Applied Analysis (ACM30020)

Dr Lennon O Naraigh
Exercises #2

1. For the linear ODE "
=0
>_pi(@) 35 =0,
7=0
prove that the Lipschitz constant K in the L® norm can be written as:

n—1

K=n-1)+ max
s z€[a,b]

pi(z)
pn<$€) '

Here, all of the usual assumptions on the p’s apply: each p;(x) is continuous
on the interval [a, b], and p,(z) is never zero on [a, b].

Solution: Introduce the vector

dy d(nfl)y T
Y= <y,£,~- ’W) )

which is n-dimensional. We start the indexing at zero, so we have y; = dVy /dz®,
with i € {0,1,--- ;n — 1}. So from the ODE, we have:

T
dy Z"_l pi()
Y — . 1, — . = F , .
dz <y17 Y2, » Yn—1 ~ D (IE) y] (I‘ y)

We are interested in the increment F(z,y + d) — F(x,y), which by linearity is:

T
F(x,y+6)_F($,y): (517627”' n—1y — Zéjp] /pn > .

We have:

T
IFe.y+) - Fley)l - | (6 Z% )/l ) |-
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Hence:

1F (2, y + 8) — F(z, ) = max <|51 + [0l IZ@PJ )/Pnlz |>- (1)

We have:
max(|z|, [y[) < [z] + [y],

for all x and y in R. Apply this to Equation to get:
n—1

[F(z,y+6) = Fz,y)lo < |61+ + |00 1|+ fhax |5|ng[a}§ pi (@) /pn(2)],

< -1 J; d; n(Z)],
< (1) max [5]+ max | Izrg[w; (%) /pn ()]

< (n—1) max |5]+ max |§|ZmaX pj(z)/pn(z)],

je{0n— je{0on
n—1
< (=[]l + |8l max (@) /pn(2)],
= K6/,
where
n—1
K = (n—l)—l— max pj(@)/pn(2)],
=0
as required.
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2. In class we looked at a comparison theorem and we prematurely named it
Gronwall's Inequality. However, Gronwall's Inequality is in reality a bit more
general than the particular instance we describe in the notes. In fact, Gronwall's
inequality says that if o(z) is a differentiable function satisfying:

o'(x) < glx)o(x), wel, I=(ab), ()
where g(x) is a continuous function on I, then
o(x) < o(a)ela 9N (3)

forall z € I.
Prove the differential inequality (3).

Multiply both sides of Equation by the integrating factor
) = e I o

This does not affect the direction of the inequality, since yu is positive or zero.
Thus, we have:
o _
pe, < rg(@)o().
Or, 1
ne — ng(x)o(x) < 0.

Or again,

d

dz
Thus, op is a non-increasing function of x:

(op) <0.

o(o)u(x) < ola)p(a),  wel.
We have p(a) = 1, hence:
o(x) <o(a)/p(x), z el

or finally, L
o(z) < o(a)els 9= rel.
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3. Consider the following SEIR model from Mathematical Epidemiology:

It is not necessary to go into the meaning of the variables S, F, I, and
R here, suffice to say, they are dynamic sub-populations which add up to
N =
and vy are constant rates which govern the rate at which individuals leave one
sub-population for another. Equation is an IVP, valid at ¢ > 0. Initial
conditions are expected at £ = 0.

(a)

(b)

%—MN—MS—% (4a)
%:%_(“JFG)E (4b)
=B (I (40)
% AT — R, (4d)

S+ E + I + R, the total population. The other symbols u, 3, a,

Let S+ F + 1+ R = N. Show that N is constant.

Remark: N is constant in this model because the rate of natural births
is the same as the rate of natural deaths.

Show that Equation has two constant solutions, a disease-free equi-
librium
DFFE = (N,0,0,0),

and an endemic equilibrium
EE = (S, E,, I, R,),

where all of the values here are non-zero.

Compute the coefficients of the endemic equilibrium in terms of a, 3, 7,
i, and N.

Show that, for given initial conditions S(0) > 0, £(0) = 0, I(0) > 0,
and R(0) = 0, the solution of Equation ({4)) remains inside the hypercube
[0, N]* for all time.

Hint: ...

Parts (a) and (b) are very straightforward and are not repeated here. For part (c),
we let dS/dt etc. all be equal to zero. Then we have:

B BIS
uN = pS+ N
% = (n+a)E.


https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology

Applied Analysis Comparison Theorems and Applications

Hence,
uN = puS+ (p+a)E. (5)
Also,
ab = (y+upl,
vI = uR.

We solve for everything in terms of R:

I = “R
g
p = 1THER
a
Sub into Equation to get:
S=N-— 7—i_'u/l—i_@R.
a 7
It now remains to determine R in terms of the model parameters. We start with:
BIS
N =uS+——.
H pS + N
Hence,
1
NE:OV—7+MM+GR>ﬁ&—(N—7+M”+GR)(HR>.
a N a 7 gl
=5 -5 A

We carry out cancellations and solve for R:

R:&:Nl(“ 5-4)
B\v+up+a

Summarizing, we have:

5. — y_2tpptay
a Y
g o= 1tHEER
a v
I, = ERr.
v

B\v+up+a

For part (d), we assume for contradiction that I(¢,) = 0. By continuity, there
is an interval of time [0,%,) where I(t) > 0. We look at the S-equation on this

interval: 1S 81
———

=P(t)
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This is a standard first-order ODE. We identify the integrating factor
I(t) = elo PO

Notice, Z(t) > 0. Also,

1 spwar
Z(t)
Then, Equation (7)) can be re-written as:
4 57 = Nz
e T TR

The LHS is now a perfect derivative, so this equation can be solved by integration:
t
Z(t)S(t) =Z(0)S(0)+ ,uN/ Z(tHdt'.
0
Re-arranging, and using Z(0) = 1 gives:
¢ N [
S(t) = 5(0 e‘fop(f)d“r“—/ Z(t)dt'.
(t) = 5(0) oy 70

All of the terms on the RHS here are positive, hence S(t) > 0 for all ¢ € [0,¢,).
We next look at the E-equation:

dF B1S
N~
=Q(1)

Notice that Q(t) > 0 on [0,t,). We apply the integrating-factor technique and

obtain: t

E(t) = E(0)e )t 4 e (wto / e Q (1)t
0

Again, all of the terms on the RHS are positive or zero. In particular,

E(t)>0, te(0,t)

We now look at the /-equation, on the interval (0, t,):

d/
— =al — I
Since £ > 0 on (0, t,), we have:
df
—_— > — I

We use Gronwall's inequality (strict) to conclude that

I(t) > 1(0)e Ot e (0,t,).
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In particular, I(t,) > 1(0)e"(O"#* > 0, which is a contradiction, since I(t,) = 0.
A similar approach for R(t) yields R(t) > 0 for all ¢ > 0, hence:

S(t), I(t) B(t) R(t) > 0, for all t > 0.

Finally, since S+ E 4+ I + R = N, and since each of S, F, ...are all positive or
zero, we must have 0 < S(t) < N, etc., hence

(S,E,I,R) € [0,N]*,

for all t > 0.



