
Applied Analysis (ACM30020)

Dr Lennon Ó Náraigh

Exercises #5

1. Given the following second order linear homogeneous ODE:

y′′ + ω2y = 0,

where ω is a real number. The initial conditions are: y(0) = y0 and y′(0) = 0.

Transform the problem into a Volterra integral equation. Solve the integral
equation using an iterative scheme.

From class notes, the general solution of the IVP is:

y(x) = y0 + p2(x0)y
′
0P (x) +

∫ x

x0

[r(t)− p0(t)y(t)][P (x)− P (t)]dt,

where

P (x) =

∫ x

x0

ds

p2(s)
.

Reading off, we have x0 = 0, r(x) = 0, p2(x) = 1, and p0(x) = ω2. Also, y′0 = 0.
Hence, P (x) = x, and

y(x) = y0 − ω2

∫ x

0

y(t)(x− t)dt. (1)

This equation is in the form of a Volterra integral equation. We solve the equation
iteratively using y(0)(x) = y0, and

y(1)(x) = y0 − ω2

∫ x

0

y(0)(t)(x− t)dt,

= y0 − ω2y0

∫ x

0

(x− t)dt,

= y0
(
1− 1

2
ω2x2

)
.

Next, we have:

y(2)(x) = y0 − ω2

∫ x

0

y(1)(t)(x− t)dt,

= y0 − ω2y0

∫ x

0

(
1− 1

2
ω2t2

)
(x− t)dt,

= y0
(
1− 1

2
ω2x2 + 1

4!
ω4x4

)
.
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Guessing the pattern, and letting n → ∞, we obtain:

y(x) = y0 cos(ωx).

We can double-check this by considering the integral

I = y0 − ω2y0

∫ x

0

cos(ωt)(x− t)dt,

which by direct evaluation gives:

I

y0
= 1− ω2t

sinωt

ω

∣∣∣∣x
0

+ ω2

[
1

ω2
cos(ωt)

∣∣∣∣x
0

+
t sinωt

ω

∣∣∣∣x
0

]
,

= cos(ωx).

Hence, y(x) = y0 cos(ωx) does indeed solve the integral equation (1).

2. Consider the inhomogeneous problem

y′′ + ω2y = f(x), x ∈ [0, π].

Here, the problem is a Boundary Value Problem (BVP), with boundary condi-
tions y(0) = y(π) = 0,.

Use the Green’s Function to solve the BVP in the case when:

(a) f(x) = 1;

(b) f(x) = sin(ωx).

Linearly independent solutions of the homogeneous problem are:

u(x) = sin(ωx),

and
v(x) = sin(ωx)− tan(ωπ) cos(ωx).

Hence, u(x) satisfies the left-hand Boundary Condition (LHBC) at x = 0 and v(x)
satisfies the right-hand Boundary Condition (RHBC) at x = π. The Wronskian is:

W =

∣∣∣∣ sinωx sinωx− tanωπ cosωx
ω cosωx ω cosx+ ω tanωπ sinωx

∣∣∣∣ .
By linear dependence, this simplifies:

W =

∣∣∣∣ sinωx − tanωπ cosωx
ω cosωx ω tanωπ sinωx

∣∣∣∣ = ω tan(ωπ).

Thus, W = Const., consistent with Abel’s Theorem with p1/p2 = 0/1.
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The Green’s function for the BVP is now:

G(x, s) =
[sin(ωx)− tan(ωπ) cos(ωx)] sin(ωs)

ω tanωπ
, 0 ≤ s ≤ x ≤ π,

and

G(x, s) =
sin(ωx) [sin(ωs)− tan(ωπ) cos(ωs)]

ω tanωπ
, 0 ≤ x < s ≤ π.

By convolution, the solution to the BVP is:

y(x) =

∫ π

0

G(x, s)f(s)ds.

Hence,

y(x) =

∫ x

0

[sin(ωx)− tan(ωπ) cos(ωx)] sin(ωs)

ω tanωπ
f(s)ds

+

∫ π

x

sin(ωx) [sin(ωs)− tan(ωπ) cos(ωs)]

ω tanωπ
f(s)ds,

or

y(x) =

∫ x

0

[sin(ωx) cos(ωπ)− sin(ωπ) cos(ωx)] sin(ωs)

ω sinωπ
f(s)ds

+

∫ π

x

sin(ωx) [sin(ωs) cos(ωπ)− sin(ωπ) cos(ωs)]

ω sinωπ
f(s)ds.

