u1(x, y = 0) = 0, u1(x, y = Ly) = 0.

By linearity, u0 + u1 satisfies the full model Poisson equation (10.1a) with the full set of boundary

conditions (10.1c)–(10.1d).

9.3 Analytical solution – Laplace part

We solve for u0(x, y) using separation of variables, writing u0(x, y) = X(x)Y (y), which gives

1

X

d2X

dx2
+

1

Y

d2Y

dy2
= 0. (9.2)

The boundary conditions give Y (0) = Y (Ly) = 0 and X(Lx) = 0. The boundary condition at

x = 0 is as yet undetermined, as this amounts to

u(x = 0, y) = α(y) = X(0)Y (y).

We apply the separation-of-variables argument to Equation (9.2) to get

1

Y

d2Y

dy2
= −k2.
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In view of the y-boundary conditions, we take k = nπ/Ly, with n ∈ {1, 2, · · · }, and Y (y) =

sin(nπy/Ly). Then,
1

X

d2X

dx2
= k2.

The solution is made up of sinhes and coshes. We take

X = sinh[k(Lx − x)]

because this satisfies the boundary condition at x = Lx, i.e. X(Lx) = 0. Thus, the solution is now

u(x, y) =
∞∑
n=1

An sinh

[
nπ

Ly
(Lx − x)

]
sin

(
nπ

Ly
y

)
(general solution).

We now work on the boundary condition at x = 0. We have

u(x = 0, y) =
∞∑
n=1

An sinh

[
nπLx
Ly

]
sin

(
nπ

Ly
y

)
= α(y).

To back out the An’s, we multiply both sides of the above equation by (2/Ly) sin(n′πy/Ly) and

integrate, to obtain

∞∑
n=1

An sinh

[
nπLx
Ly

] [
2

Ly

∫ Ly

0

dy sin

(
nπ

Ly
y

)
sin

(
n′π

Ly
y

)]
︸ ︷︷ ︸

δnn′

=
2

Ly

∫ Ly

0

dy sin

(
n′π

Ly
y

)
α(y),

hence

An =
1

sinh
[
nπLx
Ly

] 2

Ly

∫ Ly

0

dy sin

(
nπ

Ly
y

)
α(y). (9.3)

The solution is therefore

u0(x, y) =
∞∑
n=1

An sinh

[
nπ

Ly
(Lx − x)

]
sin

(
nπ

Ly
y

)
,

where the An’s are given by Equation (9.3).

9.3.1 Analytical solution – Poisson part

It is not possible to solve for u1(x, y) using separation of variables because of the source term s(x, y).

However, we can still find a solution using the basis functions

φnm(x, y) =

√
2

Lx

√
2

Ly
sin

(
nπ

Lx
x

)
sin

(
mπ

Ly
y

)
.
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where n and m are positive integers. We multiply both sides of ∇2u1 = −s(x, y) by φnm and

integrate over the domain to obtain∫
Ω

φnm∇2u1 d2x = −
∫

Ω

φnms d2x := −ŝnm.

We focus on the left-hand side:

L.H.S. =

∫
Ω

φnm∇2u1 d2x,

=

∫
Ω

[∇ · (φnm∇u1)−∇φnm · ∇u1] dx,

=

∫
∂Ω

φnmn̂ · ∇u1d`−
∫

Ω

∇φnm · ∇u1 dx,

where n̂ is the outward-pointing unit normal to the domain boundary ∂Ω and d` is an element of

length along the domain boundary. In any case, φnm = 0 on ∂Ω (because φnm is made up of sine

functions that vanish on the boundary), hence

L.H.S. = −
∫

Ω

∇φnm · ∇u1 dx.

We apply integration by parts again:

L.H.S. = −
∫

Ω

∇φnm · ∇u1 d2x,

= −
∫

Ω

[
∇ · (u1∇φnm)− u1∇2φnm

]
d2x,

= −
∫
∂Ω

u1n̂ · ∇φnm d`+

∫
Ω

u1∇2φnm d2x.

The boundary integral here is zero because u1 = 0 on ∂Ω, which leaves

L.H.S. =

∫
Ω

u1∇2φnm d2x.

Hence,

L.H.S. = −k2
nm

∫
Ω

u1φnm d2x,

= −k2
nmû1nm,

where

k2
nm =

(
nπ

Lx

)
n2 +

(
nπ

Ly

)
m2.
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Hence,

û1nm =
ŝnm
k2
nm

.

The proposed solution is

u1(x, y) =
∞∑

n,m=1

û1nmφnm(x, y).

This makes sense, because the φnm’s are an orthonormal set:∫
Ω

φnmφn′m′d
2x = δnn′δmm′ .

Hence,

u1(x, y) =
∞∑

n,m=1

ŝnm
k2
nm

φnm(x, y).

Having constructed a solution to Equation (10.1), it is also the case that this is the only such smooth

solution:

Theorem 9.1 The solution u(x, y) = u0(x, y) + u1(x, y) is the unique smooth solution of Equa-

tion (10.1).

Exercise 9.1 Use the maximum principle to prove Theorem (9.1).



Chapter 10

Model Poisson equation – Numerical

setup

Overview

In this chapter we consider numerical solutions of the model Poisson equation. We introduce centred

differencing in space as a way of approximating the Laplace operator numerically. After doing this,

the PDE problem boils down to a linear-algebra problem wherein a matrix must be inverted. Jacobi

iteration is introduced as a method to do this, followed by the slightly more sophisticated SOR

method.

10.1 The model

We are interested in solving the PDE from Chapter 9, recalled here to be

∇2u+ s(x, y) = 0 (x, y) ∈ Ω, (10.1a)

where

Ω = (0, Lx)× (0, Ly), (10.1b)

and ∇2 = ∂2
x + ∂2

y is the Laplacian. The partial differential equation is subject to the following

dirichlet boundary conditions:

u(x = 0, y) = α(y), u(x = Lx, y) = 0, (10.1c)

and

u(x, y = 0) = 0, u(x, y = Ly) = 0. (10.1d)

165
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10.2 The discretization

We discretize the PDE and compute its approximate numerical solution on a discrete grid:

xi = (i− 1)∆x, i = 1, · · · , nx,

yj = (j − 1)∆y, j = 1, · · · , ny,

such that

(nx − 1)∆x = Lx, ∆x = Lx/(nx − 1),

and similarly, ∆y = Ly/(ny − 1). The Laplace operator in the PDE (10.1) is approximated by

centred differences:

(
∇2u

)
ij
≈ ui+1,j + ui−1,j − 2uij

∆x2
+
ui,j+1 + ui,j−1 − 2uij

∆y2
:= D(uij)

i = 2, 3, · · · , nx − 1, j = 2, 3, · · · , ny − 1.

Thus, the PDE to solve is reduced to a simpler problem in linear algebra;

ui+1,j + ui−1,j − 2uij
∆x2

+
ui,j+1 + ui,j−1 − 2uij

∆y2
= −sij,

i = 2, 3, · · · , nx − 1, j = 2, 3, · · · , ny − 1. (10.2)

where sij = s(xi, yj).

10.3 Jacobi method

The focus of this course is on the use of iterative methods to solve problems such as Equa-

tion (10.2). The idea is to make an initial guess for the solution, plug this into some algorithm for

refining the guess, and continue until this iterative procedure converges. The simplest and most

naive iterative method is the so-called Jacobi method. We re-write Equation (10.2) as

uij

(
2

∆x2
+

2

∆y2

)
=
ui+1,j + ui−1,j

∆x2
+
ui,j+1 + ui,j−1

∆y2
+ sij,
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or

uij =

ui+1,j+ui−1,j

∆x2
+

ui,j+1+ui,j−1

∆y2
+ sij

2
∆x2

+ 2
∆y2

,
(10.3)

all valid for i = 2, 3, · · · , nx − 1 and j = 2, 3, · · · , ny − 1. We introduce a sequence of guesses for

Equation (10.3), u1, u2, · · · , un, un+1, · · · , such that

un+1
ij =

uni+1,j+u
n
i−1,j

∆x2
+

uni,j+1+uni,j−1

∆y2
+ sij

1
∆x2

+ 1
∆y2

,
(10.4)

If this iterative scheme converges, then limn→∞ u
n = limn→∞ u

n+1, and the approximate solutions

un and un+1 can be replaced in Equation (10.4) with some identical array u∗, thereby forcing

Equation (10.4) to be identical to Equation (10.3).

10.4 Boundary conditions

The idea to solve the PDE (10.2) is to do Jacobi iteration at interior points. However, this approach

can only be used at interior points

i = 2, 3, · · · , nx − 1, j = 2, 3, · · · , ny − 1.

At boundary points, the boundary conditions are enforced: u = 0 at all boundaries except at x = 0.

Thus,

ui,1 = ui,ny = unx,j = 0,

and

u1,j = α(yj), yj = (j − 1)∆y.
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10.5 Jacobi Method – the code

A sample code using the Jacobi method is given below and available online. We will work with

Matlab first, before moving over to Fortran. The idea of this code is to use simple but still non-

trivial source terms (both bulk and surface sources – i.e. s(x, y) and α(y) respectively) that give

rise to a particularly simple analytical solution. The numerical and analytical solutions can then be

compared. This gives us confidence that the code is working. We can then go off and apply the

code to more complicated sources for which the analytical solution is unwieldy.

