
Applied Analysis (ACM30020)

Dr Lennon Ó Náraigh

Exercises #1

1. Prove the statement in Chapter 1 of the lecture notes: if F (x, y) is continu-
ously differentiable and D is closed, bounded and convex then, a F satisfies a
Lipschitz Condition with respect to y taking:

K = sup
(x,y)∈D

∣∣∣∣∂F∂y
∣∣∣∣ .

Solution: Let x1 = (x1, y1) and x2 = (x2, y2) be points in D. Because D is
convex, the line segment

L : x(t) = x1(1− t) + x2t, t ∈ [0, 1],

is contained entirely in D. Introduce the function g(t) of a single variable:

g(t) = F (x(t)).

We have:

dg

dt
= ∇F · dx

dt
,

= ∇F (x(t)) · (x2 − x1).

Hence, g(t) is continuously differentiable on (0, 1). Hence, by the Mean-Value
Theorem, there is a t∗ ∈ (0, 1) such that:

dg

dt

∣∣∣∣
t∗

=
g(1)− g(0)

1
= F (x2)− F (x1).

Hence,

|F (x2)− F (x1)| = |g′(t∗)|,
= |∇F (x(t∗)) · (x2 − x1)| .
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Take x2 = x1 = x, hence x2 − x1 = (y2 − y1)j, hence:

|F (x2)− F (x1)| =

∣∣∣∣∣∂F∂y
∣∣∣∣
x(t∗)

(y2 − y1)

∣∣∣∣∣ ,
≤ sup

(x,y)∈D

∣∣∣∣∂F∂y
∣∣∣∣ |y2 − y1|,

= K|y2 − y1|.
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2. All finite-dimensional norms are equivalent. That is, if I have two norms ∥ · ∥P
and ∥ · ∥Q, there exist positive constants c1 and c2 such that

c1∥x|P ≤ ∥x∥Q ≤ c2∥x∥P , for all x ∈ Rn.

Using the Cauchy–Schwarz inequality, show that the L1 and L2 norms are
equivalent, such that:

∥x∥2 ≤ ∥x∥1 ≤
√
n∥x∥2.

Solution: We have

∥x∥1 =
n∑

i=1

|xi|.

Then by Cauchy–Schwarz with x = (|x1|, · · · , |xn|) and a = (1, 1, · · · , 1), we
have:

n∑
i=1

|xi| ≤ n

(
n∑

i=1

x2
i

)
,

hence
∥x∥1 ≤

√
n∥x∥2.

But it is immediately obvious that e.g. ∥x∥21 ≥ ∥x∥22, hence

∥x∥2 ≤ ∥x∥1 ≤
√
n∥x∥2,

establishing the equivalence of the L1-norm and the L2-norm.
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3. In class, we showed that the IVP

dy

dx
= F (x, y), x > 0, y(x0) = y0, (1)

has a unique solution, provided F (x, y) is Lipschitz in y. Here, we tackle the
uniqueness question, but in a different way. As such, assume that y(x) and
z(x) are two solutions of Equation (1). Show that:

|y(x)− z(x)| ≤ K

∫ x

x0

|y(s)− z(s)|ds.

Hence, and without using Gronwall’s inequality, show that |y(x)− z(x)| = 0.

We have:

y(x) = y0 +

∫ x

0

F (s, y(s))ds,

z(x) = y0 +

∫ x

0

F (s, z(s))ds.

Hence:

|y(x)− z(x)| =

∣∣∣∣∫ x

x0

[F (s, y(s))− F (s, z(s))] ds

∣∣∣∣ ,
Triangle

≤
∫ x

x0

|F (s, y(s))− F (s, z(s))|ds,

Lipschitz

≤
∫ x

x0

K|y(s)− z(s)|ds.

This relationship can now be iterated to produce:

|y(x)− z(x)| ≤ Kn

∫ x

x0

∫ x1

x0

· · ·
∫ xn−1

x0

|y(xn)− z(xn)|dx1 · · · dxn.

