Applied Analysis (ACM30020)

Dr Lennon O Naraigh
Exercises #4

1. Consider the ODE
y' 4+ p(x)y +q(x)y = 0.

If y1(x) is a solution,s how that a second solution can be written as:

N
T o= 5 pla)da’

r) =y (x —————da”. 1
yQ( ) yl( )/a [yl(x//”g ( )
Here, a and b are arbitrary.
Sub y2(x) = y1(x)u(x) into the ODE to obtain:
u” + {p(x) + 2@] u' = 0. (2)

Y2
Let v = «’ and reduce Equation (2 to a first-order ODE:
, Ys
vV =—|p(z) + 2= v.
Y2

The solution is:
el p(@)da]

v(z) =v(b)——,
@ = O
where b is arbitrary. But v(z) = du/dx, hence
@ =Colt) [ R
ur) =0+v ————dx".
o ()P

where C'is a constant of integration.

Choose C'= 0 and v(b) = 1 to get a second linearly-independent solution:

z —fgcup(x’)dz’
u(m):/ 4

[y1 (2")]?
Hence, ,
v o= fy p(m')dz'd )
) =) [
as required.
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2. Given that one solution of
1 2
R'+-R -2 R=0
r r

is R = r™, show that Equation provides a second solution, R = r~".

We read off from Question 1, with p(z) = 1/z. Hence, [ p(z)dz = Inz, and

e~ JP@)dz — _1 /2 Thus, the second solution (in an obvious notation, and letting
T —r)is:

Ry(r) = rm/lidr,

o r ™.

As the solutions are only defined
independent solution to be:

as required.
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3. Consider Legendre's differential equation:
(1—2?)y" =22y +n(n+ 1)y = 0. (3)

(a) Solve the equation by by direct series substitution.

(b) Verify that the indicial equation is:
ala—1)=0.
(c) Using a = 0, obtain the following series of even powers of z (a; = 0):

1 -2 1 3
Yeven = Qo 1_—77/(77/2““ )$2+n<n )(n4_‘|_ )(n+ )I4+ ;

where o
jG+1) —nn+1)

G+DG+2)

(d) Using o = 1, develop a series of odd powers of = (a; = 0).

Ajt2 =

(=1 +2)
3!
n—1)(n—-3)n+2)(n+4) ;
(2= Do = 9o+ 2 >H,,_},

Yodd = ao{fﬂ -

where
G+ +2) —nn+1)

G+2G+3) 7

(e) Show that both solutions, Yeyen and yoqq, diverge for x = £1 if the series
continue to infinity.

Ajt2 =

(f) Finally, show that by an appropriate choice of n, one series at a time
may be converted into a polynomial, thereby avoiding the divergence
catastrophe.

Because the coefficient functions p(z) = —2x/(1—2?) and q(z) = n(n+1)/(1—
x2) are regular at x = 0, this is a regular point and hence, the ODE has a simple

power-series solution:
oo
— p
x) = E apx
p=0

(we can't use n for the index because it's used already as the parameter in the
ODE). We substitute this into Equation ({3)) to get:

ayp(p — 1)zP~? Zapp — 1)z? + QZappxp — Zn(n + 1)ayz?.
p=0 p=0 p=0 p=0
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Re-index. In the term on the LHS we use ¢ = p — 2. In the terms on the RHS we
use ¢ = p. This gives:

(e 9] (e 9]

D aga(q+2)(g+ Daf =D agq(g— Dat +2) aqe’ =Y n(n+ 1)aga’.

q=-2 q=0 q=0 q=0

We equate powers of 7. At ¢ = —2 we have ag X 0 x 1 = 0, which implies that
ag is arbitrary. At ¢ = —1 we have a; X (—1) x 0 = 0, meaning that a; is arbitrary
also. We also have the recurrence relation:

ql¢—1)+2¢—n(n+1)
(¢+2)(¢+1)

" q(¢g+1) —n(n+1)

© g+ 2)(g+1)

aq+2 = q Y

These results mean that we can look at the possibilities {ay # 0,a; = 0} and
{ap = 0,a; # 0} separately. Furthermore, because the recurrence relation steps
up in steps of two, this means that we are looking at odd and even series solutions.