1 f u n c t i o n [ xx , yy , u , u t r u e , r e s i t ]= x t e s t p o i s s o n j a c o b i ( )

2

3 % Numer i ca l method to s o l v e

4 % [ D { xx}+D { yy } ]C=s ( x , y ) ,

5 % s u b j e c t to z e r o boundary c o n d i t i o n s e x c e p t on x=0 where u ( 0 , y )=a l p h a ( y )

6 % where a l p h a i s a g i v e n f u n c t i o n .

7

8 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
9 % Geometr i c p a r a m e t e r s :

10

11 a s p e c t r a t i o =2;

12 Ly =1. d0 ;

13 Lx=a s p e c t r a t i o ∗Ly ;

14

15 % Fundamental wavenumbers :

16

17 kx0=p i /Lx ;

18 ky0=p i /Ly ;

19

20 % Numer i ca l p a r a m e t e r s :

21

22 Ny=101;

23 Nx=a s p e c t r a t i o ∗(Ny−1)+1;

24

25 % Maximum number o f i t e r a t i o n s i n J a c o b i s o l v e r :

26 i t e r a t i o n m a x =5000;

27

28 dx=Lx /(Nx−1) ;

29 dy=Ly /(Ny−1) ;

30

31 dx2=dx∗dx ;

32 dy2=dy∗dy ;

33

34 % v e c t o r s o f x− and y−v a l u e s

35
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36 xx =0∗(1:Nx) ;

37 yy =0∗(1:Ny) ;

38

39 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
40 % Source p a r a m e t e r s

41

42 % Bulk s o u r c e s ( x , y ) − t h i s i s chosen h e r e to be a s i n g l e mode \ p h i {nm} ,

43 % m u l t i p l i e d by an a m p l i t u d e As .

44

45 As=10;

46 kx=kx0 ;

47 ky=3∗ky0 ;

48

49 % Boundary s o u r c e a l p h a ( y ) − t h i s i s chosen to be a s i n e f u n c t i o n

50 % s i n ( n \ a l p h a \ p i y/ L y ) , m u l t i p l i e d by an a m p l i u t d e A \ a l p h a .

51

52 n a l p h a =1;

53 A alpha =1;

54

55 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
56 % I n i t i a l i z e s o u r c e s

57

58 s s o u r c e=z e r o s (Nx , Ny) ;

59

60 f o r i =1:Nx

61 f o r j =1:Ny

62 x v a l =( i −1)∗dx ;

63 y v a l =( j −1)∗dy ;

64 s s o u r c e ( i , j )=As∗ s q r t (2/ Lx ) ∗ s q r t (2/ Ly ) ∗ s i n ( kx∗ x v a l ) ∗ s i n ( ky∗ y v a l ) ;

65 end

66 end

67

68 a l p h a s o u r c e =0∗(1:Ny) ;

69

70 f o r j =1:Ny

71 y v a l =( j −1)∗dy ;

72 a l p h a s o u r c e ( j )=A alpha ∗ s i n ( n a l p h a ∗ p i ∗ y v a l /Ly ) ;

73 end

74

75 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
76 % Compute a n a l y t i c s o l u t i o n − This i s made up o f u0 and u1 .

77

78

79 u 0 t r u e=z e r o s (Nx , Ny) ;

80 u 1 t r u e=z e r o s (Nx , Ny) ;
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81

82 f o r i =1:Nx

83 f o r j =1:Ny

84 xx ( i )=( i −1)∗dx ;

85 yy ( j )=( j −1)∗dy ;

86

87 u 0 t r u e ( i , j )=( A a lpha / s i n h ( n a l p h a ∗ p i ∗Lx/Ly ) ) ∗ s i n h ( ( n a l p h a ∗ p i /Ly ) ∗( Lx−xx

( i ) ) ) ∗ s i n ( n a l p h a ∗ p i ∗ yy ( j ) /Ly ) ;

88 u 1 t r u e ( i , j )=(As /( kx∗kx+ky∗ky ) ) ∗ s q r t (2/ Lx ) ∗ s q r t (2/ Ly ) ∗ s i n ( kx∗ xx ( i ) ) ∗ s i n ( ky

∗ yy ( j ) ) ;

89

90 end

91 end

92

93 u t r u e=u 0 t r u e+u 1 t r u e ;

94

95 % I t e r a t i o n s t e p ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
96 % I n i t i a l g u e s s f o r u :

97 u=z e r o s (Nx , Ny) ;

98

99 r e s i t =0∗(1: i t e r a t i o n m a x ) ;

100

101 f o r i t e r a t i o n =1: i t e r a t i o n m a x

102

103 u o l d=u ;

104

105 f o r i =2:Nx−1

106

107 im1=i −1;

108 i p 1=i +1;

109

110 f o r j =2:Ny−1

111

112 d i a g o n a l =(2. d0/ dx2 ) +(2. d0/ dy2 ) ;

113 tempva l =(1. d0/ dx2 ) ∗( u o l d ( ip1 , j )+u o l d ( im1 , j ) ) +(1. d0/ dy2 ) ∗( u o l d ( i , j

+1)+u o l d ( i , j −1) )+s s o u r c e ( i , j ) ;

114 u ( i , j )=tempva l / d i a g o n a l ;

115

116 end

117 end

118

119 % Implement D i r i c h l e t c o n d i t i o n s

120 u ( : , 1 ) =0;

121 u ( : , Ny) =0;

122 u (Nx , : ) =0;
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123

124 % S p e c i a l c o n d i t i o n at x =0.

125 u ( 1 , : )=a l p h a s o u r c e ;

126

127 r e s i t ( i t e r a t i o n )=max ( max ( abs ( u−u o l d ) ) ) ;

128

129 end

130

131 end

xcodes/poisson matlab/xtest poisson jacobi.m

Results for the presented parameter values / source terms are presented here also.

(a) (b)

(c)

Figure 10.1: Numerical results from the Matlab code

Figures 10.1(a)–(b) show the analytical and numerical results respectively. They are indistinguish-

able, showing the correctness of the numerical code. Figure 10.1(c) shows the L∞ norm of the

difference between successive iterations, maxΩ |un+1 − un|. Because this is decreasing to zero, the

Jacobi iteration scheme is converging.
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10.6 Successive over-relaxation – the idea

Start with the generic problem

Ax = b.

Recall the Jacobi solution:

DvN+1 = −RvN + b, x = lim
N→∞

vN .

In index notation, the Jacobi solution reads

vN+1
i = − 1

aii

n∑
j=1

Rikv
N
k + bi. (10.5)

The idea behind SOR is to retrospectively improve the ‘old guess’ vN that goes into formulating the

‘new guess’. If the ‘old guess’ can be retrospectively improved, then this makes the new guess even

better. To do this, the right-hand side of the Jacobi equation (10.5) is updated with just-recently-

created values of vN+1. Where this is not possible, the old values of vN are used. The result is the

following iterative scheme:

vN+1
i = − 1

aii

i−1∑
k=1

Rikv
N+1
k − 1

aii

n∑
k=i

Rikv
N
k +

bi
aii
. (10.6)

But Rii = 0, and Rij = aij otherwise. Hence, Equation (10.6) can be replaced by

vN+1
i =

1

aii

[
bi −

i−1∑
k=1

aikv
N+1
k −

n∑
k=i+1

aikv
N
k

]
. (10.7)

Equation (10.7) is not yet optimal (however, it is already the Gauss–Seidel method for solving a

linear system). Instead, we introduce an extra degree of freedom, which allows us to weight how

much or how little retrospective improvement of the old guess is implemented in the (N + 1)th

iteration step. This is done by a simple modification of Equation (10.7):

vN+1
i = (1− ω) vNi +

ω

aii

[
bi −

i−1∑
k=1

aikv
N+1
k −

n∑
k=i+1

aikv
N
k

]
(10.8a)

The factor ω is restricted to the range

0 < ω < 2; (10.8b)

this preserves the diagonal-dominance of the system and hence ensures convergence. The exact

choice of ω is made by trial-and-error in order to speed up convergence.
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Exercise 10.1 Modify the numerical model Poisson problem above to incorporate the SOR

algorithm and vectorization. Do some tests to find out roughly what is the best value of ω to

use. An answer clue is given in Figure 10.2.

Figure 10.2: Numerical results from the Matlab code – SOR method with ω = 1.2. In Matlab I

found that running the SOR code takes much longer than running the Jacobi code. This is all the

more reason to go over to Fortran – as in the next chapter.



Chapter 11

Introduction to Fortran

Overview

I am going to try an example-based introduction to Fortran, wherein I provide you with a sample

code, and then tell you about it. I will then ask you to some tasks based on the code, and to modify

it.

11.1 Preliminaries

A basic Fortran code is written in a single file with a .f90 file extension. It consists of a main part

together with subroutine definitions. A subroutine is like a subfunction in Matlab or C, with one

key difference that I will explain below.

The main part

The main code is enclosed by the following declaration pair:

program mainprogram

...

end program mainprogram

At the top level, all variables that are to be used must be declared (otherwise compiler errors

will ensue). Variables can be declared as integers or as double-precision numbers (other types are

possible and will be discussed later on). Before variable declarations are made, a good idea is to

type implicit none. This means that Fortran will not assume that symbols such as i have an

174
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(implicit) type. It is best to be honest with the compiler and tell it upfront what you are going to

do. Equally, it is not a good idea for the compiler to try to guess what you mean.

