

Applied Analysis (ACM30020)

Dr Lennon Ó Náraigh

Exercises #7

1. Show that the normalised eigenfunctions of the boundary value problem

$$y'' = -\lambda y, \quad y(0) = 0, \quad y(1) + y'(1) = 0,$$

are

$$u_n(x) = k_n \sin \sqrt{\lambda_n} x,$$

where λ_n is the n th positive root of $\tan \sqrt{\lambda_n} = -\sqrt{\lambda_n}$ and

$$k_n = \left(\frac{2}{1 + \cos^2 \sqrt{\lambda_n}} \right)^{1/2}.$$

Hence solve the boundary value problem

$$y'' + \lambda y = -x, \quad y(0) = 0, \quad y(1) + y'(1) = 0,$$

as a series of the form

$$y(x) = \sum_{n=0}^{\infty} b_n u_n(x),$$

where the coefficients b_n should be determined (in terms of λ_n).

2. Use the properties of the **Legendre polynomials** to do the following:

- (a) Find the solution of $(1 - x^2)y'' - 2xy' + by = f(x)$ that is valid on the range $[-1, 1]$ and finite at $x = 0$, in terms of Legendre polynomials.
 - (b) Find the explicit solution if $b = 14$ and $f(x) = 5x^2$. Verify it by direct substitution.
3. Let $f(x)$ be a differentiable function on $-\infty < x < \infty$, vanishing at least as quickly as x^{-1} as $|x| \rightarrow \infty$, and consider the linear operator

$$L = \frac{d}{dx} + x,$$

acting on such functions. Is L self-adjoint?

4. (a) Suppose that u and v are solutions of the following two homogeneous linear second order differential equations in self-adjoint form:

$$(p_1(x)u')' + q_1(x)u = 0, \quad (1)$$

and

$$(p_2(x)v')' + q_2(x)v = 0. \quad (2)$$

By direct computation, show that:

$$\begin{aligned} \left(\frac{u}{v} (p_1 u' v - p_2 u v') \right)' &= \left(u p_1 u' - p_2 v' u^2 \frac{1}{v} \right)' \\ &= (p_1 - p_2) u'^2 + p_2 \left(u' - v' \frac{u}{v} \right)^2 + (q_2 - q_1) u^2. \end{aligned}$$

- (b) Using part (a), prove the Sturm–Picone comparison theorem:

Theorem: Let p_i and q_i for $i = 1, 2$ be real-valued continuous functions on the interval $[a, b]$ and let

$$(p_1(x)y')' + q_1(x)y = 0, \quad (3a)$$

$$(p_2(x)y')' + q_2(x)y = 0, \quad (3b)$$

be two homogeneous linear second order differential equations in self-adjoint form with

$$0 < p_2(x) \leq p_1(x), \quad (4)$$

and

$$q_1(x) \leq q_2(x). \quad (5)$$

Let u be a non-trivial solution of Equation (3a) with successive roots at z_1 and z_2 and let v be a non-trivial solution of Equation (3b). Then one of the following properties holds:

- There exists an x in (z_1, z_2) such that $v(x) = 0$,
- there exists a $\mu \in \mathbb{R}$ such that $v(x) = \mu u(x)$.