Or again,

y(x) =

∫ x

0

sin(ω(x− π)) sin(ωs)

ω sinωπ
f(s)ds+

∫ π

x

sin(ωx) sin(ω(s− π))

ω sinωπ
f(s)ds.

Finally,

y(x) =
sin(ω(x− π))

ω sinωπ

∫ x

0

sin(ωs)f(s)ds+
sin(ωx)

ω sinωπ

∫ π

x

sin(ω(s− π))f(s)ds.

We fill in for f(x) = 1:

y(x) =
sin(ω(x− π))

ω sinωπ

∫ x

0

sin(ωs)ds+
sin(ωx)

ω sinωπ

∫ π

x

sin(ω(s− π))ds,

=
sin(ω(x− π))

ω2 sinωπ
[1− cos(ωx)] +

sin(ωx)

ω2 sinωπ
[cos(ω(x− π))− 1]

=
1

ω2 sin(ωπ)
[sin(ω(x− π)− sin(ωx)]

+
1

ω2 sinωπ
[sin(ωx) cos(ω(x− π))− cos(ωx) sin(ω(x− π))] .

Hence,

y(x) =
1

ω2 sin(ωπ)
[sin(ω(x− π)− sin(ωx)] +

1

ω2
. (2)
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Clearly, y′′(x) + ω2y = 1, and y(0) = 0 and y(π) = 0, so our calculations are
correct and Equation (2) does indeed solve the BVP.

Next, we fill in for f(x) = sin(ωx):

y(x) =
sin(ω(x− π))

ω sinωπ

∫ x

0

sin(ωs) sin(ωs)ds+
ω sin(ωx)

sinωπ

∫ π

x

sin(ω(s−π)) sin(ωs)ds.

This ‘simplifies’ to:

y(x) =
sin(ω(x− π))

ω sinωπ

[
1
2
x− sin(2ωx)

4ω

]
+

sin(ωx)

ω sinωπ

[
1
2
(π − x) cos(ωπ)− sin(ω(π − 2x))

4ω
− sin(ωπ)

4ω

]
(3)

We have checked this result using a numerical ‘shooting’ method (Figure 1). Mat-
lab listings are provided in the Appendix.

Figure 1: Comparison between numerical shooting method and Equation (3), for ω =
2.5.
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3. The stationary temperature distribution in a rod of unit length that has both
ends kept at a constant zero temperature, with heat loss through its surface
proportional to u, and that is subject to a given non-uniform heat source per
unit length f(x), is the solution of

−u′′ + u = f, u(0) = u(1) = 0.

Show that the Green’s function of this Boundary Value Problem is given by:

G(x, ξ) =

{
sinh(x) sinh(1−ξ)

sinh(1)
, 0 ≤ x ≤ ξ ≤ 1,

sinh(ξ) sinh(1−x)
sinh(1)

, 0 ≤ ξ ≤ x ≤ 1.

Linearly independent solutions of the homogeneous problem are:

u(x) = sinh(x)

and
v(x) = sinh(1) cosh(x)− cosh(1) sinh(x).

Hence, u(x) satisfies the left-hand Boundary Condition (LHBC) at x = 0 and v(x)
satisfies the right-hand Boundary Condition (RHBC) at x = 1. The Wronskian is:

W =

∣∣∣∣ u v
u′ v′

∣∣∣∣ ,
=

∣∣∣∣ sinh(x) sinh(1) cosh(x)
cosh(x) sinh(1) sinh(x)

∣∣∣∣ ,
= − sinh(1).

Also, p2 = −1, hence p2W = sinh(1).

Reading off from class notes, the Green’s function is now:

G(x, ξ) =
[sinh(1) cosh(x)− cosh(1) sinh(x)] sinh(ξ)

sinh(1)
, 0 ≤ ξ ≤ x ≤ 1.

The term in the square bracket can be written as sinh(1−x), using a trig identity.
Also,

G(x, ξ) =
sinh(x) [sinh(1) cosh(ξ)− cosh(1) sinh(ξ)]

sinh(1)
, 0 ≤ x ≤ ξ ≤ 1.