An array of double-precision numbers is defined as follows:

integer :: Nx,Ny

parameter (Nx = 201, Ny = 101)

double precision, dimension(1:Nx,1:Ny) :: my_array

This creates an array of double-precision numbers where the indices go from i = 1, 2, · · · , 201, and

j = 1, 2, · · · , 101. there is nothing special in Fortran about starting arrays with i = 1: they can

start from any integer whatsoever (positive or negative).

After defining all arrays and all other variables operations are performed on them using standard

manipulations. These typically include ‘do’ loops (the Fortran equivalent of ‘for’ loops), and ‘if’ and

‘if-else’ statements. The syntax for these operations is given below in the sample code (Section 11.2).

Column-major ordering

To understand column-major ordering, consider the following array:

A =

[
1 2 3

4 5 6

]

If stored in contiguous memory in a column-major format, this array will take the following form in

memory:

1 4 2 5 3 6.

Suppose that elements of the array A are denoted by Aij (i for rows, j for columns). When these

elements are accessed sequentially in contiguous memory, it is the row index that increases the

fastest. Thus, in Fortran, a do loop for manipulations on the array A should be written out as

follows:

do j=1,2

do i=1,3

! manipulations on A(i,j) here

...

end do

end do
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Subroutines

Subroutines contain discrete tasks that are repeated many times. Instead of having a main code that

contains multiple copies of the same piece of code, such code-tasks are relegated to subroutines.

The advantages are economy-of-code and computational efficiency. Unlike in C, arrays can be passed

to subroutines in a blindly straightforward manner. Examples of such subroutines can be found in

the sample code (Section 11.2).

As mentioned previously, a subroutine in Fortran is like a subfunction in C or Matlab. However,

there is one key difference: formally, a subroutine produces no explicit outputs. Thus, suppose

we want to operate on a variable x with an operation f to give a result y (formally, y = f(x)). In

Fortran, we view x and y as inputs to a subroutine wherein y is assigned the value f(x) as part of

the subroutine’s implementation. This will become clearer in examples.

Output

Finally, the result of these manipulations should be sent to a file, for subsequent reading. The values

in an array my array of size (1, · · · , Nx)× (1, · · ·Ny) can be written to a file as follows:

open(unit=20,file=’myfile.dat’,status=’UNKNOWN’)

do j=1,Ny

do i=1,Nx

write(20,*) my_array(i,j)

end do

end do

close(unit=20, status=’KEEP’)
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11.2 The code

The following code solves the model Poisson problem using SOR iteration. If done correctly, it

should reproduce exactly the results obtained previously in Matlab. An output file called ‘oned.dat’

is produced. I cannot remember why I called the output file by this name. However, these things

are rather arbitrary.

1 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2

3 program mainprogram

4 i m p l i c i t none

5

6 i n t e g e r : : Nx , Ny

7 pa ra me te r (Nx = 201 , Ny = 101)

8

9 d o u b l e p r e c i s i o n : : dx , dy , x v a l , y v a l , Lx , Ly , p i =4.∗ atan ( 1 . )

10 d o u b l e p r e c i s i o n : : ax , ay , d i a g v a l , r e l a x , tempval , e r r 1 , e r r 2

11 d o u b l e p r e c i s i o n : : As , A a lpha

12 d o u b l e p r e c i s i o n , d i m e n s i o n ( 1 : Nx , 1 : Ny) : : s s o u r c e , u , u o l d

13 d o u b l e p r e c i s i o n , d i m e n s i o n ( 1 : Ny) : : a l p h a s o u r c e

14

15 i n t e g e r : : i , j , im1 , ip1 , i t e r a t i o n , m a x i t e r a t i o n =5000

16

17 Ly =1. d0

18 Lx =2. d0

19

20 As=10. d0

21 A alpha =1. d0

22

23 dx=Lx/ d b l e (Nx−1)

24 dy=Ly/ d b l e (Ny−1)

25

26 ax =1. d0 /( dx∗dx )

27 ay =1. d0 /( dy∗dy )

28 d i a g v a l =2. d0∗ax +2. d0∗ay

29 r e l a x =1.5 d0

30

31 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
32 ! compute s o u r c e , i n i t i a l i s e g u e s s

33

34 s s o u r c e =0. d0

35 u=0. d0

36 u o l d =0. d0

37

38 w r i t e (∗ ,∗ ) ’ g e t t i n g b u l k s o u r c e ’
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39 c a l l g e t s p e r i o d i c ( s s o u r c e , Nx , Ny , dx , dy , Lx , Ly , As )

40 w r i t e (∗ ,∗ ) ’ done ’

41

42 w r i t e (∗ ,∗ ) ’ g e t t i n g boundary s o u r c e ’

43 c a l l g e t a l p h a p e r i o d i c ( a l p h a s o u r c e , Nx , Ny , dx , dy , Lx , Ly , A a lpha )

44 w r i t e (∗ ,∗ ) ’ done ’

45

46 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
47 ! s o r s t e p s

48

49 do i t e r a t i o n =1, m a x i t e r a t i o n

50 e r r 1 = 0 . 0

51

52 ! f o r k e e p i n g t r a c k o f t he e r r o r

53 u o l d=u

54

55 do j =2,Ny−1

56 do i =2,Nx−1

57

58 im1=i−1

59 i p 1=i +1

60

61 tempva l=ax ∗( u ( ip1 , j )+u ( im1 , j ) )+ay ∗( u ( i , j +1)+u ( i , j −1) )+s s o u r c e ( i , j

)

62 u ( i , j )=(1− r e l a x ) ∗u ( i , j )+r e l a x ∗ tempva l / d i a g v a l

63

64 end do

65 end do

66

67 ! Implement D i r i c h l e t c o n d i t i o n s

68 u ( : , 1 ) =0

69 u ( : , Ny)=0

70 u (Nx , : ) =0

71

72 ! S p e c i a l c o n d i t i o n at x =0.

73 do j =1,Ny

74 u ( 1 , j )=a l p h a s o u r c e ( j )

75 end do

76

77 i f (mod( i t e r a t i o n , 1 0 0 ) ==0)then

78 c a l l g e t d i f f ( u , u o l d , Nx , Ny , e r r 1 )

79 w r i t e (∗ ,∗ ) i t e r a t i o n , ’ D i f f e r e n c e i s ’ , e r r 1

80 end I f

81

82 end do
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83

84 w r i t e (∗ ,∗ ) ’ D i f f e r e n c e i s ’ , e r r 1

85

86

87 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
88 ! w r i t e r e s u l t to f i l e

89

90 w r i t e (∗ ,∗ ) ’ w r i t i n g to f i l e ’

91 open ( u n i t =20, f i l e = ’ oned . dat ’ , s t a t u s= ’UNKNOWN’ )

92

93 do j =1,Ny

94 do i =1,Nx

95 x v a l =( i −1)∗dx

96 y v a l =( j −1)∗dy

97 Write ( 2 0 ,∗ ) x v a l , y v a l , u ( i , j )

98 end do

99 end do

100 c l o s e ( u n i t =20, s t a t u s= ’KEEP ’ )

101 w r i t e (∗ ,∗ ) ’ done ’

102

103 end program mainprogram

104

105

106 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
107 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
108

109 s u b r o u t i n e g e t s p e r i o d i c ( s s r c , Nx , Ny , dx , dy , Lx , Ly , As )

110 i m p l i c i t none

111

112 i n t e g e r : : i , j , Nx , Ny

113 d o u b l e p r e c i s i o n : : dx , dy , Lx , Ly , x v a l , y v a l , p i =4.∗ atan ( 1 . )

114 d o u b l e p r e c i s i o n : : kx0 , ky0 , kx , ky , As

115 d o u b l e p r e c i s i o n : : s s r c ( 1 : Nx , 1 : Ny)

116

117 kx0=p i /Lx

118 ky0=p i /Ly

119

120 kx=kx0

121 ky =3. d0∗ky0

122

123 do j =1,Ny

124 do i =1,Nx

125 x v a l =( i −1)∗dx

126 y v a l =( j −1)∗dy

127 s s r c ( i , j )=As∗ s q r t ( 2 . d0/Lx ) ∗ s q r t ( 2 . d0/Ly ) ∗ s i n ( kx∗ x v a l ) ∗ s i n ( ky∗ y v a l )
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128 end do

129 end do

130

131 r e t u r n

132 end s u b r o u t i n e g e t s p e r i o d i c

133

134 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
135

136 s u b r o u t i n e g e t a l p h a p e r i o d i c ( a l p h a s r c , Nx , Ny , dx , dy , Lx , Ly , A a lpha )

137 i m p l i c i t none

138

139 i n t e g e r : : i , j , Nx , Ny , n a l p h a

140 d o u b l e p r e c i s i o n : : dx , dy , Lx , Ly , x v a l , y v a l , p i =4.∗ atan ( 1 . )

141 d o u b l e p r e c i s i o n : : A a lpha

142 d o u b l e p r e c i s i o n : : a l p h a s r c ( 1 : Ny)

143

144 n a l p h a=1

145

146 do j =1,Ny

147 y v a l =( j −1)∗dy

148 a l p h a s r c ( j )=A alpha ∗ s i n ( n a l p h a ∗ p i ∗ y v a l /Ly )

149 end do

150

151 r e t u r n

152 end s u b r o u t i n e g e t a l p h a p e r i o d i c

153

154 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
155

156 s u b r o u t i n e g e t d i f f ( u , u o l d , Nx , Ny , d i f f )

157 i m p l i c i t none

158

159 d o u b l e p r e c i s i o n : : d i f f , sum

160 i n t e g e r : : Nx , Ny , i , j

161 d o u b l e p r e c i s i o n , d i m e n s i o n ( 1 : Nx , 1 : Ny) : : u , u o l d

162

163 sum = 0 . 0 D0

164 Do j = 1 , Ny

165 Do i = 1 , Nx

166 sum = sum + ( u ( i , j )−u o l d ( i , j ) ) ∗∗2

167 End Do

168 End Do

169 d i f f = sum

170

171 Return

172 End s u b r o u t i n e g e t d i f f
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173

174 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
175 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

xcodes/poisson fortran/main periodic sor.f90
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11.3 Porting Output into Matlab

It can be useful to examine the data in a file such as ‘oned.dat’ in Matlab. There are many ways of

doing this. Below is my favourite way:

1 f u n c t i o n [ X, Y, C]= o p e n d a t f i l e ( )

2

3 % We need to s p e c i f y t he s i z e o f t he c o m p u t a t i o n a l domain , as t h i s can ’ t be

4 % i n f e r r e d from t he d a t a f i l e .

