Applied Analysis (ACM30020)

Dr Lennon O Naraigh
Exercises #5

1. Given the following second order linear homogeneous ODE:
Y +why =0,

where w is a real number. The initial conditions are: y(0) = yo and ¥/(0) = 0.

Transform the problem into a Volterra integral equation. Solve the integral
equation using an iterative scheme.

From class notes, the general solution of the IVP is:

V() = o+ palan)yP(o) + [ () — po(Oy][P(x) — P(1)]dt,

Z0

p@):/;%.

Reading off, we have 2y = 0, 7(z) = 0, p2(z) = 1, and po(z) = w?. Also, y; = 0.
Hence, P(x) = x, and

where

y(@) = o — o / "y — 1), 1)

This equation is in the form of a Volterra integral equation. We solve the equation
iteratively using y©)(z) = yo, and

y () = yo—u’ /x y O (t)(x — t)dt,

= yo—wyo/ (x —t)d
0

= yo (1 - 1w%a?).

wh—‘

Next, we have:

YD (@) = go— o / V() (@ — t)dt,
0

= Yy — w2y0/ (1 - 1w?) (z — t)dt,

= Yo (1 — éwzxj + ,w4x4)
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Guessing the pattern, and letting n — 0o, we obtain:

y(x) = yo cos(wx).

We can double-check this by considering the integral

I=y,— w2y0/ cos(wt)(x — t)dt,
0

which by direct evaluation gives:

T

+
0

I
— = 1-uw
Yo w

= cos(wz).

sin wt t sin wt

w

v 1
+ w? [—2 cos(wt)
0 w

T
|
0

Hence, y(z) = yo cos(wz) does indeed solve the integral equation (1).

2. Consider the inhomogeneous problem
Y + Wiy = f(z), x € [0, 7.

Here, the problem is a Boundary Value Problem (BVP), with boundary condi-
tions y(0) = y(m) = 0,.

Use the Green's Function to solve the BVP in the case when:

Linearly independent solutions of the homogeneous problem are:
u(z) = sin(wx),

and

v(z) = sin(wz) — tan(wn) cos(wz).
Hence, u(z) satisfies the left-hand Boundary Condition (LHBC) at = 0 and v(x)
satisfies the right-hand Boundary Condition (RHBC) at x = 7. The Wronskian is:

sin wx sin wx — tan wm coswx
W COSWT wCosx ~+ wtanwrsinwx

By linear dependence, this simplifies:

sinwxr —tanwmcoswx
wCeoswr wtanwsin wx

= wtan(wm).

Thus, W = Const., consistent with Abel's Theorem with p;/ps = 0/1.
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Remark: This approach only works when w is not an integer! If w is an integer
and equal to n, say, then we have W o tan(nw) = 0, and we fail to generate
two linearly independent solutions to the BVP. In this case, we would have to look
at the Boundary-Value Problem Alternative, whereby the BVP has either no
solutions or infinitely many solutions.

Motivated by the foregoing remark, for the remainder of this exercise we work with
w ¢ 7. The Green's function for the BVP is now:

[sin(wz) — tan(wm) cos(wx)] sin(ws)

G(z,s) = 0<s<z<m,

)
wtanwm

and

sin(wx) [sin(ws) — tan(wm) cos(ws)]

G(z,s) = : 0<z<s<m.

wtanwm

By convolution, the solution to the BVP is:

y(x) = /07r G(z,s)f(s)ds.

wtanwm

() = /Ox [sin(wz) — tan(wm) cos(wx)] sin(ws)f(s)ds

N /7r sin(wx) [sin(wz)t;nii:(wﬂ) cos(ws)] £(s)ds,
() = /Ox [sin(wz) cos(w) ;Ssllr:l(j::) cos(w)] sin(ws)f(s)ds
/’T sin(wz) [sin(ws) cos(('mr) — sin(wm) cos(ws)] £(s)ds.
Or again,
y(2) = /0@’7 Sin(w(igiggjin(ws)f(s)ds N /” sin(wxzussiinn(zuugrs - W»f(s)ds.
Finally,
y(z) = % /Om sin(ws) f(s)ds + zl;ll(riuj; /7r sin(w(s — m)) f(s)ds.