Consequently, the series solutions are y(z) = ag + as2? + agx* + -+ and y(z) =
a1x+azx+ - - -, which can be encapsulated as y(z) = x*(ag+ a1z + agz*+- - - ),
with a = 0, 1. This implies an indicial equation a(cv— 1) = 0, which answers Part
(b).

Parts (a) and (c): We look at the possibilities {ag # 0,a; = 0} and {ag =
0,a; # 0} separately, and generate odd and even series solutions. We use the
recurrence relation to generate the first few terms of the even solution:

Az = ao_n(;—k 1);
o = a {6 —n(n+ 1)]
4x3 ’
1

= aoa(—l) 6 —n(n+1)|n(n+1),
= aO%n(n +1)(n—2)(n+ 3).

Hence,

1 1 -2 3
Yeven = Q0 l_n(n2~'|— )$2+n(n+ )(n4' Jn+ )x4—|—... 7

where
q(g+1) —n(n+1)

(¢+2)(g+1)
Thus, the answer to Part (c) is complete.

Agt+2 = Qq
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Part (d) concerns the odd solution. The first few terms are:

~2—n(n+1)
R R
_ _(n—l)(n+2)}
Y 3! ’
B [3x4—n(n+1)
4 = I 5% 4 ] ’
. __(n—l)(n—l—Z)} {_(n—B)(n—i—éI)}
" 3| 5 x4 ’
. '(n—l)(n—?))(n—l—2)(n—|—4)}
! 5! '

Hence, we obtain the odd solution:

(n—1)(n+2) 3+(n—1)(n—3)(n+2)(n+4)xs+m].

Yodd = @1 | T — 31 T 51

Again, the ratio between successive terms is given by the recurrence relation:

qlg+1) —n(n+1)
(¢+2)(¢+1)

(g2 = dq

For Part (e), we look again at the recurrence relation in the limit of large ¢. This
gives
ag+2 4 1

agq q+2N

Thus, the tail of the series looks like a geometric progression with alternating sign.
The geometric progression with alternating sign is:

Gla) =D (=11,

q=0

which diverges as || — 1. Thus, and in general, the series Yepen, and Yoqq will
diverge as || — 1. This answers Part (e).

For Part (f), we notice that the series Yeyen and Yoqq Will terminate and reduce to
polynomial expressions if n is zero or a positive integer, since then the expression

jG+1)=n(n+1)

will be satisfied for n = j, and hence a;,> = 0. These are the Legendre Polyno-
mials (Figure [1)).
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Figure 1: The first 6 Legendre Polynomials. From Wikipedia.

4. Obtain two series solutions of the confluent hypergeometric equation
zy" + (c—x)y —ay = 0.

Test your solutions for convergence.

We first look at z[(c — x)/x] = ¢ — x and 2?[—a/z] = —az. The RHS of both
these expressions have Taylor expansions around zero, so the singular point x = 0
is regular. Thus, a series solution

(o]
=z° E an,x",

n=0

is possible. We substitute this trial solution into the ODE and evaluate:

Zan n+a)(n+a—1) 2" l—i-cZann—i-oz nta-l

n=0 n
00

—0
—E an(n + o)zt ag a,z" T = 0.
n=0

We cancel out a power of x* on both sides. Hence, we have:

Zan (n+a)(n+a—1)z"" +cZan(n+a)x”_1

n=0 n=0
—E ann—iroz —aE anx"


https://en.wikipedia.org/wiki/Legendre_polynomials
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We then re-index with p =n — 1, hence n = p+ 1, and pgr = —1. Hence, we
have:

Y aplp+1+a)p+a)a’+¢ ) apa(p+1+a)”
p=-—1 p=—1

—Zapp—ira —aZapxp—O

For the p = —1 term we have:
ap [o(a — 1) + ca] = 0.
Hence, the indicial equation is:
ala—1)+ca =0,

with solutions
a =0, a=1-c

We look at the analytic solution with & = 0. We look in particular at the recurrence

relation:
api1[p(p+1) +c(p+1)] = ay(p + a).
or
ann—1+¢)=a, 1 (n—1+a), n>1.
Hence,
n—1+a
N Gt 5 ) )
nn—1+c)
Furthermore,

(n—1+4+a)(n—2+a) .
nn—1)n—-1+c¢)(n—2+¢) ">
mn—1+a)(n—24+a) --(1+a)a
nl(n—1+c)(n—2+c)c---(1+c)c

Notice that the recurrence relation will terminate if a is a negative integer or zero
(giving a polynomial solution), and also, the recurrence relation will fail if ¢ is a
negative integer or zero.

