Applied Analysis (ACM30020)

Dr Lennon Ó Náraigh

Exercises $#2$

1. For the linear ODE

$$
\sum_{j=0}^{n} p_j(x) \frac{\mathrm{d}^{(j)} y}{\mathrm{d} x^{(j)}} = 0,
$$

prove that the Lipschitz constant K in the L^∞ norm can be written as:

$$
K = (n - 1) + \sum_{i=0}^{n-1} \max_{x \in [a,b]} \left| \frac{p_i(x)}{p_n(x)} \right|.
$$

Here, all of the usual assumptions on the $p_j's$ apply: each $p_j(x)$ is continuous on the interval $[a, b]$, and $p_n(x)$ is never zero on $[a, b]$.

Solution: Introduce the vector

$$
\boldsymbol{y} = \left(y, \frac{\mathrm{d}y}{\mathrm{d}x}, \cdots, \frac{\mathrm{d}^{(n-1)}y}{\mathrm{d}x^{(n-1)}}\right)^T,
$$

which is n -dimensional. We start the indexing at zero, so we have $y_i={\rm d}^{(i)}y/{\rm d}x^{(i)}$, with $i \in \{0, 1, \dots, n-1\}$. So from the ODE, we have:

$$
\frac{\mathrm{d}\boldsymbol{y}}{\mathrm{d}x} = \left(y_1, y_2, \cdots, y_{n-1}, -\sum_{j=0}^{n-1} \frac{p_j(x)}{p_n(x)} y_j\right)^T = \boldsymbol{F}(x, \boldsymbol{y}).
$$

We are interested in the increment $\mathbf{F}(x, y + \delta) - \mathbf{F}(x, y)$, which by linearity is:

$$
\boldsymbol{F}(x, y + \boldsymbol{\delta}) - \boldsymbol{F}(x, y) = \left(\delta_1, \delta_2, \cdots, \delta_{n-1}, -\sum_{j=0}^{n-1} \delta_j p_j(x)/p_n(x)\right)^T.
$$

We have:

$$
\|\boldsymbol{F}(x,\boldsymbol{y}+\boldsymbol{\delta})-\boldsymbol{F}(x,\boldsymbol{y})\|_{\infty}=\bigg\|\left(\delta_1,\cdots,\delta_{n-1},-\sum_{j=0}^{n-1}\delta_j p_j(x)/p_n(x)\right)^T\bigg\|_{\infty}.
$$

Hence:

$$
\|\boldsymbol{F}(x,\boldsymbol{y}+\boldsymbol{\delta})-\boldsymbol{F}(x,\boldsymbol{y})\|_{\infty}=\max\left(|\delta_1|,\cdots,|\delta_n|,|\sum_{j=0}^{n-1}\delta_j p_j(x)/p_n(x)|\right).
$$
 (1)

We have:

 $max(|x|, |y|) \leq |x| + |y|,$

for all x and y in $\mathbb R$. Apply this to Equation [\(1\)](#page-1-0) to get:

$$
\begin{array}{rcl}\n\|F(x, y + \delta) - F(x, y)\|_{\infty} & \leq & |\delta_1| + \cdots + |\delta_{n-1}| + \max_{j \in \{0, n-1\}} |\delta_j| \sum_{j=0}^{n-1} \max_{x \in [a, b]} |p_j(x)/p_n(x)|, \\
& \leq & (n-1) \max_{j \in \{1, n-1\}} |\delta_j| + \max_{j \in \{0, n-1\}} |\delta_j| \sum_{j=0}^{n-1} \max_{x \in [a, b]} |p_j(x)/p_n(x)|, \\
& \leq & (n-1) \max_{j \in \{0, n-1\}} |\delta_j| + \max_{j \in \{0, n-1\}} |\delta_j| \sum_{j=0}^{n-1} \max_{x \in [a, b]} |p_j(x)/p_n(x)|, \\
& \leq & (n-1) \|\delta\|_{\infty} + \|\delta\|_{\infty} \sum_{j=0}^{n-1} \max_{x \in [a, b]} |p_j(x)/p_n(x)|, \\
& = & K \|\delta\|_{\infty},\n\end{array}
$$

where

$$
K = (n - 1) + \sum_{j=0}^{n-1} \max_{x \in [a,b]} |p_j(x)/p_n(x)|,
$$

as required.