5

6 Nx=201;

7 Ny=101;

8

9 % Here I c r e a t e a c h a r a c t e r a r r a y c a l l e d ” f i l e n a m e ” . Th i s s h o u l d

10 % c o r r e s p o n d to t he name o f t he F o r t r a n−g e n e r a t e d f i l e .

11

12 f i l e n a m e= ’ oned . dat ’ ;

13

14 % Here i s th e number o f l i n e s i n th e d a t a f i l e .

15 n l i n e s=Nx∗Ny ;

16

17 % Open th e f i l e . Here , f i d i s a l a b e l t h a t l a b e l s which l i n e i n th e f i l e

18 % i s b e i n g r e a d . O b v i o u s l y , upon o p e n i n g th e f i l e , we a r e at l i n e 1 .

19

20 f i d=fo pe n ( f i l e n a m e ) ;

21

22 % P r e a l l o c a t e some a r r a y s f o r s t o r i n g t he data .

23

24 X=0∗(1: n l i n e s ) ;

25 Y=0∗(1: n l i n e s ) ;

26 C=0∗(1: n l i n e s ) ;

27

28 % Loop o v e r a l l l i n e s .

29

30 f o r i =1: n l i n e s

31 % Grab t he data from t he c u r r e n t l i n e . Once t he data i s grabbed , the

32 % l a b e l f i x a u t o m a t i c a l l y moves on to th e n e x t l i n e .

33 % The data from the c u r r e n t l i n e i s grabbed i n t o a s t r i n g − h e r e c a l l e d

34 % c1 .

35 c1=f g e t l ( f i d ) ;

36

37 % Next I have to c o n v e r t th e t h r e e s t r i n g s on any g i v e n l i n e i n t o t h r e e

38 % d o u b l e s . Th i s i s done by s c a n n i n g th e s t r i n g i n t o an a r r a y o f

39 % d o u b l e s , u s i n g th e ” s s c a n f ” command :

40 vec temp=s s c a n f ( c1 , ’%f ’ ) ;
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41

42 % Now i t i s s i m p l e : j u s t a s s i g n each d o u b l e to a v a l u e x , y , o r C .

43 x temp=vec temp ( 1 ) ;

44 y temp=vec temp ( 2 ) ;

45 C temp=vec temp ( 3 ) ;

46

47 % Read t he x−, y−, and C−v a l u e s i n t o t h e i r own a r r a y s .

48 X( i )=x temp ;

49 Y( i )=y temp ;

50 C( i )=C temp ;

51 end

52

53 % F i n a l l y , r e s h a p e t h e s e a r r a y s i n t o p h y s i c a l , two−d i m e n s i o n a l a r r a y s .

54

55 X=r e s h a p e (X, Nx , Ny) ;

56 Y=r e s h a p e (Y, Nx , Ny) ;

57 C=r e s h a p e (C , Nx , Ny) ;

58

59 % I m p o r t a n t ! C l o s e th e f i l e so t h a t i t i s not l e f t d a n g l i n g . Not c l o s i n g a

60 % f i l e p r o p e r l y means t h a t i n f u t u r e , i t w i l l be d i f f i c u l t to m a n i p u l a t e

61 % i t . For example , i t i s i m p o s s i b l e to d e l e t e o r rename a a c u r r e n t l y−open

62 % f i l e .

63

64 f c l o s e ( f i d ) ;

65

66 end

xcodes/poisson fortran/open dat file.m

This file should be stored in the same directory as ‘oned.dat’. Then, at the command line, type

[X,Y,C]=open_dat_file();

The results can be visualized as usual:

[h,c]=contourf(X,Y,C);

set(c,’edgecolor’,’none’)

Provided the source function and domain size are the same in both cases, this figure should agree

exactly with the one generated previously using only Matlab. As before,

s(x, y) = A0 sin(kxx) sin(kyy), (11.1)

with kx = kx0 and ky = 3ky0, and A0 = 10. Further details: kx0 = (π/Lx) is the fundamental

wavenumber in the x-direction, and ky0 = π/Ly is the fundamental wavenumber in the y-direction.
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The domain geometry is chosen to be Lx = 2 and Ly = 1. As expected, the solution agrees exactly

Figure 11.1: Solution of the Poisson problem for the source (11.1). Grid size: Nx = 201 and
Ny = 101.

with the ones calculated previously, both analytically and using the Matlab code. However, the

execution time is dramatically reduced when using the Fortran code.

11.4 The challenge problem

Consider the following PDE:

∇2u+ s(x, y) = 0 (x, y) ∈ Ω, (11.2a)

where

Ω = (0, Lx)× (0, Ly), (11.2b)

and ∇2 = ∂2
x + ∂2

y is the Laplacian. The partial differential equation is subject to the following

Dirichlet boundary conditions:

u(x = 0, y) = α(y), (11.2c)

u(x, y = 0) = β(x), (11.2d)

u(x = Lx, y) = γ(y), (11.2e)

u(x, y = Ly) = δ(x) (11.2f)
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Exercise 11.1 Write a Fortran code to solve Equation (11.2). For definiteness, take s = 0,

and

u(x = 0, y) = Aα sin(πy/Ly), (11.3a)

u(x, y = 0) = Aβ sin(πx/Lx), (11.3b)

u(x = Lx, y) = Aγ sin(πy/Ly), (11.3c)

u(x, y = Ly) = Aδ sin(πx/Lx), (11.3d)

where Aα, · · · , Aδ are prescribed constants. Plot the result using Matlab. Also, verify that the

solution satisfies the maximum principle.
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Introduction to shared memory

Overview

Although a modern desktop computer will have a single CPU, they possess possess two (or more)

processing units (or cores), which are placed on the same chip. The cores share some cache (‘L2

cache’), while some other cache is private to each core (‘L1 cache’). This enables the computer to

break up a computational task into two (or more) parts, work on each task separately, via the private

cache, and communicate necessary shared data via the shared cache. This architecture therefore

facilitates a basic form of parallel computing, thereby speeding up computation times. High-level

programs such as MATLAB take advantage of multiple-core computing without any direction from

the user. On the other hand, lower-level programming languages such as Fortran require explicit

direction from the user in order to implement multiple-core processing. The aim of this chapter is

to do precisely this, usingthe OpenMP standard.

By way of notation, we reserve the word processor for the entire chip, which will consist of multiple

sub-units called cores. Sometimes the cores are referred to as threads and this kind of computing

is called multi-threaded.

12.1 Shared memory – concepts

A useful schematic diagram of shared memory is the following one, obtained on Wikipedia (Fig-

ure 12.1):

186
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Figure 12.1: Schematic diagram of a multithreaded calculation

The idea is that a code in the absence of multithreading trivially consists of a single thread called the

master. Then, when a particularly heavy piece of computation needs to be done (such as a large

nested ‘do’ loop), the master breaks the task into many threads. Different parts of the calculation

are done on different threads. If the calculation is non-local (also, if the amount of data operated

on is small), such that on thread X, data from thread Y is required, then all such data is stored in

the L2 cache, to be shared between X and Y and all other threads. On the other hand, data which

is strictly local to thread X can be stored in the L1 cache of X. Finally, when all the threads have

done their part of the calculation, they rejoin the master. At this end-stage, the master must have

access to the necessary data in the L2 cache.

The advantage of such a concept is the existence of a set of simple directives (understandable

to a Fortran compiler) to implement multi-threading. The purpose of this chapter is to explain

these directives to you. However, a disadvantage of this approach is the limitation imposed by the

computer architecture: we can only access as much parallelism as there are cores on the computer.

A desktop will have 2 or 4 cores; some machines will have 8 or even 16 cores. Thus, a theoretical

speedup of 16 is possible, but no higher. Further limitations:

• The finite bandwidth of the bus that enables communication between the memory of the

individual threads (speedup limitation)

• The finite amount of global memory accessible by all the threads (jobsize limitation)

These severe architecture-dependent limitations are overcome by moving to a more sophisticalted

parallelism called MPI, beyond the scope of this course.
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12.2 OMP directives

To split up a Fortran ‘do loop’ into threads, it suffices to put a special line before and after the

loop, and to decide which variables are thread-private and which variables are shared. Typically,

• Arrays that are operated on are shared.

