
Applied Analysis (ACM30020)

Dr Lennon Ó Náraigh

Graded Assignment

Instructions:

� This is a graded assignment.
� Worth 20%. A number of the available marks will be awarded for precision and

clarity.
� Please do not collaborate with friends (or enemies) – this assignment is to be

performed under the code of conduct outlined in the module introduction on
Brightspace.

� Please submit a hard copy in Latex. Sign and attach the code-of-conduct coversheet
to your work.

� Due date: Monday 23rd March 09:00

Materials that may be used to complete the assignment:

� This assignment is an open-book assignment, so the lecture notes, text books, and
web resources can be used. Marks will be awarded for proper citation of these,
under the ‘precision and clarity’ rubric.

� This module uses the AI Assessment Scale of the College of Science. AI assistance
up to and including level 3 on that scale are acceptable.

� If AI is used in the completion of the assignment, marks will be awarded if this
is documented, and the AI-generated answers are interrogated critically (pen-and-
paper validations, etc.) – again under the ‘precision and clarity rubric’.
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1. Local Existence Theory for ODEs

Consider the ODE system:

dy

dx
= F (x, y), x ≥ a, (1)

with initial condition y(a) = y0. As before, construct the Picard iterative solution
scheme:

yn+1(x) = y0 +

∫ x

a

F (x, yn(x))dx, n ≥ 0,

with initial guess y0(x) = y0. Suppose also that F is Lipschitz, with Lipschitz
constant K, such that:

|F (x, y2)− F (x, y1)| ≤ K|y2 − y1|,

for all x in an interval (a, a+ L), and all y1 and y2 ∈ R.

(a) Show that
∥yn+1 − yn∥∞ ≤ KL∥yn − yn−1∥∞.

(b) Fix L such that KL < 1. Hence, deduce that yn 7→ yn+1, which maps
continuous functions to continuous functions, is a contraction mapping.

(c) Use the Contraction Mapping Principle to deduce that Equation (1) has a
solution, valid for x ∈ [a, a+ L].

The solution constructed in this way is called a local solution as it is valid on the
interval [a, a+L]. What happens for x > a+L is anyone’s guess. If the solution
remains valid for all x > a+ L, the solution is called a global solution.

(d) Consider the ODEs

dy

dx
= y3,

d

dx
y2 = −2y4, x > 0,

with y(0) = y0. Say in each case whether or not a global solution exists.
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2. Bessel Functions

Take as given the following power-series representation of Bessel functions:

Jν(x) =
∞∑
r=0

(−1)r(x/2)ν+2r

r!Γ(n+ r + 1)
. (2)

(a) Prove:

i. J1/2(x) =
√

2
πx

sin(x);

ii. J−1/2(x) =
√

2
πx

cos(x).

(b) Prove that for all ν:

i. d
dx

[xνJν(x)] = xνJν−1(x).

ii. d
dx

[x−νJν(x)] = −x−νJν+1(x).

(c) Hence, prove that:

i. J ′
ν(x) =

1
2
[Jν−1(x)− Jν+1(x)];

ii. Jν−1(x) + Jν+1(x) =
2ν
x
Jν(x).

3. Bessel Functions, again

The Bessel Functions in Equation (2) satisfy Bessel’s differential equation, with
n = ν (not necessarily an integer):

x2J ′′
n(x) + xJ ′

n(x) + (x2 − n2)Jn(x) = 0. (3)

Re-scale by letting y1(x) = Jn(λx) and y2(x) = Jn(µx), where λ ̸= µ are scalars.
Then, y1(x) and y2(x) satisfy scaled versions of Bessel’s equation:

x2y′′1(x) + xy′1(x) + (λ2x2 − n2)y1(x) = 0, (4a)

x2y′′2(x) + xy′2(x) + (µ2x2 − n2)y2(x) = 0. (4b)

Hence, prove the orthogonality relation:∫ 1

0

xJn(λx)Jn(µx)dx =
µJn(λ)J

′
n(µ)− λJn(µ)J

′
n(λ)

λ2 − µ2
, λ ̸= µ. (5)

Hint: Consider [Eq. (4a)] y2 − [Eq. (4b)] y1.
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Figure 1: Setup for Question 4

4. Physical Application of Bessel Functions

A very long hollow cylinder of inner radius a and outer radius b (whose cross section
ios indicated in Figure 1 is made of conducting material of diffusivity κ. If the
inner and outer surfaces are kept at temperature zero while the initial temperature
is a given function f(ρ), where ρ is the radial distance from the axis, show that
the temperature at any later time t is given by:

u(ρ, t) =
∞∑

m=1

Ame
−κλ2

mtu0(λmρ), (6)

where
u0(λmρ) = Y0(λma)J0(λmρ)− J0(λma)Y0(λmρ). (7)

Here also, f(ρ) has been expanded in terms of u0:

f(ρ) =
∞∑

m=1

Amu0(λmρ),

where

Am =

∫ b

a
ρf(ρ)u0(λmρ)dρ∫ b

a
ρ[u0(λmρ)]2dρ

. (8)

Key information:

� The heat equation:

∂u

∂t
= κ

(
∂2u

∂ρ2
+

1

ρ

∂u

∂ρ

)
, t > 0.

� Fixed-temperature boundary conditions: u(a, t) = 0, u(b, t) = 0.

� Bounded solution |u(ρ, t)| < M , for all t ≥ 0.
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� Initial condition: u(ρ, 0) = f(ρ).

� Rootfinding condition: The equation

Y0(λa)J0(λb)− J0(λ)Y0(λb) = 0

has positive roots λ1, λ2, · · · .
� Second solution: If J0(x) is the first solution of Bessel’s ODE or order ν = 0,
then Y0(x) is the corresponding second solution, which has a singularity as
x → 0.
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5. Analysis of solutions of ODEs

Consider the following modified SEIR model, which accounts for vaccination in
the susceptible class:

dS

dt
= −βIS

N
−mS + b(1− ν)N, (9a)

dE

dt
=

βIS

N
− fE −mE, (9b)

dI

dt
= fE − rI −mI, (9c)

dR

dt
= rI + bνN −mR, (9d)

N(t) = S(t) + E(t) + I(t) +R(t). (9e)

The parameters β, m, b, f , and r are all positive parameters with dimensions
of [Time]−1. The parameter ν ∈ [0, 1] is the proportion of susceptibles that are
vaccinated.

(a) Show that
dN

dt
= (b−m)N. (10)

(b) Show that disease-free and endemic equilibria exist if and only if b = m.

(c) Compute the endemic equilibrium explicitly. Show that the endemic equilib-
rium reverts to the solution discussed in Assignment 2 when ν = 0, once
appropriate changes have been made for the symbols representing the rates.

(d) Take as given the initial conditions S(0) > 0, E(0) = 0, I(0) > 0, and
R(0) = 0. Using an approach similar to that in Assignment 2, show that
the solution to Equation (9) is positivity-preserving, in the sense that, S(t),
E(t), I(t) and R(t) remain positive for all t > 0.

6


