Applied Analysis (ACM30020)

Dr Lennon O Naraigh
Exercises #2

1. For the linear ODE "
ij(x)m =0,
5=0
prove that the Lipschitz constant K in the L> norm can be written as:

n—1

K=(n-1)+ max
P z€[a,b]

pi(z)
pn(l’) .

Here, all of the usual assumptions on the p}s apply: each p;(x) is continuous
on the interval [a, b], and p,(z) is never zero on [a, b].

Solution: Introduce the vector

dy d=1y 4
Yy= <ya£7"' ’W) )

which is n-dimensional. We start the indexing at zero, so we have y; = dy /dz®,
with ¢ € {0,1,--- ,n — 1}. So from the ODE, we have:

T
dy — p;(z)
-J _ e Yn1, — E A = F(z,y).
d..'lf (yla Y2, y Yn—1 ~ Dn (Qf) y] (l’ y)

We are interested in the increment F'(z,y + ) — F(x,y), which by linearity is:

F(x,y+6)—F(x,y):<51,62,--- 1y — Z ) /pn (2 ) .

We have:

Fle.y+8) = Ploy)ll — | (6 Z 2)/pnl )Tm.
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Hence:

1F (2, y + 8) — F(z, ) = max <|51 + [0l IZ@PJ )/Pulz |>- (1)

We have:
max(|z|, [y[) < [z] + [y],

for all x and y in R. Apply this to Equation to get:
n—1

IF(z,y+6) = Fz,y)lo < |61+ + |00 1|+ fhax |5|ZHQ[%§ pi (@) /pn(2)],

< -1 J; d; n(Z)],
< (1) max [5]+ max | Izrg[w; (%) /pn ()]

< (n—1) max |5]+ max |§|ZmaX p;(z)/pn(z)],

je{0n— je{on
n—1
< (n=1D[|6][cc + [|8]loc max pj(x)/pn(2)],
= K6/,
where
n—1
K = (n—l)—l— max pj(@)/pa(2)],
=0
as required.
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2. In class we looked at a comparison theorem and we prematurely named it
Gronwall's Inequality. However, Gronwall's Inequality is in reality a bit more
general than the particular instance we describe in the notes. In fact, Gronwall's
inequality says that if o(z) is a differentiable function satisfying:

o'(x) <g(x)o(z), wel,  I=(ab), (2)
where g(x) is a continuous function on I, then
o(x) < o(a)el 904 (3)

for all z € I.
Prove the differential inequality (3).

Multiply both sides of Equation by the integrating factor

pu(x) = e Ja 9@da’,

This does not affect the direction of the inequality, since yu is positive or zero.
Thus, we have:

uj—g < pg(z)o(z).
Or, 1
p — ng(x)o(x) < 0.
Or again,
d
(o) = 0.

Thus, op is a non-increasing function of x:
o(x)u(z) < ola)ula),  zel
We have p(a) = 1, hence:
o(z) <o(a)/u(x), x el

or finally, .
o(x) < o(a)els 9@ xel.
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3. Consider the following SEIR model from Mathematical Epidemiology:

%ZMN—MS—% (4a)
%Z%—(uvLa)E (4b)
B (I (40)
% =~I — uR. (4d)

It is not necessary to go into the meaning of the variables S, F, I, and
R here, suffice to say, they are dynamic sub-populations which add up to
N = S+ E + I + R, the total population. The other symbols u, 3, a,
and ~y are constant rates which govern the rate at which individuals leave one
sub-population for another. Equation is an IVP, valid at ¢ > 0. Initial
conditions are expected at ¢t = 0.

(a) Let S+ E+ I+ R = N. Show that N is constant.

Remark: N is constant in this model because the rate of natural births
is the same as the rate of natural deaths.

(b) Show that Equation has two constant solutions, a disease-free equi-
librium
DFE = (N,0,0,0),

and an endemic equilibrium
EE = (S, E,, I, R,),

where all of the values here are non-zero.

(c) Compute the coefficients of the endemic equilibrium in terms of a, 3, 7,
i, and N.

(d) Show that, for given initial conditions S(0) > 0, £(0) = 0, I(0) > 0,
and R(0) = 0, the solution of Equation ({4)) remains inside the hypercube
[0, N]* for all time.
Hint: ...

For part (a) we simply add up all four equations in the set to get dN/dt = 0,

hence N = Const..