• Intermediate variables and loop variables (i, j etc) are private.

Common programming errors:

• Not specifiying which variables are private and which are shared – can lead to catastrophic

errors.

• Not initializing private variables. At thread-creation time, all private variables have no

value and must be assigned some initial value explicitly in the code.

An example of the relevant OMP directives is shown here. This piece of code assigns the array

f src some value.

!$omp parallel default(shared), private(i,j,x_val,y_val)

!$omp do

do j=1,Ny

do i=1,Nx

x_val=i*dx-(dx/2.d0)

y_val=j*dy-(dy/2.d0)

f_src(i,j)=-A0*cos(kx*x_val)*cos(ky*y_val)

end do

end do

!$omp end do

!$omp end parallel

The convention here is that all variables are shared – unless indication is given to the contrary. Thus,

the private variables are only those intermediate variables that are useed in the construction of the

final answer. These private variables are x val, y yval, i, and j.
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12.3 OMP and SOR

It would appear that to do SOR with OMP, it suffices blindly to stick a few lines of code in front

of the relevant ‘do’ loops. However, this could be dangerous, and lead to the failure of the SOR

algorithm. Suppose that an array Cij is being obtained by SOR iteration, such that some old

value Cold
ij is being replaced by a new improved value Cnew

ij . Assume that for a fixed j, a sweep is

performed, starting at i=1. Thus, symbolically,

Cnew
ij = f

(
Cnew
i−1j, C

old
i+1j

)
,

where f is some linear function that depends on the particular matrix problem being solved. Now

suppose that this job has been split up into threads that share the array C via shared memory.

Suppose that Cij is being operated on using thread X. For some i, it may be the case that Cnew
i−1j is

operated on using thread Y 6= X. Thread X may ‘race ahead’ of thread Y , such that C is replaced

by Cnew slowly on thread Y compared to thread X. Thus, thread Y may use Cold
i−1j to update

Cij, instead of Cnew
i−1j, possibly causing the failure of the SOR method and non-convergence. This

is an example of a so-called ‘race condition’ on OMP, and is to be avoided if possible (they can be

catastrophic).

Common programming error:

Not noticing a race condition – they are common and not restricted to the SOR algorithm. They

typically involve arrays whose elements are being updated with other elements from the same

array.

Red-black coloring

The race condition for SOR can be overcome by implementing something called red-black coloring.

This works only for problems (such as the Poisson problem) where the discretization uses only nearest

neighbours (however, if neighbours other than the nearest neighbours are needed, then a scheme

with more colours than just red and black will work). The SOR sweep is split into two half-steps.

During the first half-step, and for fixed j, grid sites with even i are updated. During the next

half-step, grid sites with odd i are updated.

Alternatively, for fixed j, grid sites with even i can be thought of as being ‘red’, while grid sites

with odd i can be thought of as being ‘black’. During the first half-sweep, red sites are updated

with the old black values (consistent with the SOR algorithm), and during the second half-seep, the

black sites are updated with the just-updated (new) red values.



190 Chapter 12. Introduction to shared memory

Figure 12.2: Schematic diagram of red-black coloring for the SOR algorithm

The advantage of this approach is synchronization: the second half-sweep does not begin until the

first half-sweep has been completed by all threads. The first half-sweep is straightforward: red

values are updated with old black values. This sweep is implemented on all threads which then join

the master. Then, during the second half-sweep, the threads fork again and the black values are

updated with a consistent set of (new) red values.

12.4 Other simple OMP tricks

You may have noticed by now that Fortran (in its ‘.f90’ incarnation) supports vectorization. That

is, for a square array C with

i = 1, 2, · · · , nx, j = 1, 2, · · · , ny, (12.1)

the operation

do j=1,n_y

do i=1,n_x

C(i,j)=1.d0

end do

end do

can be implemented equivalently as
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C=1.d0

This is still an array operation, whose speed of implementation can be increased with OpenMP. The

relevant directive is called a workshare:

!$omp parallel workshare

C=1.d0

!$omp end parallel workshare

Finally, there are some situations where an array needs to be populated using a very simple formula,

with no need for intermediate or temporary variables. Suppose that we wanted to create an array

Dij =
1

∆x2
(Ci+1,j + Ci−1,j − 2Cij) +

1

∆z2
(Ci,j+1 + Ci,j−1 − 2Cij) (12.2)

to store a numerical approximation of the Laplacian of C, where C is a square array with the

same indices as in Equation (12.1). Of course, it is not possible to compute the Laplacian at

boundary points, so we do not even attempt such a thing. The operation in Equation (12.2) can be

implemented using a parallel forall loop as follows:

!$omp parallel workshare

forall (i = 2:nx-1, j=2:ny-1)

D(i,j)=(1.d0/dx*dx)*(C(i+1,j)+C(i-1,j)-2.d0*C(i,j)) &

+(1.d0/dy*dy)*(C(i,j-1)+C(i,j+1)-2.d0*C(i,j))

end forall

!$omp end parallel workshare

Note the use of a continuation character to enable a line to be broken, for ease of reading.

12.5 OMP reduction

Sometimes an operation is performed on each thread, with a certain local result, and it is necessary

to combine all such local results back into the master thread. Examples of this kind include sums

and maxima. For example, suppose that an array C is split up between threads, such that thread i

operates only on a chunk of the array, say C(i). Then, suppose that on thread i, the following sum

is computed

si =
∑
pq

C(i)
pq .
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It might become necessary during the course of an assignment to compute

s =
∑
i

si, sum over all threads.

This is an example of an OMP reduction. The syntax for this operation is given in the following

example.

subroutine get_diff(u,u_old,maxl,maxn,diff)

implicit none

double precision :: diff,sum

integer :: maxl,maxn,i,j,tid

double precision, dimension(0:maxl,0:maxn) :: u, u_old

sum = 0.0D0

!$omp parallel do default(shared), &

!$omp private(i,j), &

!$omp reduction(+:sum)

Do j = 1, maxn

Do i = 1, maxl

sum = sum + (u(i,j)-u_old(i,j))**2

End Do

End Do

!$omp end parallel do

diff = sum

Return

End subroutine get_diff

Common programming errors:

Reduction can only be done on shared variables.



Chapter 13

Multithreading for the model Poisson

equation

Overview

We solve the model Poisson problem numerically using OpenMP. We test the code’s parallel effi-

ciency.

13.1 The code for the model Poisson problem

1 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2

3 program mainprogram

4 i m p l i c i t none

5

6 i n t e g e r : : Nx , Ny

7 pa ra me te r (Nx = 201 , Ny = 101)

8

9 d o u b l e p r e c i s i o n : : dx , dy , x v a l , y v a l , Lx , Ly , p i =4.∗ atan ( 1 . )

10 d o u b l e p r e c i s i o n : : ax , ay , d i a g v a l , r e l a x , tempval , e r r 1 , e r r 2

11 d o u b l e p r e c i s i o n : : As , A a lpha

12 d o u b l e p r e c i s i o n , d i m e n s i o n ( 1 : Nx , 1 : Ny) : : s s o u r c e , u , u o l d

13 d o u b l e p r e c i s i o n , d i m e n s i o n ( 1 : Ny) : : a l p h a s o u r c e

14

15 i n t e g e r : : i , j , im1 , ip1 , i t e r a t i o n , m a x i t e r a t i o n =5000

16

17 i n t e g e r : : t i d , numthreads , OMP GET THREAD NUM, OMP GET NUM THREADS

18

19 Ly =1. d0

193
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20 Lx =2. d0

21

22 As=10. d0

23 A alpha =1. d0

24

25 dx=Lx/ d b l e (Nx−1)

26 dy=Ly/ d b l e (Ny−1)

27

28 ax =1. d0 /( dx∗dx )

29 ay =1. d0 /( dy∗dy )

30 d i a g v a l =2. d0∗ax +2. d0∗ay

31 r e l a x =1.5 d0

32

33 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
34 ! V e r i f y t h a t OMP i s work ing

35

36 ! $omp p a r a l l e l

37 numthreads=OMP GET NUM THREADS( )

38 ! $omp end p a r a l l e l

39

40 w r i t e (∗ ,∗ ) ’ number o f t h r e a d s= ’ , numthreads

41

42 ! $omp p a r a l l e l d e f a u l t ( s h a r e d ) , p r i v a t e ( t i d )

43 t i d=OMP GET THREAD NUM( )

44 w r i t e (∗ ,∗ ) ’ h e l l o from t h r e a d number ’ , t i d

45 ! $omp end p a r a l l e l

46

47 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
48 ! compute s o u r c e , i n i t i a l i s e g u e s s

49

50 s s o u r c e =0. d0

51 u=0. d0

52 u o l d =0. d0

53

54 w r i t e (∗ ,∗ ) ’ g e t t i n g b u l k s o u r c e ’

55 c a l l g e t s p e r i o d i c ( s s o u r c e , Nx , Ny , dx , dy , Lx , Ly , As )

56 w r i t e (∗ ,∗ ) ’ done ’

57

58 w r i t e (∗ ,∗ ) ’ g e t t i n g boundary s o u r c e ’

59 c a l l g e t a l p h a p e r i o d i c ( a l p h a s o u r c e , Nx , Ny , dx , dy , Lx , Ly , A a lpha )

60 w r i t e (∗ ,∗ ) ’ done ’

61

62 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
63 ! s o r s t e p s

64
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65 do i t e r a t i o n =1, m a x i t e r a t i o n

66 e r r 1 = 0 . 0

67

68 ! f o r k e e p i n g t r a c k o f t he e r r o r

69 ! $omp p a r a l l e l w o r k s h a r e

70 u o l d=u

71 ! $omp end p a r a l l e l w o r k s h a r e

72

73 ! F i r s t sweep

74 c a l l d o s o r u ( u , s s o u r c e , dx , dy , Nx , Ny , 0 )

75 ! Second sweep

76 c a l l d o s o r u ( u , s s o u r c e , dx , dy , Nx , Ny , 1 )

77

78 ! Implement D i r i c h l e t c o n d i t i o n s

79 u ( : , 1 ) =0

80 u ( : , Ny)=0

81 u (Nx , : ) =0

82

83 ! S p e c i a l c o n d i t i o n at x =0.