Again, a trig identity can be used on the term in the square bracket, this is
sinh(1− ξ). Hence,

G(x, ξ) =

{
sinh(ξ) sinh(1−x)

sinh(1)
, 0 ≤ ξ ≤ x ≤ 1,

sinh(x) sinh(1−ξ)
sinh(1)

, 0 ≤ x ≤ ξ ≤ 1,

as required.
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4. Consider the Fredholm integral equation

y(x) = f(x) + λ

∫ 1

−1

(x+ s)y(s)ds.

(a) For which values of λ does the equation have a unique solution? Find
the solution in this case.

(b) For each of those values of λ for which the equation does not have a
unique solution, state a condition which f(x) must satisfy in order for a
solution to exist, and find the general solution when this is satisfied.

We have:
K(x, s) = u1(x)v1(s) + u2(x)v2(s),

where u1(x) = x, v1(s) = 1, u2(x) = 1, and v2(s) = 1. Thus, the FIE can be
written as:

y(x) = f(x) + λxc1 + λc2 (4)

where

c1 =

∫ 1

−1

y(s)ds, c2 =

∫ 1

−1

sy(s)ds.

Let

f1 =

∫ 1

−1

f(s)ds, f2 =

∫ 1

−1

sf(s)ds.

We multiply the FIE (4) by v1 and integrate to obtain:

c1 = f1 + 2λc2. (5a)

Next, we multiply the FIE (4) by v2 and integrate to obtain:

c2 = f2 + 2λc1/3. (5b)

In doing these integrals, it is helpful to remember the properties of integrals of
odd/even functions over symmetric intervals, e.g.∫ 1

−1

xdx = 0,

etc. Equations (5) can be simplified and written in matrix form:(
1 −2λ

−2λ/3 1

)
︸ ︷︷ ︸

=M(λ)

(
c1
c2

)
=

(
f1
f2

)

The characteristic polynomial is

det [M(λ)] = 0,
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hence
1− 4

3
λ2 = 0.

Thus, the roots of the characteristic polynomial are given by:

λ ∈ S = {λ−, λ+} = {−
√
3
2
,
√
3
2
}.

Thus, the answer to part (a) is that there is a unique solution if λ ̸= S.
For part (b), we look at the two separate cases.

� Case 1, λ = −
√
3/2. Here, we require f1 =

√
3f2, that is∫ 1

−1

f(s)(1−
√
3x)dx = 0,

in which case the general solution is given for arbitrary f2 by

y(x) = f(x) + λ−

[(
−
√
3c2 + b1

)
x+ c2

]
,

= f(x) + λ−b1x+ λ−c2

(
1−

√
3x
)

︸ ︷︷ ︸
=y−

.

Thus, the general solution is:

y(x) = f(x) + λ−b1x+ αy−(x),

where y−(x) satisfies the homogeneous FIE:

y−(x) = λ−

∫ 1

−1

K(x, s)y−(s)ds.

The compatibility condition is:∫ 1

−1

y−(x)f(x)dx = 0.

� Case 2, λ =
√
3/2. Here, we require f1 = −

√
3f2, that is∫ 1

−1

f(s)(1 +
√
3x)dx = 0,

in which case the general solution is given for arbitrary f2 by

y(x) = f(x) + λ+

[(√
3c2 + b1

)
x+ c2

]
,

= f(x) + λ+b1x+ λ+c2

(
1 +

√
3x
)

︸ ︷︷ ︸
=y−

.

Thus, the general solution is:

y(x) = f(x) + λ+b1x+ αy+(x),
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where y+(x) satisfies the homogeneous FIE:

y+(x) = λ−

∫ 1

−1

K(x, s)y+(s)ds.

The compatibility condition is:∫ 1

−1

y+(x)f(x)dx = 0.

Remark: When we look at Hilbert–Schmidt theory, we will find, for λ /∈ S, that
the solution of the FIE can be written as:

y(x) = f(x) +
λ

λ+ − λ
f+y+(x) +

λ

λ− − λ
f−y+(x),

where
λ± = ±

√
32.

