
Applied Analysis (ACM30020)

Dr Lennon Ó Náraigh

Exercises #7

1. Show that the normalised eigenfunctions of the boundary value problem

y′′ = −λy, y(0) = 0, y(1) + y′(1) = 0,

are

un(x) = kn sin
√
λn x,

where λn is the nth positive root of tan
√
λn = −

√
λn and

kn =

(
2

1 + cos2
√
λn

)1/2

.

Hence solve the boundary value problem

y′′ + λy = −x, y(0) = 0, y(1) + y′(1) = 0,

as a series of the form

y(x) =
∞∑
n=0

bnun(x),

where the coefficients bn should be determined (in terms of λn).

We first of all compute the eigenvalues of the homogeneous problem y′′ = −λy,
with y(0) = 0 and y(1) + y′(1) = 0. We look first at the case λ > 0. A solution
is clearly:

y(x) ∝ sin
(√

λx
)
. (1)

This automatically satisfies the LHBC1. For the RHBC we require:

sin
√
λ+

√
λ cos

√
λ = 0. (2)

1We use LHBC and RHBC for the left-hand and right-hand boundary conditions, respectively
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Divide both sides by cos
√
λ:

tan
√
λ = −

√
λ.

This is a root-finding problem. We replace
√
λ with q and we look for roots of

tan q = −q. To find the roots, we plot two curves y1(q) = tan q and y2(q) = −q.
The points of intersection y1(q) = y2(q) are the roots of the equation tan q = −q.
From such a plot we would see that there infinitely many positive roots. We label
the corresponding values of

√
λ as λn:

tan
√

λn = −
√

λn, n ∈ {0, 1, 2, · · · }. (3)

We do not consider the root q = 0 as this corresponds to λ = 0. Also, we do not
consider negative roots, since q =

√
λ can’t be negative.

We also rule out other possibilities for λ:

� λ = 0. This would give y′′ = 0, hence y = Ax + B. With the LHBC and
the RHBC this forces y = 0, hence, the trivial solution.

� λ < 0. This would give y ∝ sinh(
√
−λnx), which satisfies the LHBC

automatically. To satisfy the RHBC, we would require:

tanh
√
−λ = −

√
−λ

With q =
√
−λ as before, we would plot y1(q) = tanh q and y2(q) = −q.

These curves intersect only at q = 0, which is not allowed since λ < 0. Thus,
this case is ruled out also.

We next compute the normalization factor in the eigenfunctions of Equation (1).
Hence, we write y(x) = un(x) = kn sin

(√
λnx

)
, and we require:∫ 1

0

|un|2dx = 1.

We have: ∫ 1

0

|un|2dx = k2
n

∫ 1

0

sin2
(√

λnx
)
dx.

We use the trig ID
sin2 θ = 1

2
[1− cos(2θ)] ,

valid for all θ. Hence:∫ 1

0

|un|2dx = 1
2
k2
n

∫ 1

0

[
1− cos

(
2
√

λnx
)]

dx,

= 1
2
k2
n

[
1− 1

2
√
λn

sin
(
2
√

λnx
) ∣∣1

0

]
,

= 1
2
k2
n

[
1− 1

2
√
λn

sin(2
√

λn)

]
,

= 1
2
k2
n

[
1− 1

2
√
λn

2 sin(
√

λn) cos(
√

λn)

]
,

Eq. (3)
= 1

2
k2
n

{
1− 1√

λn

cos(
√
λn)

[
−
√
λn cos(

√
λn)

]}
,

= 1
2
k2
n

[
1 + cos2(

√
λn)

]
.
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All of this must be equal to 1, so we have:

k2
n =

2

1 + cos2(
√
λn)

and hence finally,

kn =

√
2

1 + cos2(
√
λn)

,

as required.

To solve the inhomogeneous problem y + λy = −x, we propose:

y(x) =
∞∑
n=0

cnun(x),

where
un(x) = kn sin(

√
λnx).

We sub in to the inhomogeneous problem and we get:

∞∑
n=0

bn(u
′′
n + λun) = −x.