84 do j =1,Ny

85 u ( 1 , j )=a l p h a s o u r c e ( j )

86 end do

87

88 i f (mod( i t e r a t i o n , 1 0 0 ) ==0)then

89 c a l l g e t d i f f ( u , u o l d , Nx , Ny , e r r 1 )

90 w r i t e (∗ ,∗ ) i t e r a t i o n , ’ D i f f e r e n c e i s ’ , e r r 1

91 end I f

92

93 end do

94

95 w r i t e (∗ ,∗ ) ’ D i f f e r e n c e i s ’ , e r r 1

96

97

98 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
99 ! w r i t e r e s u l t to f i l e

100

101 w r i t e (∗ ,∗ ) ’ w r i t i n g to f i l e ’

102 open ( u n i t =20, f i l e = ’ oned . dat ’ , s t a t u s= ’UNKNOWN’ )

103

104 do j =1,Ny

105 do i =1,Nx

106 x v a l =( i −1)∗dx

107 y v a l =( j −1)∗dy

108 Write ( 2 0 ,∗ ) x v a l , y v a l , u ( i , j )

109 end do
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110 end do

111 c l o s e ( u n i t =20, s t a t u s= ’KEEP ’ )

112 w r i t e (∗ ,∗ ) ’ done ’

113

114 end program mainprogram

115

116

117 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
118 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
119

120 s u b r o u t i n e g e t s p e r i o d i c ( s s r c , Nx , Ny , dx , dy , Lx , Ly , As )

121 i m p l i c i t none

122

123 i n t e g e r : : i , j , Nx , Ny

124 d o u b l e p r e c i s i o n : : dx , dy , Lx , Ly , x v a l , y v a l , p i =4.∗ atan ( 1 . )

125 d o u b l e p r e c i s i o n : : kx0 , ky0 , kx , ky , As

126 d o u b l e p r e c i s i o n : : s s r c ( 1 : Nx , 1 : Ny)

127

128 kx0=p i /Lx

129 ky0=p i /Ly

130

131 kx=kx0

132 ky =3. d0∗ky0

133

134 do j =1,Ny

135 do i =1,Nx

136 x v a l =( i −1)∗dx

137 y v a l =( j −1)∗dy

138 s s r c ( i , j )=As∗ s q r t ( 2 . d0/Lx ) ∗ s q r t ( 2 . d0/Ly ) ∗ s i n ( kx∗ x v a l ) ∗ s i n ( ky∗ y v a l )

139 end do

140 end do

141

142 r e t u r n

143 end s u b r o u t i n e g e t s p e r i o d i c

144

145 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
146

147 s u b r o u t i n e g e t a l p h a p e r i o d i c ( a l p h a s r c , Nx , Ny , dx , dy , Lx , Ly , A a lpha )

148 i m p l i c i t none

149

150 i n t e g e r : : i , j , Nx , Ny , n a l p h a

151 d o u b l e p r e c i s i o n : : dx , dy , Lx , Ly , x v a l , y v a l , p i =4.∗ atan ( 1 . )

152 d o u b l e p r e c i s i o n : : A a lpha

153 d o u b l e p r e c i s i o n : : a l p h a s r c ( 1 : Ny)

154
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155 n a l p h a=1

156

157 do j =1,Ny

158 y v a l =( j −1)∗dy

159 a l p h a s r c ( j )=A alpha ∗ s i n ( n a l p h a ∗ p i ∗ y v a l /Ly )

160 end do

161

162 r e t u r n

163 end s u b r o u t i n e g e t a l p h a p e r i o d i c

164

165 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
166

167 s u b r o u t i n e g e t d i f f ( u , u o l d , Nx , Ny , d i f f )

168 i m p l i c i t none

169

170 d o u b l e p r e c i s i o n : : d i f f , sum

171 i n t e g e r : : Nx , Ny , i , j

172 d o u b l e p r e c i s i o n , d i m e n s i o n ( 1 : Nx , 1 : Ny) : : u , u o l d

173

174 sum = 0 . 0 D0

175 ! $omp p a r a l l e l do d e f a u l t ( s h a r e d ) , &

176 ! $omp p r i v a t e ( i , j ) , &

177 ! $omp r e d u c t i o n (+:sum )

178 Do j = 1 , Ny

179 Do i = 1 , Nx

180 sum = sum + ( u ( i , j )−u o l d ( i , j ) ) ∗∗2

181 End Do

182 End Do

183 ! $omp end p a r a l l e l do

184 d i f f = sum

185

186 Return

187 End s u b r o u t i n e g e t d i f f

188

189 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
190 ! ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
191

192 s u b r o u t i n e d o s o r u ( u , s s o u r c e , dx , dy , Nx , Ny , f l a g )

193 i m p l i c i t none

194

195 i n t e g e r : : i , j , ip1 , im1 , Nx , Ny , f l a g

196 d o u b l e p r e c i s i o n : : dx , dy , ax , ay

197 d o u b l e p r e c i s i o n : : s s o u r c e ( 1 : Nx , 1 : Ny) , u ( 1 : Nx , 1 : Ny)

198

199 d o u b l e p r e c i s i o n : : r e l a x , d i a g v a l , tempva l
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200

201 ax =1. d0 /( dx∗dx )

202 ay =1. d0 /( dy∗dy )

203 d i a g v a l =2. d0∗ax +2. d0∗ay

204 r e l a x =1.5 d0

205

206 ! $omp p a r a l l e l d e f a u l t ( s h a r e d ) , p r i v a t e ( i , j , im1 , ip1 , tempva l )

207 ! $omp do

208 do j =2,Ny−1

209 do i=mod( j+f l a g , 2 ) +2,Nx−1,2

210

211 im1=i−1

212 i p 1=i +1

213

214 tempva l=ax ∗( u ( ip1 , j )+u ( im1 , j ) )+ay ∗( u ( i , j +1)+u ( i , j −1) )+s s o u r c e ( i , j )

215 u ( i , j )=(1− r e l a x ) ∗u ( i , j )+r e l a x ∗ tempva l / d i a g v a l

216

217 end do

218 end do

219 ! $omp end do

220 ! $omp end p a r a l l e l

221

222 end s u b r o u t i n e d o s o r u

xcodes/poisson fortran/main periodic omp.f90
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13.2 Execution

On a local machine, compilation is done as follows:

gfortran main_periodic_omp.f90 -o poisson.x -fopenmp

An environment variable then needs to be set, as the computer needs to know how many threads

to use. This is done as follows:

export OMP_NUM_THREADS=2

The code is then executed in the usual way, e.g.

./poisson.x

A nice thing about the code I have written (hehe) is that some diagnostic messages are printed to

the standard output at runtime to check that the stated number of threads really is being used.

This can be seen here:

In this way we are sure that the code is running on two threads.
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13.3 OMP reduction – revsited

Recall in Chapter 12 we examined a method to reduce a sum over all threads. It is instructive to

consider an alternative method for doing the OMP reduction in the subroutine get diff:

subroutine get_diff(C,C_old,Nx,Ny,diff_val)

implicit none

integer :: Nx,Ny,i,j

double precision, dimension(1:Nx,1:Ny) :: C, C_old

integer :: large,tid,numthreads,OMP_GET_THREAD_NUM,OMP_GET_NUM_THREADS

parameter (large=100)

double precision :: diff_vec(0:large),diff_val

!$omp parallel

numthreads = OMP_GET_NUM_THREADS()

!$omp end parallel

!$omp parallel default(shared), private(i,j,tid,diff_val)

tid=OMP_GET_THREAD_NUM()

diff_val=0.d0

!$omp do

Do j = 1, Ny

Do i = 1, Nx

diff_val = diff_val + (C(i,j)-C_old(i,j))**2

End Do

End Do

!$omp end do

diff_vec(tid)=diff_val

write(*,*) ’tid= ’,tid,’diff= ’,diff_val, ’num threads= ’,numthreads

!$omp end parallel

diff_val=0.d0

do tid=0,numthreads-1

diff_val=diff_val+diff_vec(tid)

end do
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Return

End subroutine get_diff

This subroutine makes use of some new OMP directives – and OMP GET NUM THREADS, and

OMP GET THREAD NUM:

• When called in a parallel region,OMP GET NUM THREADS returns an integer N , the number of

threads available. It must be called in a parallel region – otherwise the answer returned will

be 1.