We fill in for f(z) = 1:

sin(w(z — 7))

o) = 2T [Cinos)ds +

w SIn W7

sin(wx)

[ sinfels = mpas,

w sin wm

— % 1 — cos(wx)] + % [cos(w(z — 7)) — 1]
= Femn) [sin(w(z — 7) — sin(wz)]
ey Bitwe) cos(w(z — 7)) — cos(wz) sin(w(z — )]
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Hence,

y(x) = m [sin(w(z — ) — sin(wz)| + é (2)

Clearly, y"(z) + w?y = 1, and y(0) = 0 and y(7) = 0, so our calculations are
correct and Equation does indeed solve the BVP.

Next, we fill in for f(z) = sin(wx):

y(z) = sin(w(z — 7)) /Ox sin(ws) sin(ws)ds—i—M /7r sin(w(s—m)) sin(ws)ds.

w sin wm sin w7

This ‘simplifies’ to:

y(z) = sin(w(‘x —)) {%x B Slniﬂ}
+ % {%(W — x) cos(wm) — sin(w(zlrw— 20) _ Sini:jﬁ)} (3)

We have checked this result using a numerical ‘shooting” method (Figure. Mat-
lab listings are provided in the Appendix.

0.4 | . - . : -

o Numerical
Analytical

Figure 1: Comparison between numerical shooting method and Equation , for w =

2.5.
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3. The stationary temperature distribution in a rod of unit length that has both
ends kept at a constant zero temperature, with heat loss through its surface
proportional to u, and that is subject to a given non-uniform heat source per
unit length f(z), is the solution of

—u" +u=f, u(0) = u(1) = 0.

Show that the Green's function of this Boundary Value Problem is given by:

sinh(@)sinh(128) © () < o < ¢ < 1
sinh ’ - - =7
G(z,§) = {m
)

sinh(1

)

Linearly independent solutions of the homogeneous problem are:
u(x) = sinh(z)
and
v(x) = sinh(1) cosh(x) — cosh(1) sinh(x).

Hence, u(z) satisfies the left-hand Boundary Condition (LHBC) at = 0 and v(x)
satisfies the right-hand Boundary Condition (RHBC) at 2 = 1. The Wronskian is:

u v

W—‘//>

u v

| sinh(z) sinh(1)cosh(z)
cosh(z) sinh(1)sinh(z) |’

= —sinh(1).

Also, po = —1, hence poW = sinh(1).

Reading off from class notes, the Green's function is now:

Glr.€) = [sinh(1) cosh(z) —'cosh(l) sinh(x)] sinh(ﬁ)’ 0<e<r<l
sinh(1)
The term in the square bracket can be written as sinh(1 — z), using a trig identity.
Also,
Gz, €) = sinh(z) [sinh(1) co§h(§) — cosh(1) smh(f)]’ 0<r<e<l
sinh(1)

Again, a trig identity can be used on the term in the square bracket, this is
sinh(1 — &). Hence,

Qb)) < g <y
(._'E 5) inh Sl)nslnh(l 5), et
SST(I)’ ng_ >~ 1,

as required.
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4. Consider the Fredholm integral equation

1

y(x) = f(z) + )\/ (x + s)y(s)ds.

-1

(a) For which values of A\ does the equation have a unique solution? Find
the solution in this case.

(b) For each of those values of A\ for which the equation does not have a
unique solution, state a condition which f(z) must satisfy in order for a
solution to exist, and find the general solution when this is satisfied.