But u′′
n = −λnun, hence:

∞∑
n=0

bn(λ− λn)un = −x.

Since ⟨un, um⟩ = δnm in the usual inner product on the interval [0, 1], we get:

cn = −⟨un, x⟩
λ− λn

.

Hence:

y(x) =
∞∑
n=0

⟨un, x⟩
λ− λn

∫ 1

0

un(s)(−s)ds. (4)

This is the required solution. However, we comment on what happens when
λ → λn, for some n. By Fredholm theory, the only way for a solution to exist in
this limit is if the corresponding coefficient ⟨un, x⟩ goes to zero. Therefore, we
consider the integral

I =

∫ 1

0

un(s)s ds.
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We have:

I ∝ kn

∫ 1

0

sin(
√

λnx)︸ ︷︷ ︸
=dv

x︸︷︷︸
=u

dx,

= kn

[
−x cos(

√
λnx)√

λn

∣∣∣∣1
0

+

∫ 1

0

1√
λn

cos(
√

λnx)dx

]
,

∝ −cos(
√
λn)√

λn

+
sin(

√
λn)

λn

,

=
1√
λn

[
− cos(

√
λn) +

1√
λn

sin(
√

λn)

]
,

Eq. (3)
=

1√
λn

[
1√
λn

sin(
√
λn) +

1√
λn

sin(
√

λn)

]
,

=
1√
λn

×
[
2

1√
λn

sin(
√
λn)

]
,

=
2 sin(

√
λn)

λn

,

̸= 0.

Thus, I ̸= 0 and in the limit as λ → λn, Equation (4) there breaks down, and
there is no solution to the BVP.

This completes the solution. However, it can be noted that the BVP can be solved
without eigenfunction expansions, by using the method of variation of parameters
instead. In this approach, we take u(x) to be a solution of the ODE y′′ + λy = 0
satisfying the LHBC:

u(x) = sin
√
λx.

Similarly, we take v(x) to be a solution of the ODE satisfying the RHBC:

v(x) = sin
√
λ(1− x) +

√
λ cos

√
λ(1− x).

The Wronskian is thus:

W (x) = −
√
λ(
√
λ cos

√
λ+ sin

√
λ).

Then, by variation of parameters, the solution to the BVP is:

y(x) =
u(x)

W

x∫
0

v(s)(−s) ds+
v(x)

W

1∫
x

u(s)(−s) ds.

After doing the various trigonometric integrals here, this becomes:

y(x) = −x

λ
+

2

λ(
√
λ cos

√
λ+ sin

√
λ)

sin
√
λx. (5)

Although not immediately obvious, the series solution (4) must necessarily con-
verge to the solution (5) except when λ = λn for some eigenvalue. A sceptic can
also verify by direct substitution that Equation (5) satisfies the BVP.
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2. Use the properties of the Legendre polynomials to do the following:

(a) Find the solution of (1− x2)y′′ − 2xy′ + by = f(x) that is valid on the
range [−1, 1] and finite at x = 0, in terms of Legendre polynomials.

(b) Find the explicit solution if b = 14 and f(x) = 5x2. Verify it by direct
substitution.

We propose a solution of the form:

y(x) =
∞∑
n=0

anPn(x) (6)

valid on the interval [−1, 1]. Here, the Pn’s are the Legendre polynomials; each
Pn satisfies:

(1− x2)P ′′
n − 2xP ′

n + n(n+ 1)Pn = 0, n ∈ {0, 1, 2, · · · }.

Also, the solution (6) is valid because the P ′
ns are a complete set. Furthermore,

in the standard form, the P ′
ns satisfy an orthogonality relation∫ 1

−1

PnPm =
2

2n+ 1
δnm.

Finally, and again because of completeness of the Legendre polynomials on the
interval [−1, 1], we can write:

f(x) =
∞∑
n=0

fnPn(x), fn =
2n+ 1

2

∫ 1

−1

f(x)Pn(x)dx.