• When called in a parallel region, OMP GET THREAD NUM returns an integer i that labels the

current thread, with i = 0, · · · , N − 1.

Exercise 13.1 Implement both kinds of reduction for the model Poisson problem and compare

the residuals. Comment on the result.

Exercise 13.2 Write a Fortran code from scratch that computes

p(N) =
N∑
n=1

1

n2
.

Parallelize the code using OpenMP, in particular an OMP reduction for the summation.

Now, suppose however that the maximum over all rows and columns of the residual array is required.

Here, a similar operation can be performed to obtain the maximum over all threads – either by explicit

computation, or by OMP reduction. Notionally, the reduction takes place as follows. Suppose we

have an array C, split up between threads, such that thread i operates only on a chunk of the array,

say C(i). Then, suppose that on thread i, the following maximum is computed

mi = max
pq
|C(i)

pq |.

Suppose now we are interested in computing

m = max (m1,m2, · · · ) , maximum over all threads.

The syntax for this is as follows:
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subroutine get_diff(u,u_old,maxl,maxn,diff)

implicit none

double precision :: diff,max_val,temp_val

integer :: maxl,maxn,i,j

double precision, dimension(0:maxl,0:maxn) :: u, u_old

max_val=0.d0

!$omp parallel do default(shared), &

!$omp private(i,j,temp_val), &

!$omp reduction(max:max_val)

Do j = 1, maxn

Do i = 1, maxl

temp_val=abs(u(i,j)-u_old(i,j))

if( temp_val .gt. max_val) then

max_val=temp_val

end if

End Do

End Do

!$omp end parallel do

diff = max_val

Return

End subroutine get_diff

13.4 Tasks – timing

OpenMP provides built-in functions to time the execution of a parallel code. In the main code, when

variables are declared, one declares three further variables:

real(8) :: start_time, end_time, OMP_get_wtime

Consider now a given parallel task that is to be performed. Before execution, one measures the wall

time:

start_time=OMP_get_wtime()
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Number of threads Time in seconds

16 3.0292
8 0.8109
4 1.2498
2 1.9827
1 2.7388

Table 13.1: Execution times for the SOR iteration (model Poisson problem)

Then, the parallel segment of code is run and the wall time is measured again:

end_time=OMP_get_wtime()

The total execution time is the difference of these two snapshots:

write(*,*) ’ Walltime is ’, end_time-start_time

I timed the execution of the SOR code on a 201×201 grid, with 1,000 SOR iterations and tabulated

the results (Table 13.1). I also plotted the same information in Figure 13.1. The results are okay

Figure 13.1: Execution times for the SOR iteration (model Poisson problem)

but not brilliant:

• For N = 1, 2, 4, 8 the execution time decreases with the increase in thread count. This is

good! Our code is running faster because of the multi-threading.

• However, as N increases the gains of the multi-threading become less and less. Indeed, at

N = 16 something disastrous happens, and the parallel code takes longer to run than the serial

code. The reasons for this can be manifold. A possibility is the existence of communication
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overheads – threads need to share data, not all of which may be in the cache. When threads

spend time sharing data, it is wasted time, in other words, time that should be better spent

doing the actual calculation. Therefore, we say that our code scales out to 8 threads, and

we speak of our code’s scalability.

• The parallel efficiency is defined to be

EN =
TN
NT1

,

where N is the number of threads, TN is the time required to run on N threads and T1 is the

time required to run on a single thread. The fall-off in the parallel efficiency as N increases

provides evidence that the gains obtained from the multi-threading diminish at higher thread-

counts. At N = 16 the parallel efficiency is only 6%!
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Memory allocation in Fortran

Overview

We discuss dynamic memory allocation, particularly suitable for large arrays. We extend the model

Poisson problem to three dimensions and solve it numerically.

14.1 Dynamic versus static; heap versus stack

So far in Fortran we have declared variables to be of a definite type, for example, integers, doubles,

and characters. Additionally, we have created arrays of doubles, where these arrays are of a fixed

size. The syntax for the array allocation is really quite definite and hints at the immutability of

arrays so created:

integer :: Nx,Ny

parameter (Nx = 201, Ny = 101)

double precision, dimension(1:Nx,1:Ny) :: C

Here, the array C gets a fixed size that cannot be altered. We say that the array C is static.

Because the amount of memory necessary for the creation of this array is known precisely, the array

C can be placed in that highly-structured part of memory known as the stack. In contrast, there

are situations where static arrays are not desirable:

• If the size of the array C needs to change in the course of a calculation;

• If the size of the array C is simply too large to fit in the stack.

In these situations, it is better to allocate the array C dynamically, on the heap. The syntax for

the dynamic allocation of the array C is shown here:

205
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integer :: Nx,Ny

parameter (Nx = 201, Ny = 201, Nz=101)

double precision, allocatable, dimension(:,:) :: C

...

...

! **************************************************************

! Allocate variables

allocate(C(1:Nx,1:Ny))

C=0.d0

! **************************************************************

When the array C is no longer needed it needs to be deallocated, thereby freeing up space in

memory:

deallocate(C)

Typically, this is done at the end of the main code, but this is not necessarily the case.

Performance issues

Memory allocation and deallocation is expensive. Allocation on the heap is typically avoided. In

particular, dynamic memory allocation in subroutines is a bad idea, because such subroutines tend

to be called repeatedly. In a worst-case scenario, one would have a dynamically-allocated array in

a subroutine that is called many times, thereby creating successive calls to allocate and free up

memory, over and over again. For this reason, dynamic memory allocation tends only to be used in

the main part of the code, and the allocation is done on a once-off basis.

Good Programming Practice:

When dealing with large arrays that are passed to subroutines, my practice is to allocate the

array dynamically in the main code, and then to allocate copies of the array statically in any

subroutines. Then, if I get a segmentation fault due to an excessively large request for memory

that does not exist, I can copy the chunk of code for dynamic array allocation into the subroutine.

Of course, having dynamic array allocation in a subroutine that is called repeatedly should be

viewed as a last resort.
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Handling data in large files

Overview

We introduce a model Poisson problem in three dimensions and solve it numerically. This gives rise

to some very large files. Therefore, we examine new Matlab postprocessing tools to examine such

large three-dimensional files. We look at string manipulation to postprocess files in which the data

is not structured into neat, ordered columns.

15.1 Example

Consider the following model problem:

∇2C = f(x, y, z), (x, y, z) ∈ Ω (15.1a)

where Ω = (0, Lx)× (0, Ly)× (0, Lz), subject to the following boundary conditions:

• Periodic boundary conditions in the x- and y-directions:

C(0, y, z) = C(Lx, y, z), C(x, 0, z) = C(x, Lx, z), (15.1b)

• Neumann boundary conditions in the z-direction:

∂C

∂z
= 0, on z = 0 and z = Lz. (15.1c)

A model multi-threaded code is provided which solves this problem – see poisson sor1.f90.

207
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Exercise 15.1 Compile and run the model three-dimensional code and benchmark its perfor-

mance under OMP parallelism.

Consider the code poisson sor1.f90 from Chapter 14, and the resulting output files:

• poisson.dat

• poisson slice.dat

The file poisson slice.dat contains a slice of the three-dimensional array C(x, y, z), at y = Ly/2,

and can be viewed using the two-dimensional Matlab postprocessing tools we have constructed

before. As well as viewing this file and plotting the result, it is also instructive to take a look at the

data file itself. The first 10 lines of the file can be viewed in Linux by typing

head -10 poisson_slice.dat

I get this:

>> bash-3.2$ head -10 poisson_slice.dat

0.000000000000000E+000 0.000000000000000E+000 4.668321307964320E-003

1.000000000000000E-002 0.000000000000000E+000 4.666004491564717E-003

2.000000000000000E-002 0.000000000000000E+000 4.659109419590812E-003

3.000000000000000E-002 0.000000000000000E+000 4.647589883399717E-003

4.000000000000000E-002 0.000000000000000E+000 4.631510159553213E-003

5.000000000000000E-002 0.000000000000000E+000 4.610833365189051E-003

6.000000000000000E-002 0.000000000000000E+000 4.585632448160086E-003

7.000000000000001E-002 0.000000000000000E+000 4.555879996932404E-003

8.000000000000000E-002 0.000000000000000E+000 4.521657342747652E-003

9.000000000000000E-002 0.000000000000000E+000 4.482946653571969E-003

Obviously, there are three columns containing the various values of X, Y , and C, which are then

read into a Matlab file and reshaped into square arrays.

Good programming practice:

Never try opening a large file in its entirety - you will run out of memory and crash your computer.

Instead, use tools like ‘head’, ‘tail’, ’more’, and ‘grep’ to extract or view relevant information.
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Next, we should try to write a Matlab postprocessing program to do the same thing for the full

three-dimensional data file. However, before we try anything, we should not assume a priori that

the data is ordered into columns (why should we?). Long ago, after running the program (I forget

where), I typed

head -10 poisson.dat

and got

>> bash-3.2$ head -10 poisson.dat

0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000

-5.252804656865423E-002

1.000000000000000E-002 0.000000000000000E+000 0.000000000000000E+000

-5.250215979901304E-002

2.000000000000000E-002 0.000000000000000E+000 0.000000000000000E+000

-5.242439421169698E-002

3.000000000000000E-002 0.000000000000000E+000 0.000000000000000E+000

-5.229495753177844E-002

4.000000000000000E-002 0.000000000000000E+000 0.000000000000000E+000

-5.211384677229017E-002

This is a bit of a disaster: there are of course four columns containing the various values of X, Y , Z,

and C, but here C has been pushed on to a second line! In short, in printing to files, unpredictable

things can happen, and our Matlab file-reading tools need to be able to take account of these things.