We have:
K (z,5) = w(z)on(s) + ua(z)onls),
where ui(x) = z, v1(s) = 1, ug(z) = 1, and vy(s) = 1. Thus, the FIE can be

written as:
y(z) = f(x) + Azey + Aeo (4)
where
1 1
c = / y(s)ds, cy = / sy(s)ds.
-1 —1
Let

fi= /11 f(s)ds, fa= /1 sf(s)ds.

1

We multiply the FIE by v; and integrate to obtain:
c1 = f1+ 2\es. (5a)
Next, we multiply the FIE by vy and integrate to obtain:
co = fa+2Xc1/3. (5b)

In doing these integrals, it is helpful to remember the properties of integrals of
odd/even functions over symmetric intervals, e.g.

1
/ xdr =0,
-1

etc. Equations can be simplified and written in matrix form:

( s 1) (@)= ()

—M()

The characteristic polynomial is

det [M(X)] = 0,
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hence
1—33=0.

Thus, the roots of the characteristic polynomial are given by:

AES={\ A} ={-2L ¥}

27 2
Thus, the answer to part (a) is that there is a unique solution if A # S.

For part (b), we look at the two separate cases.

o Case 1, A\ = —\/5/2. Here, we require f; = \/gfz, that is

1
/’ﬂgﬂ—¢%Mw:Q
-1
in which case the general solution is given for arbitrary f5 by
y@) = @A [(-VBe+b)rtel,
= f(x)+ A bz + A_c (1 — \/§x> :

—_————
=y_

Thus, the general solution is:
y(x) = f(z) + Az + ay_(x),

where y_(z) satisfies the homogeneous FIE:

y_(x) = A /_1 K(x,s)y_(s)ds.

The compatibility condition is:

[ v@irea=o

1

o Case 2, \ = \/5/2 Here, we require f; = —\/gfg, that is

1
| 16+ Vi o
~1
in which case the general solution is given for arbitrary fy by
y@) = f@)+ A [ (VBe+b)o+al,
= @)+ Asbiw+ e (14 V3e).

—_——
:y,

Thus, the general solution is:

y(x) = f(x) + A\pbiw + ayy (z),
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where y, () satisfies the homogeneous FIE:

ya(z) = A_ / K5y (s)ds.

The compatibility condition is:

[ viwsea=o

1

Remark: When we look at Hilbert—-Schmidt theory, we will find, for A ¢ S, that
the solution of the FIE can be written as:

We) = F(0) + g Faela) + g o)

where
Ay = +v32.
Also,
1+ 3z
y+(z) = —5

are the normalized eigenfunctions of the FIE, with

1
/ yi(@)yy(@)de = 85, g€ {— +}.
-1

Furthermore,
1
fﬂ::/ f(x)y+(x)de.
-1

Thus, we see transparently that in for part (b), the condition which f must satisfy
in order for a solution to exist when A = A\, (respectively A = A\_)is f =0
(respectively f_ = 0).
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5. Solve for ¢(z) in the integral equation

o) = 1@+3 [ [(£) "+ (2) ] st

where f(z) is bounded for 0 < x < 1 and —1/2 < n < 1/2, expressing your
answer in terms of the quantities F}, = fol f(y)y™dy.

(a) Give the explicit solution when A = 1.

(b) For what values of \ are there no solutions unless I, are in a particular
ratio? What is this ratio?

Solution: We are looking at:

o(x) = f(z) + A/01 K(z,y)p(y) dy,

hence a Fredholm integral equation with kernel K(z,y) = (z/y)" + (y/x)"™. This
is a separable kernel,

K(x,8) = up(x)vi(s) + us(z)va(s),

Coi(s) = 57 up(x) = 2", and va(s) = s". We have:
1 1
0= 1v1<s>¢<s>ds: / ls%(s)ds,
o — /0 va(8)d(s)ds = /0 " (s)ds.
Also (using notation from class notes):
b = /Olvl(s)f(s)ds:/013_”f(s)ds:F_n,
b= [ o= [ s = E

We project the integral equation on to v; and vy to get:

2
C; = bz + )\ZAijCj’

J=1
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where A;; = fol v;(s)u;(s)ds. Hence, it remains to compute:

1
/ 1ds = 1.
0

We don't encounter any divisions by zero here because |n| < 1/2. Thus, the linear

problem to solve is:
1—A
A
o 1+2n

1

1-2n

A by

by

C1
Co

()0 e

)(

-

=M

We focus on the characteristic equation:

1

V1 —4n?

