
Applied Analysis (ACM30020)

Dr Lennon Ó Náraigh

Exercises #4

1. Consider the ODE
y′′ + p(x)y′ + q(x)y = 0.

If y1(x) is a solution,s how that a second solution can be written as:

y2(x) = y1(x)

∫ x

a

e−
∫ x′′
b p(x′)dx′

[y1(x′′)]2
dx′′. (1)

Here, a and b are arbitrary.

Sub y2(x) = y1(x)u(x) into the ODE to obtain:

u′′ +

[
p(x) + 2

y′2
y2

]
u′ = 0. (2)

Let v = u′ and reduce Equation (2) to a first-order ODE:

v′ = −
[
p(x) + 2

y′2
y2

]
v.

The solution is:

v(x) = v(b)
e
∫ x
b p(x′)dx]

[y2(x)]2
,

where b is arbitrary. But v(x) = du/dx, hence

u(x) = C + v(b)

∫ x

a

e−
∫ x′′
b p(x′)dx′

[y1(x′′)]2
dx′′.

where C is a constant of integration.

Choose C = 0 and v(b) = 1 to get a second linearly-independent solution:

u(x) =

∫ x

a

e−
∫ x′′
b p(x′)dx′

[y1(x′′)]2
dx′′.

Hence,

y2(x) = y1(x)

∫ x

a

e−
∫ x′′
b p(x′)dx′

[y1(x′′)]2
dx′′,

as required.
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2. Given that one solution of

R′′ +
1

r
R′ − m2

r2
R = 0

is R = rm, show that Equation (1) provides a second solution, R = r−m.

We read off from Question 1, with p(x) = 1/x. Hence,
∫
p(x)dx = ln x, and

e−
∫
p(x)dx = −1/x. Thus, the second solution (in an obvious notation, and letting

x → r) is:

R2(r) = rm
∫

1

r

1

r2m
dr,

= rm
(
− 1

2m
r−2m

)
,

∝ r−m.

As the solutions are only defined up to a constant, we choose the second linearly
independent solution to be:

R2(r) = r−m,

as required.
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3. Consider Legendre’s differential equation:

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0. (3)

(a) Solve the equation by by direct series substitution.

(b) Verify that the indicial equation is:

α(α− 1) = 0.

(c) Using α = 0, obtain the following series of even powers of x (a1 = 0):

yeven = a0

[
1− n(n+ 1)

2!
x2 +

n(n− 2)(n+ 1)(n+ 3)

4!
x4 + · · ·

]
,

where

aj+2 =
j(j + 1)− n(n+ 1)

(j + 1)(j + 2)
aj.

(d) Using α = 1, develop a series of odd powers of x (a1 = 0).

yodd = a0

{
x− (n− 1)(n+ 2)

3!
x3

+
(n− 1)(n− 3)(n+ 2)(n+ 4)

5!
x5 + · · ·

}
,

where

aj+2 =
(j + 1)(j + 2)− n(n+ 1)

(j + 2)(j + 3)
aj.

(e) Show that both solutions, yeven and yodd, diverge for x = ±1 if the series
continue to infinity.

(f) Finally, show that by an appropriate choice of n, one series at a time
may be converted into a polynomial, thereby avoiding the divergence
catastrophe.

Because the coefficient functions p(x) = −2x/(1−x2) and q(x) = n(n+1)/(1−
x2) are regular at x = 0, this is a regular point and hence, the ODE has a simple
power-series solution:

y(x) =
∞∑
p=0

apx
p

(we can’t use n for the index because it’s used already as the parameter in the
ODE). We substitute this into Equation (3) to get:

∞∑
p=0

app(p− 1)xp−2 =
∞∑
p=0

app(p− 1)xp + 2
∞∑
p=0

appx
p −

∞∑
p=0

n(n+ 1)apx
p.
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Re-index. In the term on the LHS we use q = p− 2. In the terms on the RHS we
use q = p. This gives:

∞∑
q=−2

aq+2(q + 2)(q + 1)xq =
∞∑
q=0

aqq(q − 1)xq + 2
∞∑
q=0

aqqx
q −

∞∑
q=0

n(n+ 1)aqx
q.