I wrote a Matlab file to take account of this line-jumping:

1 f u n c t i o n [ X, Y, Z , C]= o p e n s i n g l e d a t f i l e 3 d ( )

2

3 Nx=201;

4 Ny=201;

5 Nz=101;

6

7 n l i n e s=Nx∗Ny∗Nz ;

8

9 f i l e n a m e= ’ p o i s s o n . dat ’ ;

10 f i d=fo pe n ( f i l e n a m e ) ;

11

12 X=0∗(1: n l i n e s ) ;

13 Y=0∗(1: n l i n e s ) ;

14 Z=0∗(1: n l i n e s ) ;

15 C=0∗(1: n l i n e s ) ;

16
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17 f o r i =1: n l i n e s

18 c1=f g e t l ( f i d ) ;

19 vec temp=s s c a n f ( c1 , ’%f ’ ) ;

20 x temp=vec temp ( 1 ) ;

21 y temp=vec temp ( 2 ) ;

22 z temp=vec temp ( 3 ) ;

23

24 X( i )=x temp ;

25 Y( i )=y temp ;

26 Z( i )=z temp ;

27

28 c1=f g e t l ( f i d ) ;

29 vec temp=s s c a n f ( c1 , ’%f ’ ) ;

30 c temp=vec temp ( 1 ) ;

31

32 C( i )=c temp ;

33

34 i f (mod( i , 1 0 0 0 0 0 )==0)

35 f r a c =100∗( i / n l i n e s ) ;

36 d i s p l a y ( s t r c a t ( num2str ( f r a c ) , ’% done ’ ) )

37 end

38

39 end

40

41 X=r e s h a p e (X, Nx , Ny , Nz ) ;

42 Y=r e s h a p e (Y, Nx , Ny , Nz ) ;

43 Z=r e s h a p e (Z , Nx , Ny , Nz ) ;

44 C=r e s h a p e (C , Nx , Ny , Nz ) ;

45

46 f c l o s e ( f i d ) ;

47

48 end

xcodes/poisson threed/open single dat file 3d.m

It is a simple extension to what has been done before, and exploits the fact that variable fid labels

the current line in the open file, and that upon reading a line, the variable is incremented by one so

as to label the next line. On the other hand, if your use of ‘head’ shows no line-jumping, it is easier

(and dramatically faster) do to the following:

1 f u n c t i o n [ X, Y, Z , C]= o p e n s i n g l e d a t f i l e 3 d n o l i n e j u m p i n g ( )

2

3 Nx=201;

4 Ny=201;

5 Nz=101;
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6

7 f i l e n a m e= ’ p o i s s o n . dat ’ ;

8

9 M=i m p o r t d a t a ( f i l e n a m e ) ;

10

11 X=M( : , 1 ) ;

12 Y=M( : , 2 ) ;

13 Z=M( : , 3 ) ;

14 C=M( : , 4 ) ;

15

16 X=r e s h a p e (X, Nx , Ny , Nz ) ;

17 Y=r e s h a p e (Y, Nx , Ny , Nz ) ;

18 Z=r e s h a p e (Z , Nx , Ny , Nz ) ;

19 C=r e s h a p e (C , Nx , Ny , Nz ) ;

20

21 end

xcodes/poisson threed/open single dat file 3d no line jumping.m

Having read the data file into Matlab (regardless of which way was used in the end), the challenge

is to view it in three dimensions. There is a useful isosurface feature in Matlab, which will plot a

level surface of a three-dimensional function C(x, y, z). Recall, that

C(x, y, z) = Const.

is a two-dimensional manifold surface embedded in R3, and can therefore be plotted. This is precisely

the definition of a level surface. A analogue in R2 is a level line, or, in other words, a contour. There

is a tremendous amount of machinery that comes with the isosurface function in Matlab, including

how the surface is ‘lit’, and from what angle it is viewed. The best way to learn about this is to

experiment, and use the ‘help’ pages. As a starting point for this experimentation, one can use

the following code which genreates a level surface from the following four three-dimensional arrays:

(X, Y, Z, C):

1 f u n c t i o n [ ]= m a k e i s o (X, Y, Z , C , v a l )

2

3 f v=i s o s u r f a c e (X, Y, Z , C , v a l ) ;

4

5 h=f i g u r e ;

6 p=patch ( f v ) ;

7 s e t ( p , ’ F a c e C o l o r ’ , ’ r e d ’ , ’ E d g e c o l o r ’ , ’ none ’ )

8 a x i s e q u a l

9 v iew ( 3 0 , 3 0 )

10 a x i s t i g h t

11 c a m l i g h t ( ’ h e a d l i g h t ’ )
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12 s e t ( h , ’ R e n d e r e r ’ , ’ z b u f f e r ’ ) ;

13 l i g h t i n g phong

14 g r i d on

15 s e t ( gca , ’ f o n t s i z e ’ , 1 8 , ’ fontname ’ , ’ t i m e s new roman ’ )

16 x l a b e l ( ’ x ’ )

17 y l a b e l ( ’ y ’ )

18 z l a b e l ( ’ z ’ )

19 drawnow

20

21 f i g f i l e n a m e=s t r c a t ( ’ i s o s u r f a c e v a l ’ , ’ . f i g ’ ) ;

22 s a v e a s ( h , f i g f i l e n a m e )

23

24 end

xcodes/poisson threed/make iso.m

Here, ‘val’ is the level at which the isosurface is to be made. A sample result is shown in Figure 15.1

Figure 15.1: Isosurface for the Poisson problem, with C = 0.015.

15.2 Challenge problem

Consider the following two files that can be downloaded from the website:

• File A: ’3dchannel 7000.dat’

• File B: ’3dchannel 65000.dat’
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These files contain outputs from numerical simulations at different points in time. The simulations

are from a two-phase Navier–Stokes solver. Ideally, the data should be structured into eight columns:

[X, Y, Z, U, V,W, P,Φ], where X, Y , and Z are coordinates, U , V , and W are velocities, P is a

pressure, and Φ is the so-called level-set function, which tracks which phase is which: with Φ < 0

in the more viscous phase of the simulation, and Φ > 0 in the less viscous phase. The numerical

grid is of size 304× 152× 152, and the files contain two header lines.

Exercise 15.2 Use appropriate Linux tools to characterize the structure of the data in these

files.

In addition, the number of lines in each file can be estimated as follows:

wc -l filename

This should be equal to 304× 152× 152 + Number of header lines.

Now, as it turns out, in file A, the data have been output in a straightforward way, in strict column

form.

Exercise 15.3 Write a Matlab code to extract the data from file A, and to generate an isosurface

plot, at Φ = 0.

Hints:

• For this assignment, it is a good idea to create two Matlab functions for the two sub-tasks that

appear here. In this way, should the isosurface task fail, you will still have available data from

the file-reading part of the task. This means that when you start over writing the isosurface

task, you will be starting from a relatively advanced point. This will save a lot of time, given

the intensity of the data-reading task to be performed.

• Also, here is a snippet of a ‘good’ isosurface plot command for this problem:

fv = isosurface(X,Y,Z,Phi,0);

p=patch(fv);

set(p,’FaceColor’,’red’,’Edgecolor’,’none’)

axis equal

view(30,30)
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axis tight

zlim([0.1,0.5])

camlight(’headlight’)

set(h,’Renderer’,’zbuffer’);

lighting phong

Now, as it turns out, in file B, the data have been printed to the file in a truly bizarre way (which

nevertheless saves some space; file B is smaller than file A):

1. For each gridpoint, the variables [X, Y, Z, U, V,W, P,Φ] extend over two lines in the output

file.

2. Each piece of information is separated by a comma (not a space or a tab).

3. For each gridpoint, if a variable appears twice, it is stored only once. Thus, if at a certain

gridpoint, X = Y , then instead of printing [X, Y, Z, U, V,W, P,Φ], [2 ∗ X,Z, U, V,W, P,Φ]

is printed instead.

4. Similarly, if X = Y = Z, then [X, Y, Z, U, V,W, P,Φ] is not printed; instead, [3∗x, U, V,W, P,Φ]

is printed.

Obviously, one could at runtime specify explicitly and strictly how the I/O is to be performed.

However, I realised after the fact what had taken place, and it is wasteful to perform these large-

scale simulations more than once, only to recreate the results a second time in a slightly-different

output format. Thus, it is necessary to write a Matlab script to account for all of these variations,

and to gather the results into large three-dimensional arrays for isosurface plotting.

Exercise 15.4 Write a Matlab code to extract the data from file B, and to generate an isosurface

plot, at Φ = 0.

Hint: before doing so investigate the following built-in Matlab commands:

• fgetl

• strrep – for replacing characters in a string by new characters

• strcat – for joining two strings together

• sscanf – for reading strings into arrays of a specfied type

The result will be a beautiful picture like Figure 15.2.



15.2. Challenge problem 215

Figure 15.2: Isosurface plot at Φ = 0, for file B