The solutions are:

A=y
T VI —an?

Thus, when A = 1, it is the case
unique solution, characterized by:

1—A

T 1+2n

A
1—2n

1-x | =0

A

V1 —4n?
1+ V1T —dn?

that A # A4, and hence, Equation @ has a

M;h:(2ngl _@%+1))‘
Hence,
(e,e)" = ( 2n0— 1 _(QT(L)Jr !V ) ( Z; )
= (2l 7))
Hence,

C1 = —(1 + 27’L>b27

Cy = —(1 — 271)()1

The solution in the case A = 1 is therefore:

¢)\:1($)

f(@) + crur () + caua(z),
f(x) -

(14 2n)box™ — (1 — 2n)byx™".

10
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Or, in terms of the notation in the question,
Oa=1(x) = f(x) — (1 4+ 2n)Fx" — (1 = 2n)F_,z™".

For part (b), we look again at Equation @ with A = AL. In an obvious notation,
we have:
M(it)e =b, (7)

and detM (A1) = 0. Hence, for almost all values of n, Equation @ with A = A4
will have no solution.

However, there is one special case to look at. Hence, we re-write Equation as:

M(A:I:)c = ba

1 1 1
)\i )\_i 1 Lllzﬁ c = b
1+2n A+

1 1
T 1+2n V1—4n?2

Hence:

In other words,

1 1

i\/l —4n261 1 —2nc2 = /A
14 2n 1 1 1+2n
e — + = —————— X by/ A4
(F) T an? X [ 1+2n01 —1_471202] (F) T an2 X by /At

The second row can now be re-written as:

" 1 1 1+2n
c1 — Coy =
N A I e Vi

Compare the two rows again:

(ba/A)-

1 1
j: _
i ' 1-2n"
1 1 1+2n
+ 1 — Cy = by /L.
N e B AV e LTS
If the two rows are the same, there are infinitely many solutions. Otherwise, there
are no solutions. Hence, to find the case with solutions, we require:

bl/)\:ta

bl_ 14 2n

Lastly, go back to the notation in the question (by — F_,,, by — F,):

F, 1—2n
F. "\Viton

11
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6. Consider the FIE
y(z) = F(2) + A /0 cosh(z — 5)y(s)ds. (8)

(a) Show that the eigenvalues of () are given by 2/(1 + sinh 1).

(b) Using the Hilbert—=Schmidt eigenfunction expansion, or otherwise, find
the solution for A\ ¢ {2/(1 £sinh1)}.

(c) Find a necessary and sufficient condition on f for the equation

2 /1 cosh(x — s)y(s)ds

+1—|—si1r1h1 0

to have a solution and find all solutions when this condition is satisfied.

For part (a), note that the kernel is separable, since
K(z,s) = cosh(z — s) = Je"e™ + Le7"e”.
To find the eigenvalues, let us write the homogeneous equation as

y(z) = 1Ay + 36N ey,

where . .

1 :/0 e “y(s)ds, Cy = /0 e’y(s)ds.
Then

1 1 1

c = /e_xy(x) dr = %/\cl/e_”aemd%— %)\CQ/e_me_x dz
0 0 0
=iha+3Ae(l—e?),

and

1 1 1
czz/e’”y :% /e e”dx—l—%kcz/exe:”dx
0 0 0
=aiE@-1)+ e

These equations may be written in matrix form as

(e 2y 025 7) ()= () ©

-~

=M())

12



Applied Analysis Boundary-Value Problems, Integral Equations

The charactrestic polynomial is:
det [M(N)] = 0.
This evaluates to:
A=2=1N-1)(1—e?)=1N(e—e")* = A?sinh*(1).

