
Applied Analysis (ACM30020)

Dr Lennon Ó Náraigh

Exercises #4

1. Consider the ODE
y′′ + p(x)y′ + q(x)y = 0.

If y1(x) is a solution,s how that a second solution can be written as:

y2(x) = y1(x)

∫ x

a

e−
∫ x′′
b p(x′)dx′

[y1(x′′)]2
dx′′. (1)

Here, a and b are arbitrary.

Sub y2(x) = y1(x)u(x) into the ODE to obtain:

u′′ +

[
p(x) + 2

y′2
y2

]
u′ = 0. (2)

Let v = u′ and reduce Equation (2) to a first-order ODE:

v′ = −
[
p(x) + 2

y′2
y2

]
v.

The solution is:

v(x) = v(b)
e
∫ x
b p(x′)dx]

[y2(x)]2
,

where b is arbitrary. But v(x) = du/dx, hence

u(x) = C + v(b)

∫ x

a

e−
∫ x′′
b p(x′)dx′

[y1(x′′)]2
dx′′.

where C is a constant of integration.

Choose C = 0 and v(b) = 1 to get a second linearly-independent solution:

u(x) =

∫ x

a

e−
∫ x′′
b p(x′)dx′

[y1(x′′)]2
dx′′.

Hence,

y2(x) = y1(x)

∫ x

a

e−
∫ x′′
b p(x′)dx′

[y1(x′′)]2
dx′′,

as required.
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2. Given that one solution of

R′′ +
1

r
R′ − m2

r2
R = 0

is R = rm, show that Equation (1) provides a second solution, R = r−m.

We read off from Question 1, with p(x) = 1/x. Hence,
∫
p(x)dx = lnx, and

e−
∫
p(x)dx = −1/x. Thus, the second solution (in an obvious notation, and letting

x → r) is:

R2(r) = rm
∫

1

r

1

r2m
dr,

= rm
(
− 1

2m
r−2m

)
,

∝ r−m.

As the solutions are only defined up to a constant, we choose the second linearly
independent solution to be:

R2(r) = r−m,

as required.
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3. Consider Legendre’s differential equation:

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0. (3)

(a) Solve the equation by by direct series substitution.

(b) Verify that the indicial equation is:

α(α− 1) = 0.

(c) Using α = 0, obtain the following series of even powers of x (a1 = 0):

yeven = a0

[
1− n(n+ 1)

2!
x2 +

n(n− 2)(n+ 1)(n+ 3)

4!
x4 + · · ·

]
,

where

aj+2 =
j(j + 1)− n(n+ 1)

(j + 1)(j + 2)
aj.

(d) Using α = 1, develop a series of odd powers of x (a1 = 0).

yodd = a0

{
x− (n− 1)(n+ 2)

3!
x3

+
(n− 1)(n− 3)(n+ 2)(n+ 4)

5!
x5 + · · ·

}
,

where

aj+2 =
(j + 1)(j + 2)− n(n+ 1)

(j + 2)(j + 3)
aj.

(e) Show that both solutions, yeven and yodd, diverge for x = ±1 if the series
continue to infinity.

(f) Finally, show that by an appropriate choice of n, one series at a time
may be converted into a polynomial, thereby avoiding the divergence
catastrophe.

Because the coefficient functions p(x) = −2x/(1−x2) and q(x) = n(n+1)/(1−
x2) are regular at x = 0, this is a regular point and hence, the ODE has a simple
power-series solution:

y(x) =
∞∑
p=0

apx
p

(we can’t use n for the index because it’s used already as the parameter in the
ODE). We substitute this into Equation (3) to get:

∞∑
p=0

app(p− 1)xp−2 =
∞∑
p=0

app(p− 1)xp + 2
∞∑
p=0

appx
p −

∞∑
p=0

n(n+ 1)apx
p.
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Re-index. In the term on the LHS we use q = p− 2. In the terms on the RHS we
use q = p. This gives:

∞∑
q=−2

aq+2(q + 2)(q + 1)xq =
∞∑
q=0

aqq(q − 1)xq + 2
∞∑
q=0

aqqx
q −

∞∑
q=0

n(n+ 1)aqx
q.

We equate powers of xq. At q = −2 we have a0 × 0× 1 = 0, which implies that
a0 is arbitrary. At q = −1 we have a1× (−1)×0 = 0, meaning that a1 is arbitrary
also. We also have the recurrence relation:

aq+2 = aq
q(q − 1) + 2q − n(n+ 1)

(q + 2)(q + 1)
,

= aq
q(q + 1)− n(n+ 1)

(q + 2)(q + 1)

These results mean that we can look at the possibilities {a0 ̸= 0, a1 = 0} and
{a0 = 0, a1 ̸= 0} separately. Furthermore, because the recurrence relation steps
up in steps of two, this means that we are looking at odd and even series solutions.

