Applied Analysis (ACM30020)

Dr Lennon Ó Náraigh

Exercises #2

1. For the linear ODE

$$
\sum_{j=0}^{n} p_j(x) \frac{\mathrm{d}^{(j)} y}{\mathrm{d} x^{(j)}} = 0,
$$

prove that the Lipschitz constant K in the L^∞ norm can be written as:

$$
K = (n - 1) + \sum_{i=0}^{\infty} \max_{x \in [a,b]} \left| \frac{p_i(x)}{p_n(x)} \right|.
$$

Here, all of the usual assumptions on the $p_j's$ apply: each $p_j(x)$ is continuous on the interval $[a, b]$, and $p_n(x)$ is never zero on $[a, b]$.

2. In class we looked at a comparison theorem and we prematurely named it Gronwall's Inequality. However, Gronwall's Inequality is in reality a bit more general than the particular instance we describe in the notes. In fact, Gronwall's inequality says that if $\sigma(x)$ is a differentiable function satisfying:

$$
\sigma'(x) \le g(x)\sigma(x), \qquad x \in I, \qquad I = (a, b),
$$

where $g(x)$ is a continuous function on I, then

$$
\sigma(x) \le \sigma(a) e^{\int_a^x g(x') dx'},\tag{1}
$$

for all $x \in I$.

Prove the differential inequality [\(1\)](#page-0-0).

3. Consider the following SEIR model from [Mathematical Epidemiology:](https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology)

$$
\frac{\mathrm{d}S}{\mathrm{d}t} = \mu N - \mu S - \frac{\beta IS}{N} \tag{2a}
$$

$$
\frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\beta IS}{N} - (\mu + a)E\tag{2b}
$$

$$
\frac{\mathrm{d}I}{\mathrm{d}t} = aE - (\gamma + \mu)I\tag{2c}
$$

$$
\frac{\mathrm{d}R}{\mathrm{d}t} = \gamma I - \mu R. \tag{2d}
$$

It is not necessary to go into the meaning of the variables S, E, I , and R here, suffice to say, they are dynamic sub-populations which add up to $N = S + E +$ $I + R$, the total populatioin. The other symbols μ , β , a , and γ are constant rates which govern the rate at which individuals leave one sub-population for another. Equation [\(2\)](#page-1-0) is an IVP, valid at $t > 0$. Initial conditions are expected at $t = 0$.

- (a) Let $S + E + I + R = N$. Show that N is constant. Remark: N is constant in this model because the rate of natural births is the same as the rate of natural deaths.
- (b) Show that Equation [\(2\)](#page-1-0) has two constant solutions, a disease-free equilibrium

$$
DFE = (N, 0, 0, 0),
$$

and an endemic equilibrium

$$
EE = (S_*, E_*, I_*, R_*),
$$

where all of the values here are non-zero.

- (c) Compute the coefficients of the endemic equilibrium in terms of a, β , γ , μ , and N .
- (d) Show that, for given initial conditions $S(0) > 0$, $E(0) = 0$, $I(0) > 0$, and $R(0)=0$, the solution of Equation [\(2\)](#page-1-0) remains inside the hypercube $[0,N]^4$ for all time.

Hint: Assume for contradiction that $I(t_*) = 0$. By continuity, there is an interval of time $[0, t_*)$ where $I(t) > 0$. On this interval, show:

 Use the integrating-factor method of ordinary-differential equations to write the solution of Equation $(2)(a)$ $(2)(a)$ as:

$$
S(t) = S(0) e^{-\int_0^t [\mu + (\beta/N)I] dt} + \cdots,
$$

where the \cdots are to be filled in, hence conclude that $S(t) > 0$ for $t \in [0, t_*)$.

■ Use a similar approach to show that $E(t) > 0$ for $t \in [0, t_*)$.

dia a

Use

$$
\frac{\mathrm{d}I}{\mathrm{d}t} = aE - (\gamma + \mu) > -(\gamma + \mu)I.
$$

From this, use Gronwall's inequality to conclude that

$$
I(t) > I(0)e^{-(\gamma + \mu)t}
$$
, $t \in [0, t_*)$.

In particular, $I(t) > I(0)e^{-(\gamma + \mu)t} > 0$ as $t \to t_*$, which is a contradiction, since $I(t_*) = 0$.

• Fill in the remaining missing pieces yourselves.