Also,

y±(x) =
1±

√
3x

2

are the normalized eigenfunctions of the FIE, with∫ 1

−1

yi(x)yj(x)dx = δij, i, j ∈ {−,+},

Furthermore,

f± =

∫ 1

−1

f(x)y±(x)dx.

Thus, we see transparently that in for part (b), the condition which f must satisfy
in order for a solution to exist when λ = λ+ (respectively λ = λ−) is f+ = 0
(respectively f− = 0).
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5. Solve for ϕ(x) in the integral equation

ϕ(x) = f(x) + λ

∫ 1

0

[(
x

y

)n

+
(y
x

)n]
ϕ(y)dy,

where f(x) is bounded for 0 < x < 1 and −1/2 < n < 1/2, expressing your

answer in terms of the quantities Fm =
∫ 1

0
f(y)ymdy.

(a) Give the explicit solution when λ = 1.

(b) For what values of λ are there no solutions unless F±n are in a particular
ratio? What is this ratio?

Solution: We are looking at:

ϕ(x) = f(x) + λ

∫ 1

0

K(x, y)ϕ(y) dy,

hence a Fredholm integral equation with kernel K(x, y) = (x/y)n + (y/x)n. This
is a separable kernel,

K(x, s) = u1(x)v1(s) + u2(x)v2(s),

with u1(x) = xn, v1(s) = s−n, u2(x) = x−n, and v2(s) = sn. We have:

c1 =

∫ 1

0

v1(s)ϕ(s)ds =

∫ 1

0

s−nϕ(s)ds,

c2 =

∫ 1

0

v2(s)ϕ(s)ds =

∫ 1

0

snϕ(s)ds.

Also (using notation from class notes):

b1 =

∫ 1

0

v1(s)f(s)ds =

∫ 1

0

s−nf(s)ds = F−n,

b2 =

∫ 1

0

v2(s)f(s)ds =

∫ 1

0

snf(s)ds = Fn.

We project the integral equation on to v1 and v2 to get:

ci = bi + λ

2∑
j=1

Aijcj,
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where Aij =
∫ 1

0
vi(s)uj(s)ds. Hence, it remains to compute:

A11 =

∫ 1

0

1 ds = 1,

A12 =

∫ 1

0

s−2n ds =
1

1− 2n
,

A21 =

∫ 1

0

s2n ds =
1

2n+ 1
,

A22 =

∫ 1

0

1 ds = 1.

We don’t encounter any divisions by zero here because |n| < 1/2. Thus, the linear
problem to solve is: (

1− λ − λ
1−2n

− λ
1+2n

1− λ

)
︸ ︷︷ ︸

=M

(
c1
c2

)
=

(
b1
b2

)
. (6)

We focus on the characteristic equation:∣∣∣∣ 1− λ − λ
1−2n

− λ
1+2n

1− λ

∣∣∣∣ = 0.

The solutions are:

λ+ =

√
1− 4n2

1 +
√
1− 4n2

, λ− =

√
1− 4n2

−1 +
√
1− 4n2

.

Thus, when λ = 1, it is the case that λ ̸= λ±, and hence, Equation (6) has a
unique solution, characterized by:

M−1 =

(
0 −(2n+ 1)

2n− 1 0

)
.

Hence,

(c1, c2)
T =

(
0 −(2n+ 1)

2n− 1 0

)(
b1
b2

)
=

(
0 −(2n+ 1)

2n− 1 0

)(
b1
b2

)
.

Hence,
c1 = −(1 + 2n)b2, c2 = −(1− 2n)b1.

The solution in the case λ = 1 is therefore:

ϕλ=1(x) = f(x) + c1u1(x) + c2u2(x),

= f(x)− (1 + 2n)b2x
n − (1− 2n)b1x

−n.
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Or, in terms of the notation in the question,

ϕλ=1(x) = f(x)− (1 + 2n)Fnx
n − (1− 2n)F−nx

−n.

For part (b), we look again at Equation (6) with λ = λ±. In an obvious notation,
we have:

M(λ±)c = b, (7)

and detM(λ±) = 0. Hence, for almost all values of n, Equation (6) with λ = λ±
will have no solution.

However, there is one special case to look at. Hence, we re-write Equation (7) as:

M(λ±)c = b,

λ±

(
1
λ±

− 1 − 1
1−2n

− 1
1+2n

1
λ±

− 1

)
c = b.

