
Applied Analysis (ACM30020)

Dr Lennon Ó Náraigh

Exercises #3

In this set of exercises we are concerned with the Orr–Sommerfeld equation for Couette
flow. The purpose of the exercises is to showcase a very nice application of the method
of Variation of Parameters. The equation reads:

ik (z − c)
(
∂2z − k2

)
Ψ = Re−1

(
∂2z − k2

)2
Ψ. (1)

Here, k and Re are real parameters, z is the variable, and ∂z denotes ordinary differen-
tiation with respect to z. The constant c is an eigenvalue to be determined, this can be
real or imaginary.

For context, the equation models the instability of a parallel shear flow – such as the
one in the graded assignment, shown schematically here again in Figure 1. The time-
independent parallel shear flow U0(z) is in the x-direction but varies in the z-direction.
A perturbation is introduced, which takes the flow to a new state

u(x, z, t) = (U0(z) + δu(x, z, t), 0, δw(x, z, t)),

where δu and δw are small perturbations to the basic flow. We fix U0(z) ∝ z, which is
the equation of Couette flow. By writing δu and δw in a streamfunction representation,
δu = ∂ψ/∂z and δw = −∂ψ/∂x and then by decomposing Ψ into normal models
ψ(x, z, t) = ψ(z)eik(x−ct), Equation (1) drops out of the Navier–Stokes equations, these
being the basic equations of Fluid Mechanics.

Figure 1: Schematic description of a unidirectional shear flow, similar to the graded
assignment. Note the convention here that the wall-normal direction is z (it’s y in the
graded assignment).
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Applied Analysis Method of Variation of Parameters

1. Let v = (∂2z − k2)Ψ. Notice that v = 0 satisfies Equation (1). Hence, show
that

Ψ = cosh(kz), Ψ = sinh(kz).

are solutions of Equation (1).

We look again at Equation (1):

ik (z − c)
(
∂2z − k2

)
Ψ︸ ︷︷ ︸

=v

= Re−1
(
∂2z − k2

) (
∂2z − k2

)
Ψ︸ ︷︷ ︸

=v

. (2)

Hence:
ik (z − c) v = Re−1

(
∂2z − k2

)
v. (3)

This is a homogeneous equation, one solution of which is v = 0. Referring back to
v = (∂2z − k2)Ψ, we have: (

∂2z − k2
)
Ψ = 0, (4)

with solutions e−kz and ekz. Or, taking linear combinations:

Ψ = cosh(z), Ψ = sinh(z). (5)

2. Carry out a series of rescalings, z̃ = z− c− ik/Re, followed by ξ = λz̃, where
λ is constant. Hence, show that v satisfies Airy’s differential equation:

d2v

dξ2
− ξv = 0, (6)

where ξ = (ikRe)1/3[z − c− (ik/Re)]. We choose the particular cube root of
i1/3 = eiπ/6.

We re-write Equation (3) as:[
d2

dz2
− k2 − ikRe (z − c)

]
v = 0, (7)

or: [
d2

dz2
− ikRe

(
z − c− ik

Re

)]
v = 0. (8)

Let z̃ = z − c− ik/Re. We have d/dz = d/dz̃, hence:

d2v

dz̃2
− ikRez̃ v = 0. (9)
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Applied Analysis Method of Variation of Parameters

We make a second change of variable to bring Equation (9) into a standard form. Hence,
we let ξ = λz̃. We have:

d

dz̃
=

dξ

dz̃

d

dξ
= λ

d

dξ
. (10)

Hence, Equation (9) becomes:

λ2
d2v

dξ2
− ikRe

(
ξ

λ

)
v = 0. (11)

Hence:

λ3
d2v

dξ2
− ikReξ v = 0. (12)

We choose λ3 = ikRe, hence:

λ =
[
eπi/2kRe

]1/3
(13)

hence finally:
λ = eπi/6 (kRe)1/3 . (14)

Note that other cube roots are possible in Equation (13) but they won’t lead to any new
linearly independent solutions, since we can have only two of those.

