
Applied Analysis (ACM30020)

Dr Lennon Ó Náraigh

Exercises #2

1. For the linear ODE
n∑

j=0

pj(x)
d(j)y

dx(j)
= 0,

prove that the Lipschitz constant K in the L∞ norm can be written as:

K = (n− 1) +
n−1∑
i=0

max
x∈[a,b]

∣∣∣∣ pi(x)pn(x)

∣∣∣∣ .
Here, all of the usual assumptions on the p′js apply: each pj(x) is continuous
on the interval [a, b], and pn(x) is never zero on [a, b].

Solution: Introduce the vector

y =

(
y,

dy

dx
, · · · , d

(n−1)y

dx(n−1)

)T

,

which is n-dimensional. We start the indexing at zero, so we have yi = d(i)y/dx(i),
with i ∈ {0, 1, · · · , n− 1}. So from the ODE, we have:

dy

dx
=

(
y1, y2, · · · , yn−1,−

n−1∑
j=0

pj(x)

pn(x)
yj

)T

= F (x,y).

We are interested in the increment F (x,y + δ)− F (x,y), which by linearity is:

F (x,y + δ)− F (x,y) =

(
δ1, δ2, · · · , δn−1,−

n−1∑
j=0

δjpj(x)/pn(x)

)T

.

We have:

∥F (x,y + δ)− F (x,y)∥∞ =

∥∥∥∥
(
δ1, · · · , δn−1,−

n−1∑
j=0

δjpj(x)/pn(x)

)T ∥∥∥∥
∞
.
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Hence:

∥F (x,y + δ)− F (x,y)∥∞ = max

(
|δ1|, · · · , |δn|, |

n−1∑
j=0

δjpj(x)/pn(x)|

)
. (1)

We have:
max(|x|, |y|) ≤ |x|+ |y|,

for all x and y in R. Apply this to Equation (1) to get:

∥F (x,y + δ)− F (x,y)∥∞ ≤ |δ1|+ · · ·+ |δn−1|+ max
j∈{0,n−1}

|δj|
n−1∑
j=0

max
x∈[a,b]

|pj(x)/pn(x)|,

≤ (n− 1) max
j∈{1,n−1}

|δj|+ max
j∈{0,n−1}

|δj|
n−1∑
j=0

max
x∈[a,b]

|pj(x)/pn(x)|,

≤ (n− 1) max
j∈{0,n−1}

|δj|+ max
j∈{0,n−1}

|δj|
n−1∑
j=0

max
x∈[a,b]

|pj(x)/pn(x)|,

≤ (n− 1)∥δ∥∞ + ∥δ∥∞
n−1∑
j=0

max
x∈[a,b]

|pj(x)/pn(x)|,

= K∥δ∥∞,

where

K = (n− 1) +
n−1∑
j=0

max
x∈[a,b]

|pj(x)/pn(x)|,

as required.
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2. In class we looked at a comparison theorem and we prematurely named it
Gronwall’s Inequality. However, Gronwall’s Inequality is in reality a bit more
general than the particular instance we describe in the notes. In fact, Gronwall’s
inequality says that if σ(x) is a differentiable function satisfying:

σ′(x) ≤ g(x)σ(x), x ∈ I, I = (a, b), (2)

where g(x) is a continuous function on I, then

σ(x) ≤ σ(a)e
∫ x
a g(x′)dx′

, (3)

for all x ∈ I.

Prove the differential inequality (3).

Multiply both sides of Equation (2) by the integrating factor

µ(x) = e−
∫ x
a g(x′)dx′

.

This does not affect the direction of the inequality, since µ is positive or zero.
Thus, we have:

µ
dσ

dx
≤ µg(x)σ(x).

Or,

µ
dσ

dx
− µg(x)σ(x) ≤ 0.

Or again,
d

dx
(σµ) ≤ 0.

Thus, σµ is a non-increasing function of x:

σ(x)µ(x) ≤ σ(a)µ(a), x ∈ I.

We have µ(a) = 1, hence:

σ(x) ≤ σ(a)/µ(x), x ∈ I.

or finally,
σ(x) ≤ σ(a)e

∫ x
a g(x′)dx′

, x ∈ I.
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3. Consider the following SEIR model from Mathematical Epidemiology:

dS

dt
= µN − µS − βIS

N
(4a)

dE

dt
=

βIS

N
− (µ+ a)E (4b)

dI

dt
= aE − (γ + µ)I (4c)

dR

dt
= γI − µR. (4d)

It is not necessary to go into the meaning of the variables S, E, I, and
R here, suffice to say, they are dynamic sub-populations which add up to
N = S + E + I + R, the total population. The other symbols µ, β, a,
and γ are constant rates which govern the rate at which individuals leave one
sub-population for another. Equation (4) is an IVP, valid at t > 0. Initial
conditions are expected at t = 0.

(a) Let S + E + I +R = N . Show that N is constant.

Remark: N is constant in this model because the rate of natural births
is the same as the rate of natural deaths.

(b) Show that Equation (4) has two constant solutions, a disease-free equi-
librium

DFE = (N, 0, 0, 0),

and an endemic equilibrium

EE = (S∗, E∗, I∗, R∗),

where all of the values here are non-zero.

(c) Compute the coefficients of the endemic equilibrium in terms of a, β, γ,
µ, and N .

(d) Show that, for given initial conditions S(0) > 0, E(0) = 0, I(0) > 0,
and R(0) = 0, the solution of Equation (4) remains inside the hypercube
[0, N ]4 for all time.