Consequently, the series solutions are y(x) = a0 + a2x
2 + a4x

4 + · · · and y(x) =
a1x+a3x

3+ · · · , which can be encapsulated as y(x) = xα(a0+a1x+a2x
2+ · · · ),

with α = 0, 1. This implies an indicial equation α(α−1) = 0, which answers Part
(b).

Parts (a) and (c): We look at the possibilities {a0 ̸= 0, a1 = 0} and {a0 =
0, a1 ̸= 0} separately, and generate odd and even series solutions. We use the
recurrence relation to generate the first few terms of the even solution:

a2 = a0
−n(n+ 1)

2!
,

a4 = a2

[
6− n(n+ 1)

4× 3

]
,

= a0
1

4!
(−1) [6− n(n+ 1)]n(n+ 1),

= a0
1

4!
n(n+ 1)(n− 2)(n+ 3).

Hence,

yeven = a0

[
1− n(n+ 1)

2!
x2 +

n(n+ 1)(n− 2)(n+ 3)

4!
x4 + · · ·

]
,

where

aq+2 = aq
q(q + 1)− n(n+ 1)

(q + 2)(q + 1)
.

Thus, the answer to Part (c) is complete.
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Part (d) concerns the odd solution. The first few terms are:

a3 = a1
2− n(n+ 1)

3× 2
,

= a1

[
−(n− 1)(n+ 2)

3!

]
,

a5 = a3

[
3× 4− n(n+ 1)

5× 4

]
,

= a1

[
−(n− 1)(n+ 2)

3!

] [
−(n− 3)(n+ 4)

5× 4

]
,

= a1

[
(n− 1)(n− 3)(n+ 2)(n+ 4)

5!

]
.

Hence, we obtain the odd solution:

yodd = a1

[
x− (n− 1)(n+ 2)

3!
x3 +

(n− 1)(n− 3)(n+ 2)(n+ 4)

5!
x5 + · · ·

]
.

Again, the ratio between successive terms is given by the recurrence relation:

aq+2 = aq
q(q + 1)− n(n+ 1)

(q + 2)(q + 1)
.

For Part (e), we look again at the recurrence relation in the limit of large q. This
gives

aq+2

aq
∼ q

q + 2
∼ 1.

Thus, the tail of the series looks like a geometric progression with alternating sign.
The geometric progression with alternating sign is:

G(x) =
∞∑
q=0

(−1)qxq,

which diverges as |x| → 1. Thus, and in general, the series yeven and yodd will
diverge as |x| → 1. This answers Part (e).

For Part (f), we notice that the series yeven and yodd will terminate and reduce to
polynomial expressions if n is zero or a positive integer, since then the expression

j(j + 1) = n(n+ 1)

will be satisfied for n = j, and hence aj+2 = 0. These are the Legendre Polyno-
mials (Figure 1).
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Figure 1: The first 6 Legendre Polynomials. From Wikipedia.

4. Obtain two series solutions of the confluent hypergeometric equation

xy′′ + (c− x)y′ − ay = 0.

Test your solutions for convergence.

We first look at x[(c − x)/x] = c − x and x2[−a/x] = −ax. The RHS of both
these expressions have Taylor expansions around zero, so the singular point x = 0
is regular. Thus, a series solution

y(x) = xα

∞∑
n=0

anx
n,

is possible. We substitute this trial solution into the ODE and evaluate:

∞∑
n=0

an(n+ α)(n+ α− 1)xn+α−1 + c

∞∑
n=0

an(n+ α)xn+α−1

−
∞∑
n=0

an(n+ α)xn+α − a

∞∑
n=0

anx
n+α = 0.

We cancel out a power of xα on both sides. Hence, we have:

∞∑
n=0

an(n+ α)(n+ α− 1)xn−1 + c
∞∑
n=0

an(n+ α)xn−1

−
∞∑
n=0

an(n+ α)xn − a

∞∑
n=0

anx
n = 0.
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We then re-index with p = n− 1, hence n = p + 1, and pstart = −1. Hence, we
have:

∞∑
p=−1

ap+1(p+ 1 + α)(p+ α)xp + c
∞∑

p=−1

ap+1(p+ 1 + α)xp

−
∞∑
p=0

ap(p+ α)xp − a
∞∑
p=0

apx
p = 0.

For the p = −1 term we have:

a0 [α(α− 1) + cα] = 0.

Hence, the indicial equation is:

α(α− 1) + cα = 0,

with solutions
α = 0, α = 1− c.

We look at the analytic solution with α = 0. We look in particular at the recurrence
relation:

ap+1 [p(p+ 1) + c(p+ 1)] = ap(p+ a).

or
ann(n− 1 + c) = an−1 (n− 1 + a) , n ≥ 1.

Hence,

an =
(n− 1 + a)

n(n− 1 + c)
an−1, (4)

Furthermore,

an =
(n− 1 + a)(n− 2 + a)

n(n− 1)(n− 1 + c)(n− 2 + c)
an−2,

=
(n− 1 + a)(n− 2 + a) · · · (1 + a)a

n!(n− 1 + c)(n− 2 + c)c · · · (1 + c)c
a0.