We equate powers of xq. At q = −2 we have a0 × 0× 1 = 0, which implies that
a0 is arbitrary. At q = −1 we have a1× (−1)×0 = 0, meaning that a1 is arbitrary
also. We also have the recurrence relation:

aq+2 = aq
q(q − 1) + 2q − n(n+ 1)

(q + 2)(q + 1)
,

= aq
q(q + 1)− n(n+ 1)

(q + 2)(q + 1)

These results mean that we can look at the possibilities {a0 ̸= 0, a1 = 0} and
{a0 = 0, a1 ̸= 0} separately. Furthermore, because the recurrence relation steps
up in steps of two, this means that we are looking at odd and even series solutions.

Consequently, the series solutions are y(x) = a0 + a2x
2 + a4x

4 + · · · and y(x) =
a1x+a3x

3+ · · · , which can be encapsulated as y(x) = xα(a0+a1x+a2x
2+ · · · ),

with α = 0, 1. This implies an indicial equation α(α−1) = 0, which answers Part
(b).

Parts (a) and (c): We look at the possibilities {a0 ̸= 0, a1 = 0} and {a0 =
0, a1 ̸= 0} separately, and generate odd and even series solutions. We use the
recurrence relation to generate the first few terms of the even solution:

a2 = a0
−n(n+ 1)

2!
,

a4 = a2

[
6− n(n+ 1)

4× 3

]
,

= a0
1

4!
(−1) [6− n(n+ 1)]n(n+ 1),

= a0
1

4!
n(n+ 1)(n− 2)(n+ 3).

Hence,

yeven = a0

[
1− n(n+ 1)

2!
x2 +

n(n+ 1)(n− 2)(n+ 3)

4!
x4 + · · ·

]
,

where

aq+2 = aq
q(q + 1)− n(n+ 1)

(q + 2)(q + 1)
.

Thus, the answer to Part (c) is complete.
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Part (d) concerns the odd solution. The first few terms are:

a3 = a1
2− n(n+ 1)

3× 2
,

= a1

[
−(n− 1)(n+ 2)

3!

]
,

a5 = a3

[
3× 4− n(n+ 1)

5× 4

]
,

= a1

[
−(n− 1)(n+ 2)

3!

] [
−(n− 3)(n+ 4)

5× 4

]
,

= a1

[
(n− 1)(n− 3)(n+ 2)(n+ 4)

5!

]
.

Hence, we obtain the odd solution:

yodd = a1

[
x− (n− 1)(n+ 2)

3!
x3 +

(n− 1)(n− 3)(n+ 2)(n+ 4)

5!
x5 + · · ·

]
.

Again, the ratio between successive terms is given by the recurrence relation:

aq+2 = aq
q(q + 1)− n(n+ 1)

(q + 2)(q + 1)
.

For Part (e), we look again at the recurrence relation in the limit of large q. This
gives

aq+2

aq
∼ q

q + 2
∼ 1.

Thus, the tail of the series looks like a geometric progression with alternating sign.
The geometric progression with alternating sign is:

G(x) =
∞∑
q=0

(−1)qxq,

which diverges as |x| → 1. Thus, and in general, the series yeven and yodd will
diverge as |x| → 1. This answers Part (e).

For Part (f), we notice that the series yeven and yodd will terminate and reduce to
polynomial expressions if n is zero or a positive integer, since then the expression

j(j + 1) = n(n+ 1)

will be satisfied for n = j, and hence aj+2 = 0. These are the Legendre Polyno-
mials (Figure 1).
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Figure 1: The first 6 Legendre Polynomials. From Wikipedia.