2. In class we looked at a comparison theorem and we prematurely named it Gronwall's Inequality. However, Gronwall's Inequality is in reality a bit more general than the particular instance we describe in the notes. In fact, Gronwall's inequality says that if $\sigma(x)$ is a differentiable function satisfying:

$$
\sigma'(x) \le g(x)\sigma(x), \qquad x \in I, \qquad I = (a, b), \tag{2}
$$

where $q(x)$ is a continuous function on I, then

$$
\sigma(x) \le \sigma(a) e^{\int_a^x g(x') dx'},\tag{3}
$$

for all $x \in I$.

Prove the differential inequality [\(3\)](#page-2-0).

Multiply both sides of Equation [\(2\)](#page-2-1) by the integrating factor

$$
\mu(x) = e^{-\int_a^x g(x') dx'}.
$$

This does not affect the direction of the inequality, since μ is positive or zero. Thus, we have:

$$
\mu \frac{\mathrm{d}\sigma}{\mathrm{d}x} \le \mu g(x)\sigma(x).
$$

Or,

$$
\mu \frac{\mathrm{d}\sigma}{\mathrm{d}x} - \mu g(x)\sigma(x) \le 0.
$$

Or again,

$$
\frac{\mathrm{d}}{\mathrm{d}x}(\sigma\mu) \le 0.
$$

Thus, $\sigma\mu$ is a non-increasing function of x:

$$
\sigma(x)\mu(x) \le \sigma(a)\mu(a), \qquad x \in I.
$$

We have $\mu(a) = 1$, hence:

$$
\sigma(x) \le \sigma(a)/\mu(x), \qquad x \in I.
$$

or finally,

$$
\sigma(x) \le \sigma(a) e^{\int_a^x g(x') dx'}, \qquad x \in I.
$$

3. Consider the following SEIR model from [Mathematical Epidemiology:](https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology)

$$
\frac{\mathrm{d}S}{\mathrm{d}t} = \mu N - \mu S - \frac{\beta IS}{N} \tag{4a}
$$

$$
\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\beta IS}{N} - (\mu + a)E\tag{4b}
$$

$$
\frac{\mathrm{d}I}{\mathrm{d}t} = aE - (\gamma + \mu)I \tag{4c}
$$

$$
\frac{\mathrm{d}R}{\mathrm{d}t} = \gamma I - \mu R. \tag{4d}
$$

It is not necessary to go into the meaning of the variables S , E , I , and R here, suffice to say, they are dynamic sub-populations which add up to $N = S + E + I + R$, the total population. The other symbols μ , β , a , and γ are constant rates which govern the rate at which individuals leave one sub-population for another. Equation [\(4\)](#page-3-0) is an IVP, valid at $t > 0$. Initial conditions are expected at $t = 0$.

- (a) Let $S + E + I + R = N$. Show that N is constant. Remark: N is constant in this model because the rate of natural births is the same as the rate of natural deaths.
- (b) Show that Equation [\(4\)](#page-3-0) has two constant solutions, a disease-free equilibrium

$$
DFE = (N, 0, 0, 0),
$$

and an endemic equilibrium

$$
EE = (S_*, E_*, I_*, R_*),
$$

where all of the values here are non-zero.

- (c) Compute the coefficients of the endemic equilibrium in terms of a, β , γ , μ , and N.
- (d) Show that, for given initial conditions $S(0) > 0$, $E(0) = 0$, $I(0) > 0$, and $R(0) = 0$, the solution of Equation [\(4\)](#page-3-0) remains inside the hypercube $[0, N]^4$ for all time. Hint: ...

Parts (a) and (b) are very straightforward and are not repeated here. For part (c), we let dS/dt etc. all be equal to zero. Then we have:

$$
\mu N = \mu S + \frac{\beta I S}{N},
$$

$$
\frac{\beta I S}{N} = (\mu + a) E.
$$

Hence,

$$
\mu N = \mu S + (\mu + a)E. \tag{5}
$$

Also,

$$
\begin{array}{rcl}\naE & = & (\gamma + \mu)I, \\
\gamma I & = & \mu R.\n\end{array}
$$

We solve for everything in terms of R :

$$
I = \frac{\mu}{\gamma} R,
$$

$$
E = \frac{\gamma + \mu}{a} \frac{\mu}{\gamma} R.
$$

Sub into Equation [\(5\)](#page-4-0) to get:

$$
S = N - \frac{\gamma + \mu}{a} \frac{\mu + a}{\gamma} R.
$$

It now remains to determine R in terms of the model parameters. We start with:

$$
\mu N = \mu S + \frac{\beta I S}{N}.
$$

Hence,

$$
N = \underbrace{\left(N - \frac{\gamma + \mu}{a} \frac{\mu + a}{\gamma} R\right)}_{=S} + \beta \frac{1}{N} \underbrace{\left(N - \frac{\gamma + \mu}{a} \frac{\mu + a}{\gamma} R\right)}_{=S} \underbrace{\left(\frac{\mu}{\gamma} R\right)}_{=I}.
$$