We substitute the trial solution (6) into the ODE:

∞∑
n=0

{
(1− x2)P ′′

n − 2xyP ′
n + n(n+ 1)Pn + [b− n(n+ 1)]Pn}an =

∞∑
n=0

fnPn.

We use the properties of the Legendre polynomials to conclude:

[b− n(n+ 1)] an = fn. (7)

Case 1: Provided b is never equal to n(n+1) for n a positive integer or zero, we
have:

an =
fn

b− n(n+ 1)
,

and the solution to the ODE can be written as:

y(x) =
∞∑
n=0

fn
b− n(n+ 1)

fnPn(x).
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Case 2: On the other hand, if b is equal to n0(n0 + 1), for n0 zero or a positive
integer, then an0 is undetermined. Furthermore, for consistency (0 = 0), we
require fn0 = 0. All the other a′ns are still given by Equation (7), in which case
we have:

y(x) =
∞∑
n=0
n̸=n0

fn
b− n(n+ 1)

fnPn(x) + APn0(x), fn0 = 0.

where A is an arbitrary constant.

For Part (b), we first of all make sure that 14 ̸= n(n+1) (it isn’t). Therefore, Case
1 applies, and we express f(x) = 5x3 in terms of standard Legendre polynomials:

5x3 = 2
[
1
2

(
5x3 − 3x

)]
+ 3 (x) = 2P3(x) + 3P1(x).

We conclude that, because of the mutual orthogonality of the Legendre polynomi-
als, only a3 and a1 in the series solution will be non-zero. To find them we need
to evaluate: ∫ 1

−1

f(x)P3(x)dx = 2
2

2× 3 + 1
= 4

7
.

Similarly,
∫ 1

−1
f(x)P1(x)dx = 3× (2/3) = 2.

Inserting these values gives:

a3 =
7

2(14− 12)
× 4

7
= 1, a1 =

3

2(14− 2)
= 1

4
.

Thus, the solution is:

y(x) = 1
4
P1(x) + P3(x),

= 1
4
+ 1

2
(5x3 − 3x),

= 5
4
(2x3 − x).

We verify:

(1− x2)
(
60
4
x
)
− 2x

[
1
4
(30x62− 5)

]
+ 1

4

[
140x3 − 70x

]
= 5x3

=⇒ 60x− 60x3 − 60x3 + 10x+ 140x3 − 70x = 20x3,

which is satisfied.
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3. Let f(x) be a differentiable function on −∞ < x < ∞, vanishing at least as
quickly as x−1 as |x| → ∞, and consider the linear operator

L =
d

dx
+ x,

acting on such functions. Is L self-adjoint?

Let f and g be functions with the properties given in the question. We have:

⟨f, Lg⟩ =

∫ ∞

−∞
f
dg

dx
dx+

∫ ∞

−∞
xfgdx,

IBP
= ����(fg)∞−∞ −

∫ ∞

−∞
g
df

dx
dx+

∫ ∞

−∞
xfgdx,

= ⟨
(
− d

dx
+ x

)
f, g⟩.

Thus,

L† = − d

dx
+ x ̸= L,

and L is not self-adjoint.

4. (a) Suppose that u and v are solutions of the following two homogeneous
linear second order differential equations in self-adjoint form:

(p1(x)u
′)′ + q1(x)u = 0, (8a)

and
(p2(x)v

′)′ + q2(x)v = 0. (8b)

By direct computation, show that:

(u
v
(p1u

′v − p2uv
′)
)′

=

(
up1u

′ − p2v
′u2 1

v

)′

= (p1 − p2)u
′2 + p2

(
u′ − v′

u

v

)2

+ (q2 − q1)u
2.

(b) See below.
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We have:(u
v
(p1u

′v − p2uv
′)
)′

=

[
(p1u

′)u− (p2v
′)
u2

v

]′
,

= p1(u
′)2 + (p1u

′)′u

− (p2v
′)′
u2

v
− p2v

′
(
2uu′v − u2v′

v2

)
,

=

[
(p1u

′)′u− (p2v
′)′
u2

v

]
+ p1(u

′)2 + p2
(v′)2

v2
u2 − 2p2uu

′v
′

v
,

SL Eqn
= (q2 − q1)u

2 + (p1 − p2) (u
′)2

+ p2

[
(u′)2 − 2p2uu

′v
′

v
+

(v′)2

v2
u2

]
,

= (q2 − q1)u
2 + (p1 − p2)(u

′)2 + p2

(
u′ − v′

v
u

)2

.