4. Obtain two series solutions of the confluent hypergeometric equation

xy′′ + (c− x)y′ − ay = 0.

Test your solutions for convergence.

We first look at x[(c − x)/x] = c − x and x2[−a/x] = −ax. The RHS of both
these expressions have Taylor expansions around zero, so the singular point x = 0
is regular. Thus, a series solution

y(x) = xα

∞∑
n=0

anx
n,

is possible. We substitute this trial solution into the ODE and evaluate:

∞∑
n=0

an(n+ α)(n+ α− 1)xn+α−1 + c

∞∑
n=0

an(n+ α)xn+α−1

−
∞∑
n=0

an(n+ α)xn+α − a

∞∑
n=0

anx
n+α = 0.

We cancel out a power of xα on both sides. Hence, we have:

∞∑
n=0

an(n+ α)(n+ α− 1)xn−1 + c
∞∑
n=0

an(n+ α)xn−1

−
∞∑
n=0

an(n+ α)xn − a

∞∑
n=0

anx
n = 0.
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We then re-index with p = n− 1, hence n = p + 1, and pstart = −1. Hence, we
have:

∞∑
p=−1

ap+1(p+ 1 + α)(p+ α)xp + c
∞∑

p=−1

ap+1(p+ 1 + α)xp

−
∞∑
p=0

ap(p+ α)xp − a
∞∑
p=0

apx
p = 0.

For the p = −1 term we have:

a0 [α(α− 1) + cα] = 0.

Hence, the indicial equation is:

α(α− 1) + cα = 0,

with solutions
α = 0, α = 1− c.

We look at the analytic solution with α = 0. We look in particular at the recurrence
relation:

ap+1 [p(p+ 1) + c(p+ 1)] = ap(p+ a).

or
ann(n− 1 + c) = an−1 (n− 1 + a) , n ≥ 1.

Hence,

an =
(n− 1 + a)

n(n− 1 + c)
an−1, (4)

Furthermore,

an =
(n− 1 + a)(n− 2 + a)

n(n− 1)(n− 1 + c)(n− 2 + c)
an−2,

=
(n− 1 + a)(n− 2 + a) · · · (1 + a)a

n!(n− 1 + c)(n− 2 + c)c · · · (1 + c)c
a0.

Notice that the recurrence relation will terminate if a is a negative integer or zero
(giving a polynomial solution), and also, the recurrence relation will fail if c is a
negative integer or zero.

We identify the Pochammer symbol (rising factorial):

(a)n = a(a+ 1) · · · (a+ n− 1) =
n−1∏
k=0

(a+ k), (a)0 = 1,

and similarly for c. Hence, the first series solution can be written as:

y1(x) = a0

∞∑
n=0

(a)n
n!(c)n

xn, c /∈ −N ∪ {0}.
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or
y1(x) = a0 [1F1(a; c;x)] . (5)

where 1F1(a; c;x) is the confluent hypergeometric function.

Some remarks / clarifications are needed here:

� Notice that if a ∈ −N ∪ {0}, then y1(x) is a polynomial.
� We use the convention by Abramowtiz and Stegun1 whereby (a)n represents
the Pochammer symbol (rising factorial).

Furthermore, from Equation (4), we identify the ratio

ρn =

∣∣∣∣ an
an−1

∣∣∣∣ = ∣∣∣∣ n− 1 + a

n(n− 1 + c)

∣∣∣∣ .
Hence,

ρ = lim
n→∞

ρn = 0.

The radius of convergence of the series is therefore R = 1/ρ = ∞. Thus, except
for c = 0,−1,−2, · · · , the series in Equation (5) is an entire function, that is, an
analytic on the entire complex plane.