Hence:

λ±

(
± 1√

1−4n2 − 1
1−2n

− 1
1+2n

± 1√
1−4n2

)
c = b.

In other words,

± 1√
1− 4n2

c1 −
1

1− 2n
c2 = b1/λ±,

(∓)
1 + 2n√
1− 4n2

×
[
− 1

1 + 2n
c1 ±

1√
1− 4n2

c2

]
= (∓)

1 + 2n√
1− 4n2

× b2/λ±.

The second row can now be re-written as:

± 1√
1− 4n2

c1 −
1

1− 2n
c2 = ∓

√
1 + 2n

1− 2n
(b2/λ±).

Compare the two rows again:

± 1√
1− 4n2

c1 −
1

1− 2n
c2 = b1/λ±,

± 1√
1− 4n2

c1 −
1

1− 2n
c2 = ∓

√
1 + 2n

1− 2n
b2/λ±.

If the two rows are the same, there are infinitely many solutions. Otherwise, there
are no solutions. Hence, to find the case with solutions, we require:

b1
b2

= ∓
√

1 + 2n

1− 2n
.

Lastly, go back to the notation in the question (b1 → F−n, b2 → Fn):

Fn

F−n

= ∓
√

1− 2n

1 + 2n
.
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6. Consider the FIE

y(x) = f(x) + λ

∫ 1

0

cosh(x− s)y(s)ds. (8)

(a) Show that the eigenvalues of (8) are given by 2/(1± sinh 1).

(b) Using the Hilbert–Schmidt eigenfunction expansion, or otherwise, find
the solution for λ /∈ {2/(1± sinh 1)}.

(c) Find a necessary and sufficient condition on f for the equation

y(x) = f(x) +
2

1 + sinh 1

∫ 1

0

cosh(x− s)y(s)ds

to have a solution and find all solutions when this condition is satisfied.

For part (a), note that the kernel is separable, since

K(x, s) = cosh(x− s) = 1
2
exe−s + 1

2
e−xes.

To find the eigenvalues, let us write the homogeneous equation as

y(x) = 1
2
exλ c1 +

1
2
e−xλ c2,

where

c1 =

∫ 1

0

e−sy(s)ds, c2 =

∫ 1

0

esy(s)ds.

Then

c1 =

1∫
0

e−xy(x) dx = 1
2
λc1

1∫
0

e−xex d + 1
2
λ c2

1∫
0

e−xe−x dx

= 1
2
λ c1 +

1
2
λ c2

1
2
(1− e−2),

and

c2 =

1∫
0

exy(x) dx = 1
2
λc1

1∫
0

exex dx+ 1
2
λ c2

1∫
0

exe−x dx

= 1
2
λ c1

1
2
(e2 − 1) + 1

2
λ c2.

These equations may be written in matrix form as(
λ− 2 λ1

2
(1− e−2)

λ1
2
(e2 − 1) λ− 2

)
︸ ︷︷ ︸

=M(λ)

(
c1
c2

)
=

(
0
0

)
. (9)
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The charactrestic polynomial is:

det [M(λ)] = 0.

This evaluates to:

(λ− 2)2 = 1
4
λ2(e2 − 1)(1− e−2) = 1

4
λ2(e− e−1)2 = λ2 sinh2(1).

Hence, the eigenvalues of the FIE are:

λ ∈ S = {λ1, λ2} =

{
2

1 + sinh 1
,

2

1− sinh 1

}
.

For part (b), the pertinent eigenfunctions are obtained by solving for (c1, c2)
T in

Equation (9). We look at the two cases:

� Case 1. We look at λ = λ1. Notice that λ1 sinh 1 = −(λ1 − 2) so, for
λ = λ1, Equation (9) becomes:(

λ1 − 2 −(λ1 − 2)e−1

−(λ1 − 2)e λ1 − 2

)(
c1
c2

)
=

(
0
0

)
.

This imples that c2 = ec1, so the corresponding eigenfunction is a multiple
of

ex + ee−x = 2e1/2
1

2
(ex−1/2 + e−(x−1/2)),

or equivalently:
y1(x) ∝ cosh(x− 1

2
).

