

Applied Analysis (ACM30020)

Dr Lennon Ó Náraigh

Exercises #3

In this set of exercises we are concerned with the Orr–Sommerfeld equation for Couette flow. The purpose of the exercises is to showcase a very nice application of the method of Variation of Parameters. It is not necessary to go into the Fluid Dynamics; instead, it suffices just to go ahead and look at the equation:

$$ik(z - c)(\partial_z^2 - k^2)\Psi = \text{Re}^{-1}(\partial_z^2 - k^2)^2\Psi. \quad (1)$$

Here, k and Re are real parameters, z is the variable, and ∂_z denotes ordinary differentiation with respect to z . The constant c is an eigenvalue to be determined, this can be real or imaginary.

1. Let $v = (\partial_z^2 - k^2)\Psi$. Notice that $v = 0$ satisfies Equation (1). Hence, show that

$$\Psi = \cosh(kz), \quad \Psi = \sinh(kz).$$

are solutions of Equation (1).

2. Carry out a series of rescalings, $\tilde{z} = z - c - ik/\text{Re}$, followed by $\xi = \lambda\tilde{z}$, where λ is constant. Hence, show that v satisfies Airy's differential equation:

$$\frac{d^2v}{d\xi^2} - \xi v = 0, \quad (2)$$

where $\xi = (ik\text{Re})^{1/3}[z - c - (ik/\text{Re})]$. We choose the particular cube root of $i^{1/3} = e^{i\pi/6}$.

Equation (2) has solutions

$$v = \text{Ai}(\xi), \quad v = \text{Bi}(\xi).$$

Here, Ai and Bi are special solutions of Airy's differential equation, these can be looked up.

3. To obtain the remaining two linearly independent solutions of Equation (1), we look at:

$$(\partial_z^2 - k^2)\Psi = \text{Ai}(\xi), \quad (\partial_z^2 - k^2)\Psi = \text{Bi}(\xi). \quad (3)$$

Use the method of variation of parameters to construct the following two solutions:

$$\chi_1(z) = \frac{1}{k} \int_0^z \sinh[k(z - z')] \text{Ai}\left[(ik\text{Re})^{1/3}\left(z' - c - \frac{ik}{\text{Re}}\right)\right] dz', \quad (4a)$$

$$\chi_2(z) = \frac{1}{k} \int_0^z \sinh[k(z - z')] \text{Bi}\left[(ik\text{Re})^{1/3}\left(z' - c - \frac{ik}{\text{Re}}\right)\right] dz', \quad (4b)$$

In the context of Fluid Dynamics, Equation (1) is solved in a channel, with $z \in [0, 1]$, with no-slip boundary conditions:

$$\Psi(z) = \Psi'(z) = 0, \quad z = 0, 1.$$

A general solution of the eigenvalue problem is:

$$\Psi = A\Psi_1(z) + B\Psi_2(z) + C\chi_1(z) + D\chi_2(z).$$

4. Show that the vanishing of the streamfunction at the boundaries implies that

$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & k & 0 & 0 \\ \cosh(k) & \sinh(k) & \chi_1(1) & \chi_2(1) \\ k \sinh(k) & k \cosh(k) & \chi_1'(1) & \chi_2'(1) \end{vmatrix} = 0.$$

5. Show that the determinant can be simplified dramatically to:

$$k [\chi_1(1)\chi_2'(1) - \chi_2(1)\chi_1'(1)] = 0. \quad (5)$$

The right-hand side can be viewed as a complex-valued function of k , Re , and c (the latter a complex variable). We therefore have the generic condition

$$F(k, \text{Re}, c) = 0,$$

which is a root-finding condition, with a set of roots $c_n(k, \text{Re})$ such that $F(k, \text{Re}, c_n) = 0$.