Hint: ...

For part (a) we simply add up all four equations in the set (4) to get dN/dt = 0,
hence N = Const..

For part (b) we look at the disease-free equilibrium. With (S,E, I, R) = (0, 0, 0, 0),
the LHS (d/dt)(S,E, I, R) is identically zero. Similarly, the RHS is identically
zero, hence LHS = RHS, hence (0, 0, 0, 0) is a solution of the set (4).

4

https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology


Applied Analysis Comparison Theorems and Applications

For the existence of the endemic equilibrium, we take:

0 = µN − µS − βIS

N

0 =
βIS

N
− (µ+ a)E

0 = aE − (γ + µ)I

0 = γI − µR.

We add the first and second equations to get:

0 = µN − µS − (µ+ a)E

0 = aE − (γ + µ)I

0 = γI − µR.

We use N = S + E + I +R in the first of these equations to get:

0 = µI + µR− aE

0 = aE − (γ + µ)I

0 = γI − µR.

We re-write this as a linear system: −a µ µ
a −γ + µ 0
0 γ −µ


︸ ︷︷ ︸

=M

 E
I
R

 = 0. (5)

We have:

det(M) = −a

∣∣∣∣ −γ + µ 0
γ −µ

∣∣∣∣− a

∣∣∣∣ µ µ
γ −µ

∣∣∣∣ = 0.

Hence, det(M) = 0, and hence, Equation (5) must have a non-trivial solution,
which is precisely the endemic equilibrium.

For part (c) we compute the endemic equilibrium explicitly. As in part (b), we let
dS/dt etc. all be equal to zero. Then we have:

µN = µS +
βIS

N
,

βIS

N
= (µ+ a)E.

Here, we are suppressing the subscript ∗ on the equilibrium values of (S,E, I, R)
for simplicity. We have:

µN = µS + (µ+ a)E. (6)

Also,

aE = (γ + µ)I,

γI = µR.
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We solve for everything in terms of R:

I =
µ

γ
R,

E =
γ + µ

a

µ

γ
R.

Sub into Equation (6) to get:

S = N − γ + µ

a

µ+ a

γ
R.

It now remains to determine R in terms of the model parameters. We start with:

µN = µS +
βIS

N
.

Hence,

N =

(
N − γ + µ

a

µ+ a

γ
R

)
︸ ︷︷ ︸

=S

+β
1

N

(
N − γ + µ

a

µ+ a

γ
R

)
︸ ︷︷ ︸

=S

(
µ

γ
R

)
︸ ︷︷ ︸

=I

.

We carry out cancellations and solve for R:

R = N
γ

β

(
a

γ + µ

β

µ+ a
− 1

)
.

Summarizing, we have (restoring the subscript ∗ for the equilibrium state):

S∗ = N − γ + µ

a

µ+ a

γ
R∗,

E∗ =
γ + µ

a

µ

γ
R∗,

I∗ =
µ

γ
R∗,

R∗ = N
γ

β

(
a

γ + µ

β

µ+ a
− 1

)
.

For part (d), we assume for contradiction that I(t∗) = 0. By continuity, there
is an interval of time [0, t∗) where I(t) > 0. We look at the S-equation on this
interval:

dS

dt
+

(
µ+

βI

N

)
︸ ︷︷ ︸

=P (t)

S = µN. (7)

This is a standard first-order ODE. We identify the integrating factor

I(t) = e
∫ t
0 P (t)dt.

Notice, I(t) > 0. Also,
1

I(t)
= e−

∫ t
0 P (t)dt.
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Then, Equation (8) can be re-written as:

d

dt
(SI) = µNI.

The LHS is now a perfect derivative, so this equation can be solved by integration:

I(t)S(t) = I(0)S(0) + µN

∫ t

0

I(t′)dt′.

Re-arranging, and using I(0) = 1 gives:

S(t) = S(0)e−
∫ t
0 P (t)dt +

µN

I(t)

∫ t

0

I(t′)dt′.

All of the terms on the RHS here are positive, hence S(t) > 0 for all t ∈ [0, t∗).

We next look at the E-equation:

dE

dt
+ (µ+ a)E =

βIS

N︸︷︷︸
=Q(t)

. (8)

Notice that Q(t) > 0 on [0, t∗). We apply the integrating-factor technique and
obtain:

E(t) = E(0)e−(µ+a)t + e−(µ+a)t

∫ t

0

e(µ+a)t′Q(t′)dt′.

Again, all of the terms on the RHS are positive or zero. In particular,

E(t) > 0, t ∈ (0, t∗).

We now look at the I-equation, on the interval (0, t∗):

dI

dt
= aE − (γ + µ)I.

Since E > 0 on (0, t∗), we have:

dI

dt
> −(γ + µ)I.

We use Gronwall’s inequality (strict) to conclude that

I(t) > I(0)e−(γ+µ)t, t ∈ (0, t∗).

In particular, I(t∗) > I(0)e−(γ+µ)t∗ > 0, which is a contradiction, since I(t∗) = 0.
A similar approach for R(t) yields R(t) ≥ 0 for all t ≥ 0, hence:

S(t), I(t)E(t)R(t) ≥ 0, for all t ≥ 0.

Finally, since S + E + I + R = N , and since each of S, E, . . . are all positive or
zero, we must have 0 ≤ S(t) ≤ N , etc., hence

(S,E, I, R) ∈ [0, N ]4,

for all t ≥ 0.
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