� For λ = λ2, we have c2 = −ec1, and the corresponding eigenfunction is

y2(x) ∝ sinh(x− 1
2
).

We look at normalized eigenfunctions:

y1(x) =
√

λ1 cosh
(
x− 1

2

)
, y2(x) =

√
−λ2 sinh

(
x− 1

2

)
.

Notice that: ∫ 1

0

yi(x)yj(x)dx = δij.

In this case, Hilbert–Schmidt theory tells us that the solution fo the FIE can be
expanded in terms of eigenfunctions:

y(x) = f(x) +
λ

λ1 − λ
f1 y1(x) +

λ

λ2 − λ
f2 y2(x), λ /∈ S.

Here,

fi =

∫ 1

0

f(x)yi(x)dx.
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For part (c), Hilbert–Schmidt theory tells us that if λ ∈ S (in this case, λ = λ1),
then a necessary necessary and sufficient condition on f for the FIE to have a
solution is: ∫ 1

0

f(x)y1(x)dx = 0 =⇒ f1 = 0.

In this case, the general solution is

y(x) = f(x) + Ay1(x) +
λ1

λ2 − λ1

f2 y2(x).
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A Code Listings

In this code, I solve the ODE y′′(x) = −ω2y(x)+sin(x) for the initial conditions y(0) = 0
and y′(0) = p. Here, p is a parameter that can be varied.

f u n c t i o n [ x , y ]= od e s o l v e ( param )

omega=2.5;

[ x ,Y]=ode45 (@myfun , [ 0 p i ] , [ 0 param ] ) ;
y=Y ( : , 1 ) ;

f u n c t i o n dYdx=myfun ( x ,Y)
dYdx=0*Y;
dYdx(1)=Y( 2 ) ;
dYdx(2)==omega*omega*Y(1)+ s i n ( omega*x ) ;

end

end

In this next code, I look at the cost function

J(p) = [y(x = π; p)]2 ,

where y(x = π, p) is output from odesolve.m, at paramter value p. I solve an op-
timization problem where I make J(p) as small as possible. In this way, I solve the
BVP y′′(x) = −ω2y(x) + sin(x) subject to y(0) = 0 and y(π) = 0. This is called the
shooting method.

p s t a r=fminbnd ( @mycost ,=10 , 10000 ) ;
d i s p l a y ( p s t a r ) ;
J min=mycost ( p s t a r ) ;
d i s p l a y ( J min ) ;

% Obta in s o l u t i o n o f BVP:
[ x , y ]= od e s o l v e ( p s t a r ) ;

% I n t e r p o l a t e s o l u t i o n on to r e g u l a r g r i d :
x i =0 : 0 . 1 : p i ;
y i=i n t e r p 1 ( x , y , x i , ’ s p l i n e ’ ) ;

x=x i ;
y=y i ;
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% P lo t s o l u t i o n :
p l o t ( x , y , ’ o ’ , ’ c o l o r ’ , ’ b lue ’ )

% Ca l c u l a t e a n a l y t i c a l s o l u t i o n f o r omega=2.5:

omega=2.5;
xa =0 :0 . 01 : p i ;
ya=s i n ( omega *( xa=p i ) ) . * ( 0 . 5 * xa=( s i n (2* omega* xa )/(4* omega ) ) ) . . .

+s i n ( omega* xa ) . * ( 0 . 5 * ( p i=xa )* cos ( omega* p i ) . . .
=( s i n ( omega *( p i=2*xa ) )/ (4* omega ) )

=( s i n ( omega* p i )/(4* omega ) ) ) ;
ya=ya /( omega* s i n ( omega* p i ) ) ;

% P lo t a n a l y i c a l and nume r i c a l s o l u t i o n on same axes
% and compare :

ho ld on
p l o t ( xa , ya , ’ c o l o r ’ , ’ red ’ , ’ l i n ew i d t h ’ , 2 )
g r i d on
x l a b e l ( ’ x ’ )
y l a b e l ( ’ y ’ )
s e t ( gca , ’ f o n t s i z e ’ , 1 4 , ’ fontname ’ , ’ t imes new roman ’ )
ho ld o f f

f u n c t i o n J=mycost ( p )
[ ˜ , y ]= od e s o l v e ( p ) ;

J=y ( end )* y ( end ) ;
end
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