For part (b) we look at the disease-free equilibrium. With (S, E, I, R) = (0,0,0,0),
the LHS (d/dt)(S, E, I, R) is identically zero. Similarly, the RHS is identically

zero, hence LHS = RHS, hence (0,

0,0,0) is a solution of the set ({4).


https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology
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For the existence of the endemic equilibrium, we take:

B p1S
0=puN —pusS N
O:%—(u—ka)E
0=aF — (y+p)l
0=~ — uR.

We add the first and second equations to get:

0=uN—pS—(u+a)FE
O0=aF —(y+p)l
0=~I—uR.
We use N = S+ E + I + R in the first of these equations to get:

0=pul +pR—ak
0=aF — (v+ p)l
0=~ —puR.

We re-write this as a linear system:

—a 1 7 E
a —vy+p 0 I | =0 (5)
0 y — R
—M
We have:
det(M) = —a U ‘—a‘” # ':
g —H TOTH

Hence, det(M) = 0, and hence, Equation must have a non-trivial solution,
which is precisely the endemic equilibrium.

For part (c) we compute the endemic equilibrium explicitly. As in part (b), we let
dS/dt etc. all be equal to zero. Then we have:

B pIS
uN = puS+ N
% = (u+a)E.

Here, we are suppressing the subscript * on the equilibrium values of (S, E, I, R)
for simplicity. We have:
uN = puS+ (p+a)E. (6)

Also,

ab = (v+wl,
vI = puR.
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We solve for everything in terms of R:

I = “R
Y
B = 1THER
a v
Sub into Equation (f]) to get:
S=N— 7+MM+QR.
a g
It now remains to determine R in terms of the model parameters. We start with:
BIS
N =puS+——.
PN = pS + —
Hence,
1
Ne:Ov—7+““+“R>+&—(N—7+”“+”R)(ER).
a 7y N a 0 7y

We carry out cancellations and solve for R:

R:N1<“ P —0.
B\v+pp+a

Summarizing, we have (restoring the subscript * for the equilibrium state):

Y tupta

S, = N R.,
a Y
E, = 'Y‘i‘,uﬂR*’
a 7
. = Mg,
Y

R, = NI( a_ b —1).
B\v+pp+a

For part (d), we assume for contradiction that I(t.) = 0. By continuity, there
is an interval of time [0,%.) where I(t) > 0. We look at the S-equation on this

interval:
ds (,u n ﬂ
N
=P(t)
This is a standard first-order ODE. We identify the integrating factor

)S:uN. (7)

I(t) = elo PO

Notice, Z(t) > 0. Also,
1
Z(t)

— e I P(t)dt.



Applied Analysis Comparison Theorems and Applications

Then, Equation (8)) can be re-written as:

d
T NT.
T (SZ) = p

The LHS is now a perfect derivative, so this equation can be solved by integration:

Z(t)S(t) =Z(0)S(0) + uN /t Z(thdt

Re-arranging, and using Z(0) = 1 gives:
— [t uN ! NETY
S(t) = S(0)e Jo PO 4 —/ Z(t)dt'.
Z(t) Jo
All of the terms on the RHS here are positive, hence S(t) > 0 for all ¢ € [0, t,).
We next look at the E-equation:

dE BIS

E+(M+ a)B = S (8)
~—
=Q(t)

Notice that Q(t) > 0 on [0,t.). We apply the integrating-factor technique and
obtain:

t
E(t) = B(0)e™ o)l 4 g~ lralt / I Q(t)dt.
0
Again, all of the terms on the RHS are positive or zero. In particular,
E(t) >0, t € (0,t,).

We now look at the I-equation, on the interval (0, t,):

df
= —aE - I
Since £ > 0 on (0,t,), we have:
— > — I.
5 >t

We use Gronwall's inequality (strict) to conclude that
I(t) > 1(0)e Ot e (0,t,).

In particular, I(t,) > I(0)e"OF#% > 0, which is a contradiction, since I(t,) = 0.
A similar approach for R(t) yields R(t) > 0 for all ¢ > 0, hence:

S(t), I(t) E(t) R(t) > 0, for all t > 0.

Finally, since S+ E 4+ I + R = N, and since each of S, F, ...are all positive or
zero, we must have 0 < S(t) < N, etc., hence

(S.E,1,R) € [0, N]",

for all t > 0.