For the second solution, we look at α = 1− c. The recurrence relation is:

an =
n+ (a− c)

n(n+ 1− c)
an−1,

=
n− 1 + (a− c+ 1)

n[n− 1 + (2− c)]
an−1,

=
[n− 1 + (a− c+ 1)][n− 2 + (a− c+ 1)]

n(n− 1)[n− 1 + (2− c)][n− 2 + (2− c)]
an−2,

= · · ·

= a0
(a− c+ 1)n
n!(2− c)n

a0.

Hence, the second solution is:

y2(x) = x1−c [1F1(1 + a− c; 2− c;x)] , 2− c /∈ −N ∪ {0}.

Again, notice that if 1 + a− c ∈ −N ∪ {0}, then y2(x) is a polynomial.

Also, notice that if c = 1 then this method fails to generate a second indepen-
dent solution. In this case, there are repeated roots of the indicial equation, and
Frobenius’s method is required to produce the second solution.

1Milton Abramowitz and Irene Stegun. Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. National Bureau of Standards, USA, 1964
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5. Bessel’s equation can be written as

x2y′′ + xy′ +
(
x2 − ν2

)
y = 0.

Using power series, find the two linearly independent solutions of Bessel’s
equation with ν = 1/2.

We use class notes to find the recurrence relations:

α2 − ν2 = 0,

a1 (±2ν + 1) = 0.

Also,
ann (n± 2ν) = −an−2, n ≥ 2. (6)

The indicial equation is α2 = ν2, hence α = ±1/2. There are two distinct roots
of the inidical equation.

Next, we have a1(2α+ 1) = 0. For α = 1/2 this gives 2a1 = 0, so a1 = 0 in this
case. For α = −1/2 this gives a10 = 0, so a1 is undetermined in this second case.

First Case: We have α = 1/2, and the recurrence relation is well defined for all
n ≥ 2:

an = − an−2

n(n+ 1)
, n ≥ 2

This gives:

a2n = − 1

2n(2n+ 1)
a2(n−1)

=
1

2n(2n+ 1)

1

(2n− 2)(2n− 1)
a2(n−2) = · · · (−1)n

1

(2n+ 1)!
a0,

so we have first solution

J 1
2
(z) =

(z
2

)1/2
(
1− 1

3!
z2 +

1

5!
z4 − · · ·

)
where, following convention, we have taken a0 = 2−1/2.

Furthermore, we take:

J 1
2
(z) =

(z
2

)1/2
(
1− 1

3!
z2 +

1

5!
z4 − · · ·

)
,

=
(z
2

)1/2 1

z

(
z − 1

3!
x2 +

1

5!
z5 − · · ·

)
,

= 1√
2

sin z

z1/2
.

Second Case: For α = −1
2
, Equation (6) gives:

ann (n− 1) = −an−2, n ≥ 2. (7)
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Here, the recurrence relation holds up for n ≥ 2, so we can proceed to develop a
regular series expansion for the second solution.

For the even powers of n, set n → 2n in Equation (7):

a2n = − 1

2n(2n− 1)
a2n−2.

Hence,

a2n = (−1)n
1

(2n)!
a0. (8)

We know for the second case that a1 is arbitrary. Furthermore, for the odd powers
of n we get the following recurrence relation:

a2n+1
Eq. (7)
= − 1

(2n+ 1)(2n)
a(2n+1)−2,

= − 1

(2n+ 1)(2n)
a2n−1,

= · · · ,

=
(−1)n

(2n+ 1)!
a1.

Thus, the odd coefficients just reproduce our previous solution, so we can set
a1 = 0 to produce a linearly independent second solution.

Thus, the linearly independent second solution is given entirely by the even powers
(cf. Equation (8)):

J− 1
2
(z) =

(z
2

)−1/2
(
1− 1

2!
z2 +

1

4!
z4 − · · ·

)
where, following convention, we have taken a0 = 21/2. Hence,

J− 1
2
(z) =

√
2
cos z

z1/2
.

Note that our two solutions are just multiples of z−1/2 sin z and z−1/2 cos z (be-
having as z1/2 and z−1/2 respectively as z → 0).
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