Notice that the recurrence relation will terminate if a is a negative integer or zero
(giving a polynomial solution), and also, the recurrence relation will fail if c is a
negative integer or zero.

We identify the Pochammer symbol (rising factorial):

(a)n = a(a+ 1) · · · (a+ n− 1) =
n−1∏
k=0

(a+ k),

and similarly for c. Hence, the first series solution can be written as:

y1(x) = a0

∞∑
n=0

(a)n

n!(c)n
xn, a, c /∈ −N ∪ {0}.
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or
y1(x) = a0 [1F1(a; c;x)] . (5)

where 1F1(a; c;x) is the confluent hypergeometric function.

Furthermore, from Equation (4), we identify the ratio

ρn =

∣∣∣∣ an
an−1

∣∣∣∣ = ∣∣∣∣ n− 1 + a

n(n− 1 + c)

∣∣∣∣ .
Hence,

ρ = lim
n→∞

ρn = 0.

The radius of convergence of the series is therefore R = 1/ρ = ∞. Thus, except
for c = 0,−1,−2, · · · , the series in Equation (5) is an entire function, that is, an
analytic on the entire complex plane.

For the second solution, we look at α = 1− c. The recurrence relation is:

an =
n+ (a− c)

n(n+ 1− c)
an−1,

=
n− 1 + (a− c+ 1)

n[n− 1 + (2− c)]
an−1,

=
[n− 1 + (a− c+ 1)][n− 2 + (a− c+ 1)]

n(n− 1)[n− 1 + (2− c)][n− 2 + (2− c)]
an−2,

= · · ·

= a0
(a− c+ 1)n

n!(2− c)n
a0.

Hence, the second solution is:

y2(x) = x1−c [1F1(1 + a− c; 2− c;x)] , 1 + a− c, 2− c /∈ −N ∪ {0}.

5. Bessel’s equation can be written as

x2y′′ + xy′ +
(
x2 − ν2

)
y = 0.

Using power series, find the two linearly independent solutions of Bessel’s
equation with ν = 1/2.

We use class notes to find the recurrence relations:

α2 − ν2 = 0,

a1 (±2ν + 1) = 0.

Also,
ann (n± 2ν) = −an−2, n ≥ 2. (6)

The indicial equation is α2 = ν2, hence α = ±1/2. There are two distinct roots
of the inidical equation.
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Next, we have a1(2α+ 1) = 0. For α = 1/2 this gives 2a1 = 0, so a1 = 0 in this
case. For α = −1/2 this gives a10 = 0, so a1 is undetermined in this second case.

First Case: We have α = 1/2, and the recurrence relation is well defined for all
n ≥ 2:

an = − an−2

n(n+ 1)
, n ≥ 2

This gives:

a2n = − 1

2n(2n+ 1)
a2(n−1)

=
1

2n(2n+ 1)

1

(2n− 2)(2n− 1)
a2(n−2) = · · · (−1)n

1

(2n+ 1)!
a0,

so we have first solution

J 1
2
(z) =

(z
2

)1/2
(
1− 1

3!
z2 +

1

5!
z4 − · · ·

)
where, following convention, we have taken a0 = 2−1/2.

Furthermore, we take:

J 1
2
(z) =

(z
2

)1/2
(
1− 1

3!
z2 +

1

5!
z4 − · · ·

)
,

=
(z
2

)1/2 1

z

(
z − 1

3!
x2 +

1

5!
z5 − · · ·

)
,

= 1√
2

sin z

z1/2
.

Second Case: For α = −1
2
, Equation (6) gives:

ann (n− 1) = −an−2, n ≥ 2. (7)

Here, the recurrence relation holds up for n ≥ 2, so we can proceed to develop a
regular series expansion for the second solution.

For the even powers of n, set n → 2n in Equation (7):

a2n = − 1

2n(2n− 1)
a2n−2.

Hence,

a2n = (−1)n
1

(2n)!
a0. (8)

We know for the second case that a1 is arbitrary. Furthermore, for the odd powers
of n we get the following recurrence relation:

a2n+1
Eq. (7)
= − 1

(2n+ 1)(2n)
a(2n+1)−2,

= − 1

(2n+ 1)(2n)
a2n−1,

= · · · ,

=
(−1)n

(2n+ 1)!
a1.
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Thus, the odd coefficients just reproduce our previous solution, so we can set
a1 = 0 to produce a linearly independent second solution.

Thus, the linearly independent second solution is given entirely by the even powers
(cf. Equation (8)):

J− 1
2
(z) =

(z
2

)−1/2
(
1− 1

2!
z2 +

1

4!
z4 − · · ·

)
where, following convention, we have taken a0 = 21/2. Hence,

J− 1
2
(z) =

√
2
cos z

z1/2
.

Note that our two solutions are just multiples of z−1/2 sin z and z−1/2 cos z (be-
having as z1/2 and z−1/2 respectively as z → 0).
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