Hence, after these manipulations, Equation (9) becomes:

d2v

dξ2
− ξv = 0, (15)

which is exactly the form required (cf. Equation (15)).
As noted in the question sheet, Equation (6) has solutions

v = Ai(ξ), v = Bi(ξ).

Here, Ai and Bi are special solutions of Airy’s differential equation, these can be looked
up. We now use these special properties to construct explicit solutions for ψ(z), i.e. two
final linearly independent solutions, apart from those already obtained in Question 1.

3. To obtain the remaining two linearly independent solutions of Equation (1),
we look at:(

d2

dz2
− k2

)
Ψ = Ai(ξ),

(
d2

dz2
− k2

)
Ψ = Bi(ξ). (16)

Use the method of variation of parameters to construct the following two
solutions:

χ1(z) =
1

k

∫ z

0

sinh[k(z − z′)]Ai

[
(ikRe)1/3

(
z′ − c− ik

Re

)]
dz′,(17a)

χ2(z) =
1

k

∫ z

0

sinh[k(z − z′)]Bi

[
(ikRe)1/3

(
z′ − c− ik

Re

)]
dz′,(17b)
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Applied Analysis Method of Variation of Parameters

We take the first equation of interest:(
d2

dz2
− k2

)
Ψ = Ai(ξ) (18)

As this is a linear inhomogeneous ODE, we use the method of variation of parameters.
We identify the homogeneous solutions Ψ1 = cosh(kz) and Ψ2 = sinh(kz). The
Wronskian is:

W =

∣∣∣∣ Ψ1 Ψ2

Ψ′
1 Ψ′

2

∣∣∣∣ = ∣∣∣∣ cosh(kz) sinh(kz)
k sinh(kz) k cosh(kz)

∣∣∣∣ = k. (19)

From class notes, the particular integral is:

ΨPI(z) =

∫ z

0

G(z, z′)Ai(ξ(z′))dz′,

=

∫ z

0

−Ψ1(z)Ψ2(z
′) + Ψ2(z)Ψ

′
1(z

′)

k= p2W
Ai(ξ(z′))dz′ (20)

This is:

ΨPI(z) = −cosh(kz)

k

∫ z

0

sinh(kz′)Ai(ξ(z′))dz′

+
sinh(kz)

k

∫ z

0

cosh(kz′)Ai(ξ(z′))dz′ (21)

Or:

ΨPI(z) =
1

k

∫ z

0

[sinh(kz) cosh(kz′)− cosh(kz) sinh(kz′)] Ai(ξ(z′))dz′ (22)

We use a trigonometric identity to re-write this as:

ΨPI(z) =
1

k

∫ z

0

sinh[k(z − z′)]Ai(ξ(z′))dz′. (23)

Filling in for the variable ξ, this is:

ΨPI(z) =
1

k

∫ z

0

sinh[k(z − z′)]Ai

[
(ikRe)1/3

(
z′ − c− ik

Re

)]
dz′. (24)

We call this solution of the Orr–Sommerfeld Equation (1) χ3(z). Hence, we similarly
obtain:

χ4(z) =
1

k

∫ z

0

sinh[k(z − z′)]Bi

[
(ikRe)1/3

(
z′ − c− ik

Re

)]
dz′. (25)

As noted in the question sheet, in the context of Fluid Dynamics, Equation (1) is
solved in a channel, with z ∈ [0, 1], with no-slip boundary conditions:

Ψ(z) = Ψ′(z) = 0, z = 0, 1.

A general solution of the eigenvalue problem is:

Ψ = AΨ1(z) +BΨ2(z) + Cχ1(z) +Dχ2(z). (26)
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Applied Analysis Method of Variation of Parameters

4. Show that the vanishing of the streamfunction at the boundaries implies that∣∣∣∣∣∣∣∣
1 0 0 0
0 k 0 0

cosh(k) sinh(k) χ1(1) χ2(1)
k sinh(k) k cosh(k) χ′

1(1) χ′
2(1)

∣∣∣∣∣∣∣∣ = 0.