We carry out cancellations and solve for R :

$$
R = R_* = N \frac{\gamma}{\beta} \left(\frac{a}{\gamma + \mu} \frac{\beta}{\mu + a} - 1 \right).
$$

Summarizing, we have:

$$
S_* = N - \frac{\gamma + \mu}{a} \frac{\mu + a}{\gamma} R,
$$

\n
$$
E_* = \frac{\gamma + \mu}{a} \frac{\mu}{\gamma} R,
$$

\n
$$
I_* = \frac{\mu}{\gamma} R_*,
$$

\n
$$
R_* = N \frac{\gamma}{\beta} \left(\frac{a}{\gamma + \mu} \frac{\beta}{\mu + a} - 1 \right)
$$

For part (d), we assume for contradiction that $I(t_*) = 0$. By continuity, there is an interval of time $[0, t_*)$ where $I(t) > 0$. We look at the S-equation on this interval:

$$
\frac{\mathrm{d}S}{\mathrm{d}t} + \underbrace{\left(\mu + \frac{\beta I}{N}\right)}_{=P(t)} S = \mu N. \tag{6}
$$

.

This is a standard first-order ODE. We identify the integrating factor

$$
\mathcal{I}(t) = e^{\int_0^t P(t)dt}.
$$

Notice, $\mathcal{I}(t) > 0$. Also,

$$
\frac{1}{\mathcal{I}(t)} = e^{-\int_0^t P(t)dt}.
$$

Then, Equation [\(7\)](#page-5-0) can be re-written as:

$$
\frac{\mathrm{d}}{\mathrm{d}t} \left(S \mathcal{I} \right) = \mu N \mathcal{I}.
$$

The LHS is now a perfect derivative, so this equation can be solved by integration:

$$
\mathcal{I}(t)S(t) = \mathcal{I}(0)S(0) + \mu N \int_0^t \mathcal{I}(t')dt'.
$$

Re-arranging, and using $\mathcal{I}(0) = 1$ gives:

$$
S(t) = S(0)e^{-\int_0^t P(t)dt} + \frac{\mu N}{\mathcal{I}(t)} \int_0^t \mathcal{I}(t')dt'.
$$

All of the terms on the RHS here are positive, hence $S(t) > 0$ for all $t \in [0, t_*)$. We next look at the E -equation:

$$
\frac{dE}{dt} + (\mu + a)E = \underbrace{\frac{\beta IS}{N}}_{=Q(t)}.
$$
\n(7)

.

Notice that $Q(t) > 0$ on $[0, t_*)$. We apply the integrating-factor technique and obtain:

$$
E(t) = E(0)e^{-(\mu+a)t} + e^{-(\mu+a)t} \int_0^t e^{(\mu+a)t'} Q(t') dt'
$$

Again, all of the terms on the RHS are positive or zero. In particular,

$$
E(t) > 0, \qquad t \in (0, t_*).
$$

We now look at the I-equation, on the interval $(0, t_*)$:

$$
\frac{\mathrm{d}I}{\mathrm{d}t} = aE - (\gamma + \mu)I.
$$

Since $E > 0$ on $(0, t_*)$, we have:

$$
\frac{\mathrm{d}I}{\mathrm{d}t} > -(\gamma + \mu)I.
$$

We use Gronwall's inequality (strict) to conclude that

$$
I(t) > I(0)e^{-(\gamma + \mu)t}
$$
, $t \in (0, t_*)$.

In particular, $I(t_*) > I(0)e^{-(\gamma+\mu)t_*} > 0$, which is a contradiction, since $I(t_*) = 0$. A similar approach for $R(t)$ yields $R(t) \geq 0$ for all $t \geq 0$, hence:

$$
S(t), I(t) E(t) R(t) \ge 0, \text{ for all } t \ge 0.
$$

Finally, since $S + E + I + R = N$, and since each of S, E, ... are all positive or zero, we must have $0 \leq S(t) \leq N$, etc., hence

$$
(S, E, I, R) \in [0, N]^4,
$$

for all $t \geq 0$.