We identify the Pochammer symbol (rising factorial):

n—1

()" =ala+1)--(a+n—1)=[[la+k),

k=0

and similarly for c¢. Hence, the first series solution can be written as:

:aoz (a)" ", a,c ¢ —NU{0}.

nl(c)”

n=0
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or

yi(x) = ao [1F1(a; ¢ )] (5)
where 1 F(a; ¢; x) is the confluent hypergeometric function.
Furthermore, from Equation , we identify the ratio

n—1+a
nn—1+¢)|

Hence,
p = lim p, =0.
n—oo
The radius of convergence of the series is therefore R = 1/p = 0o. Thus, except

for c=0,—1,—2,---, the series in Equation is an entire function, that is, an
analytic on the entire complex plane.

For the second solution, we look at @« = 1 — ¢. The recurrence relation is:

o - ntle—o

" nn+1-—c) n=b

n—1+(a—c+1)a

nn—1+2-¢] "V
n—1t(@—ctDln—2+@—c+1)]
nln =D =1+ @~ ol =2+ @2 =)™

(@a—c+1)"

- nl(2 —c)"

agp.

Hence, the second solution is:

yo(z) =2 (1 +a—c2—cua), l+a—c¢2—c¢ —NU{0}.

5. Bessel's equation can be written as

2y +ay + (2 =)y =0.

Using power series, find the two linearly independent solutions of Bessel's
equation with v = 1/2.

We use class notes to find the recurrence relations:

a2 -1 = 0,

a (F20+1) = 0.
Also,
apn (n £ 2v) = —a,_o, n> 2. (6)

The indicial equation is a? = 12, hence a = +1/2. There are two distinct roots
of the inidical equation.
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Next, we have a;(2a + 1) = 0. For aw = 1/2 this gives 2a; = 0, so a; = 0 in this

case. For « = —1/2 this gives a;0 = 0, so a; is undetermined in this second case.
First Case: We have oo = 1/2, and the recurrence relation is well defined for all
n > 2: a
n—2
y=—— > 2
¢ n(n+ 1) "=
This gives:
1
gy = ——————U(n—
? on(2n+1) Y
1 1 (—1y" 1
- a/ n— T e e e —_— —a y
m(2n+1) (2n—2)(2n — 1) 272 2n+1)1°

so we have first solution

2\ 1/2 15, 1,
J%(z):(§> (1—52 —1—52 —)

where, following convention, we have taken ay = 271/2.

Furthermore, we take:

z\1/2 15, 1,
o = () (-t
2\1/21 1, 1 4
- 3) Z(Z_§$+§Z_ )

_; sinz
V2 L2

Second Case: For o = —1, Equation (f)) gives:
apn(n—1) = —a,_a, n > 2. (7)

Here, the recurrence relation holds up for n > 2, so we can proceed to develop a
regular series expansion for the second solution.

For the even powers of n, set n — 2n in Equation ([7)):

1
on = _Qn(Qn — 1)a2n_2.
Hence, )
Aoy, = (—1)”@@0 (8)

We know for the second case that a; is arbitrary. Furthermore, for the odd powers
of n we get the following recurrence relation:

Eq.: _ 1 a
1

A2n+41

?

_ =
(2n+1) "
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Thus, the odd coefficients just reproduce our previous solution, so we can set
a1 = 0 to produce a linearly independent second solution.

Thus, the linearly independent second solution is given entirely by the even powers
(cf. Equation (8)):

z\ 712 L, 1,
J—%(Z):<§> (1_§Z +IZ —)

where, following convention, we have taken ay = 2'/2. Hence,

(2) = V2.

~1/2

J

1
2

Note that our two solutions are just multiples of z='/2sin z and z7/? cos z (be-
having as 2'/2 and z7'/2 respectively as z — 0).

10