The general solution Ψ(z) in Equation (26) has boundary conditions:

Ψ(0) = 0 , Ψ′(0) = 0,

Ψ(1) = 0 , Ψ′(1) = 0.

Note that χi(0) = (1/k)
∫ 0

0
(· · · )dz′ = 0, for i = 1, 2. Similarly,

dχi

dz

∣∣
z=0

=
1

k(
(((((((

sinh[k(z − z)]

{
Ai(· · · )
Bi(· · · )

}
+

1

k

∫ 0

0

∂

∂z
sinh[k(· · · )]

{
Ai(· · · )
Bi(· · · )

}
dz′,

= 0. (27)

Hence, χi(0) = χ′
i(0) = 0, for i = 1, 2. Hence:

Ψ1(0) = cosh(0) = 1,

Ψ′
1(0) = k sinh(0) = 0,

Ψ2(0) = sinh(0) = 0,

Ψ′
2(0) = k cosh(0) = k. (28)

Apply to Equation (26):

Ψ(0) = A · 1 +B · 0 + C · 0 +D · 0,
Ψ′(0) = A · 0 +B · k + C · 0 +D · 0. (29)

Also:

Ψ(1) = A cosh(k) +B sinh(k) + Cχ1(1) +Dχ2(1),

Ψ′(1) = kA sinh(k) + kB cosh(k) + Cχ′
1(1) +Dχ′

2(1). (30)

Equations (29) and (30) are a linear system:
1 0 0 0
0 k 0 0

cosh(k) sinh(k) χ1(1) χ2(1)
k sinh(k) k cosh(k) χ′

1(1) χ′
2(1)




A
B
C
D

 = 0. (31)

The linear system has a non-trivial solution for (A,B,C,D)T provided the determinant
in the question vanishes.
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5. Show that the determinant can be simplified dramatically to:

k [χ1(1)χ
′
2(1)− χ2(1)χ

′
1(1)] = 0. (32)

We evaluate the determinant on Question 4 along the first row to get:

∣∣∣∣ · · · ∣∣∣∣ = 1 ·

∣∣∣∣∣∣
k 0 0

sinh(k) χ1(1) χ2(1)
cosh(k) χ′

1(k) χ′
2(1)

∣∣∣∣∣∣+ 0 ·
∣∣∣∣ · · · ∣∣∣∣+ 0 ·

∣∣∣∣ · · · ∣∣∣∣+ 0 ·
∣∣∣∣ · · · ∣∣∣∣,

= k

∣∣∣∣ χ1(1) χ2(1)
χ′
1(1) χ′

2(1)

∣∣∣∣ , (33)

hence ∣∣∣∣ · · · ∣∣∣∣ = k [χ1(1)χ
′
2(1)− χ2(1)χ

′
1(1)] , (34)

as required.

Interpretation: The determinant can be written as:∣∣∣∣ · · · ∣∣∣∣ = F (k,Re, c). (35)

To have a non-trivial solution of the Orr–Sommerfeld equation, we require that

F (k,Re, c) = 0. (36)

For fixed k and Re, this is a root-finding condition for c, with complex roots{
cn(k,Re)

}
)∞n=0.

These are the eigenvalues of the Orr–Sommerfeld equation. Depending on

sign [Imag(c)]

the travelling-wave solution ψ(x, z, t) = eik(x−ct)Ψ(z) is linearly stable or unstable.

History lesson: Equation (1) is named after William McFadden Orr and Arnold Som-
merfeld, who derived it at the beginning of the 20th century. William McFadden Orr (2
May 1866 – 14 August 1934) was a professor in UCD.
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Figure 2: Screenshot of the Wikipedia page on William McFadden Orr, professor of
mathematics at the Royal College of Science for Ireland (1892) and professor of pure
mathematics and applied mathematics when that college merged with University College
Dublin in 1926.
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