Hence, the eigenvalues of the FIE are:

AGS:{)\l,)\g}:{ 2 2 }

1+sinh1’ 1 —sinhl1

For part (b), the pertinent eigenfunctions are obtained by solving for (ci,¢)? in
Equation (9)). We look at the two cases:

e Case 1. We look at A\ = \;. Notice that A\;sinh1 = —(A\; — 2) so, for
A = Xy, Equation (9) becomes:

)\1 -2 —()\1 — 2)6_1 C1\ 0
—()\1 — 2)6 )\1 -2 Co - 0/
This imples that co = ecy, so the corresponding eigenfunction is a multiple
of

e’ +ee " = 261/2%(836_1/2 t @12y,

or equivalently:
y1 () o cosh(z — 3).
e For A = Ay, we have ¢ = —ecq, and the corresponding eigenfunction is

yo(x) o sinh(z — %)

We look at normalized eigenfunctions:

y(x) = v/ cosh (z—-1), ya(z) = /—=Agsinh (z — 3) .
Notice that: )
/0 yi(x)y;(z)dx = 0;.

In this case, Hilbert—Schmidt theory tells us that the solution fo the FIE can be
expanded in terms of eigenfunctions:

fiyi(x) + Jaya(x), AgS.

A A
AL — A A2 — A

Here,

fi= /01 f(z)y:(x)dz.

13
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For part (c), Hilbert-Schmidt theory tells us that if A € S (in this case, A = \y),
then a necessary necessary and sufficient condition on f for the FIE to have a

solution is:

/0 f(@)y(x)de =0 = f, =0.

In this case, the general solution is

V() = £(2) + Ao) + oo

14
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A Code Listings

In this code, | solve the ODE 3" (z) = —w?y(x)+sin(z) for the initial conditions y(0) = 0
and y'(0) = p. Here, p is a parameter that can be varied.

function [x,y]=odesolve(param)
omega=2.5;

[x,Y]=o0de45(@myfun,[0 pi], [0 param]);
y=Y(:,1);

function dYdx=myfun(x,Y)
dYdx=0xY;
dYdx(1)=Y(2);
dYdx(2)=—omegaxomegaxY(1)+ sin (omega*x);
end

end

In this next code, | look at the cost function

where y(x = m,p) is output from odesolve.m, at paramter value p. | solve an op-
timization problem where | make J(p) as small as possible. In this way, | solve the
BVP y(z) = —w?y(x) + sin(z) subject to y(0) = 0 and y(7) = 0. This is called the
shooting method.

p_star=fminbnd (@mycost,—10 ,10000);
display(p_star);
J_min=mycost(p_star);

display (J-min);

% Obtain solution of BVP:
[x,y]=odesolve(p_star);

% Interpolate solution on to regular grid:
xi=0:0.1:pi;
yi=interpl(x,y,xi, spline ");

X=X1 ;
y=yi;

15
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% Plot solution:

plot(x,y, o', color’

% Calculate analytical solution for omega=2.5:

omega=2.5;
xa=0:0.01:pi;

ya=sin (omegax(xa—pi)).*(0.5xxa—(sin (2xomegaxxa)/(4*xomega)))...

+sin (omega*xa ).
—(sin (omegax( pi

—(sin (omegax*pi )/(4*omega)
ya=ya /(omegaxsin (omegax*pi

% Plot analyical and numerical solution on same axes

% and compare:

hold on

plot(xa,ya, color’
grid on

xlabel ('x")

ylabel ('y")

set(gca, fontsize ', 14

hold off

function J=mycost(p)

[7,y]=odesolve (p);

J=y(end)x*xy(end);
end

"red ", "linewidth ',2)

"blue ")

*(0.5%( pi—xa)*cos(omegaxpi)...
—2xxa))/(4xomega))
) )
)

,'fontname ', "times new roman')

16



	Code Listings