Hence,

|y(x)− z(x)| ≤ Kn

(
max

s∈[x0,x]
|y(s)− z(s)|

)∫ x

x0

∫ x1

x0

· · ·
∫ xn−1

x0

dx1 · · · dxn.

The integral is the volume of a right-angled triangular pyramid in n dimensions
of sides of length |x− x0|. Using this geometric insight, or direct calculation, we
obtain:

|y(x)− z(x)| ≤ 1

n!
Kn

(
max

s∈[x0,x]
|y(s)− z(s)|

)
|x0 − x|n

As K and maxs∈[x0,x] |y(s)− z(s)| are both fixed, we take n → ∞ to obtain:

|y(x)− z(x)| ≤ 0,

for all x ≥ x0. Hence, y(x) = z(x), and the solution to the IVP is unique.
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4. (a) Convert the initial value problem

dy

dx
= 2x− y, y(0) = 1

to an integral equation.

(b) Prove by induction that the Picard iteration method leads to

yn(x) = 1− x+ 3
n∑

k=2

(−1)k

k!
xk + 2

(−x)n+1

(n+ 1)!

(c) Deduce that the initial value problem has the unique solution

y(x) = −2 + 2x+ 3e−x.

For part (a), we have:

y(n+1)(x) = y0 +

∫ x

x0

F (x, y(n)(x))dx,

= y0 +

∫ x

x0

[2x− y(n)(x)]dx,

= 1 + x2 −
∫ x

0

y(n)(x)dx.

We also have y(0)(x) = 1.

For part (b), we assume that the Inductive Hypothesis (IH) is true for n:

yn(x) = 1− x+ 3
n∑

k=2

(−1)k

k!
xk + 2

(−x)n+1

(n+ 1)!
(2)

From Picard Iteration / Part (a) we have:

y(n+1)(x) = 1 + x2 −
∫ x

0

y(n)(x)dx,

I.H.
= 1 + x2 −

∫ x

0

[
1− x+ 3

n∑
k=2

(−1)k

k!
xk + 2

(−x)n+1

(n+ 1)!

]
dx,

= 1 + x2 − x+ 1
2
x2 − 3

n∑
k=2

(−1)k

(k + 1)!
xk+1 + 2

(−1)2(−x)n+2

(n+ 2)!

We re-index, with ℓ = k + 1, hence ℓmin = 3 and ℓmax = n+ 1:

y(n+1)(x) = 1 + x2 − x+ 1
2
x2 + 3

n+1∑
ℓ=3

(−1)ℓ

ℓ!
xℓ + 2

(−x)n+2

(n+ 2)!
,

= 1− x+ 3
2
x2 + 3

n+1∑
ℓ=3

(−1)ℓ

ℓ!
xℓ + 2

(−x)n+2

(n+ 2)!
.
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Hence,

y(n+1)(x) = 1− x+ 3
n+1∑
ℓ=2

(−1)ℓ

ℓ!
xℓ + 2

(−x)n+2

(n+ 2)!
. (3)

Thus, if the IH is true for n, it is true for n+ 1.

We are given y(0)(x) = 1, so we look at y(1)(x) using Picard iteration:

y(1)(x) = 1 + x2 −
∫ x

0

dx,

= 1− x+ x2.

If we look at Equation (2) with n = 1, it is:

y(1)(x) = 1− x+ x2. (4)

Thus, by mathematical induction (combining Equations (3) and (4)), the IH is
true for all n ∈ {1, 2, · · · }, as required.
For part (c), we take n → ∞, such that y(n)(x) → y(x) and 2(−x)n+1/(n+ 1)! →
0 in Equation (2). We have:

y(x) = 1− x+ 3
∞∑
k=2

(−1)k

k!
xk,

= 1− x+ 3
∞∑
k=0

(−1)k

k!
xk − 3(1− x),

= −2 + 2x+ 3e−x,

as required.
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