We next look at 4(b) where we are required to prove the Sturm–Picone
comparison theorem: Let pi and qi for i = 1, 2 be real-valued continuous
functions on the interval [a, b] and let

(p1(x)y
′)′ + q1(x)y = 0, (9a)

(p2(x)y
′)′ + q2(x)y = 0, (9b)

be two homogeneous linear second order differential equations in self-adjoint
form with

0 < p2(x) ≤ p1(x), (10)

and
q1(x) ≤ q2(x). (11)

Let u be a non-trivial solution of Equation (9a) with successive roots at z1
and z2 and let v be a non-trivial solution of Equation (9b). Then one of the
following properties holds:

� There exists an x in (z1, z2) such that v(x) = 0,
� there exists a µ ∈ R such that v(x) = µu(x).

Suppose for contradiction that v(x) ̸= 0 for all x ∈ [z1, z2]. Without loss of
generality, we can look at the case where u(x) ≥ 0 for all x ∈ [z1, z2]. Then we
also have that v(x) ̸= 0 in the same interval and again without loss of generality
we assume that v(x) > 0 in [z1, z2].

We look at Picone’s identity from Part (a),(u
v
(p1u

′v − p2uv
′)
)′

= (q2 − q1)u
2 + (p1 − p2)(u

′)2 + p2

(
u′ − v′

v
u

)2

.
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We integrate from x = z1 to an arbitrary value x < z2 to obtain:(u
v
(p1u

′v − p2uv
′)
)
(x)−

(u
v
(p1u

′v − p2uv
′)
)
(z1)︸ ︷︷ ︸

=0

≥ 0.

But the term with the underbrace is zero since u(z1) = 0. We can tidy up the
above expression and we are left with:

p1u
′v − p2uv

′ ≥ 0, x ∈ [z1, z2].

We have uv > 0 in (z1, z2), so we divide across by uv without breaking the
inequality. This gives:

p1
u′

u
≥ p2

v′

v
, x ∈ (z1, z2) (12)

(notice the open interval here). Thus, as in class notes u is ∩-shaped in [z1, z2].
Thus, there exists an α ∈ (z1, z2) such that:

u′(x) > 0, x ∈ (z1, α),

u′(x) < 0, x ∈ (α, z2).

Thus, Equation (12) can be re-written as:

−p1

∣∣∣∣u′

u

∣∣∣∣ ≥ p2
v′

v
, for x ∈ (α, z2).

We have p1 ≥ p2. Also, p1 and p2 are positive. So we have:

−p1 ≤ −p2, or − p2 ≥ −p1.

Hence:

−p2

∣∣∣∣u′

u

∣∣∣∣ ≥ −p1

∣∣∣∣u′

u

∣∣∣∣ ≥ p2
v′

v
, x ∈ (α, z2).

Cancel the p2’s (these are strictly positive) and restore the sign of u′ to get:

u′

u
≥ v′

v
, x ∈ (α, z2),

or
u′

u
≥ v′

v
, x ∈ (α, z2).

Use Gronwall to conclude:

v(x) ≤ Cu(x), x ∈ (α, z2).

where C is a positive constant. Now either we have equality, in which case C = µ,
and v(x) = µu(x), in which case Option 1 in the Theorem is shown. Or we have
a strict inequality, and

v(x) < Cu(x), x ∈ (α, z2).

We take x → z2. By continuity,

v(z2) ≤ 0.

But this is a contradiction, since v(x) > 0 for all [a, b] is assumed. Hence, we
have Option 2 of the theorem, and we are forced to conclude that in fact, there is
an x ∈ (z1, z2) such that v(x) = 0.
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