Applied Analysis (ACM30020)

Dr Lennon O Naraigh
Exercises #1

1. Prove the statement in Chapter 1 of the lecture notes: if F'(x,y) is continu-
ously differentiable and D is closed, bounded and convex then, a F’ satisfies a
Lipschitz Condition with respect to y taking:

oF
K= sup |—].
(@)D | 0y

Solution: Let @1 = (x1,31) and @y = (22,y2) be points in D. Because D is
convex, the line segment

L.’B(t) :.’B1<1—t)+$2t, t e [071],

is contained entirely in D. Introduce the function g(¢) of a single variable:

We have:

dg dx
A — F.=
dt Vv dt’

= VF(x(t)) - (xy — ).

Hence, ¢(t) is continuously differentiable on (0,1). Hence, by the Mean-Value
Theorem, there is a ¢, € (0, 1) such that:

dg g9(1) — g(0)
E . :—1 :F(wg)—F(w1>

Hence,

|[F() = Flay)] = 1g'(t)];
= |[VF(z(t)) - (z2 — 21)] -
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Take 9 = 21 = x, hence 3 — x1 = (y2 — y1)j, hence:

oF

ay (yQ - yl)

x(tx)

|[F(x2) — F(x1)| =

I

IN

ol TP
8y Y2 — Y1),

sup
(z,y)€D

= K|y2 —y1|.
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2. All finite-dimensional norms are equivalent. That is, if | have two norms || - || p
and || - ||g, there exist positive constants ¢; and ¢, such that
allzlp <lzlg < collxllp,  forall z € R™.

Using the Cauchy-Schwarz inequality, show that the L' and L? norms are
equivalent, such that:

lzllz < [lzlls < Valz|..

Solution: We have .
lclly = fail.
i=1

Then by Cauchy-Schwarz with @ = (|z1|, -+ ,|z,]) and @ = (1,1,---,1), we

have:
n n
Sl Sn(zx%)’
=1 =1

hence
]l < vz
But it is immediately obvious that e.g. ||z||? > ||z||3, hence

lzllz < llzlls < Valz|.

establishing the equivalence of the L'-norm and the L?-norm.
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3. In class, we showed that the IVP

d
d_i =F(z,y), x>0, ylxo) =y, (1)

has a unique solution, provided F'(z,y) is Lipschitz in y. Here, we tackle the

uniqueness question, but in a different way. As such, assume that y(x) and
z(x) are two solutions of Equation (1). Show that:

ly(x) — 2(z)| < K/w ly(s) — z(s)|ds.

Hence, and without using Gronwall's inequality, show that |y(x) — z(z)| = 0.

We have:
o) = w+ [ Pl
Az) = yo—l—/OmF(s,z(s))ds.
Hence:
b~ = | [ Py - s,

Tt / " |F (s, (s)) — F(s, 2(s))|ds,
LiPS%hitz /x K|y(s) B Z(S)|d3'

This relationship can now be iterated to produce:

vle) — =) < & [ / - [9(@n) — 2@z, - - dy.

Hence,

(o)~ <) < & m ots) =~ =6)1) [ [ [T o da
s€|xro,r z0 Jxo z0

The integral is the volume of a right-angled triangular pyramid in n dimensions
of sides of length |« — z¢|. Using this geometric insight, or direct calculation, we
obtain:

y(@) — 2(z)] < LK ( max_Jy(s) - z(s)\) 20 — o"

n! s€[zo,x]
As K and maxX,c[q, 4] [Y(s) — 2(s)| are both fixed, we take n — oo to obtain:
ly(z) = z(2)] <0,

for all z > xy. Hence, y(x) = z(x), and the solution to the IVP is unique.
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4. (a) Convert the initial value problem

dy

to an integral equation.

(b) Prove by induction that the Picard iteration method leads to

(~2)+!

~ (-D* ,
Yn() :c+3k2:; 7 2T

(c) Deduce that the initial value problem has the unique solution

y(x) = =242z +3e ",

For part (a), we have:

y("“)(:c) = yo+/ F(x,y(")(x))dx,

Zo

~ we | 20 — y™ (0)]de,

z0
= 1+:1c2—/ y™ (z)dz.
0

We also have y©(z) = 1.
For part (b), we assume that the Inductive Hypothesis (IH) is true for n:

(~a)!

yn(x)zl—x—l—BZ%xk%—Qm (2)

From Picard lteration / Part (a) we have:

@) = et [y
0

el (=1)(=a)*?
T S G AT o Vi
L ;(k+1)!x * (n+2)!

We re-index, with ¢ = k + 1, hence ¢,,;,, = 3 and {,,,0. = n + 1:

(1) : TR N G RN G
n+ _ _ 1
y"t(x) = 142" -z + 32 —1—3;3 Y +2(n+2)!7
n+1
_1)2 (_x)n+2
= 1- 32243 (— S e
z+ 3% + ; o )
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Hence,

(n+1) S (=1 , (=)™
n —1— E o\
y (z) x+3+3£ 2 a " + (n12) (3)

Thus, if the IH is true for n, it is true for n + 1.

We are given y(¥(z) = 1, so we look at y!)(z) using Picard iteration:
yMD(z) = 1422 — / dz,
0
= l—z+2%
If we look at Equation (2) with n =1, it is:
yD(z) =1—z+ 22 (4)

Thus, by mathematical induction (combining Equations (3) and (4)), the IH is
true for all n € {1,2,---}, as required.

For part (c), we take n — oo, such that y™(z) — y(z) and 2(—2)" "' /(n + 1)! —
0 in Equation (2). We have:

(=D 4
ylx) = 1—x+32 T
k=2 '
— 1—x+32(k') F_3(1— ),
k=0 '
= 242 +3e7",

as required.



