
Applied Analysis (ACM30020)

Dr Lennon Ó Náraigh

Graded Assignment

Instructions:

� This is a graded assignment.
� Worth 20%. A small number of the available marks will be awarded for precision

and clarity.
� Open-book format – proper citation of any literature will count towards the marks

for precision and clarity.
� Please do not collaborate with friends (or enemies) – this assignment is to be

performed under the code of conduct outlined in the module introduction on
Brightspace.

� Please submit a hard copy in Latex. Sign and attach the code-of-conduct coversheet
to your work.

� Due date: Monday 24th March 09:00
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1. Local Existence Theory for ODEs

Consider the ODE system:

dy

dx
= F (x, y), x ≥ a, (1)

with initial condition y(a) = y0. As before, construct the Picard iterative solution
scheme:

yn+1(x) = y0 +

∫ x

a

F (x, yn(x))dx, n ≥ 0,

with initial guess y0(x) = y0. Suppose also that F is Lipschitz, with Lipschitz
constant K, such that:

|F (x, y2)− F (x, y1)| ≤ K|y2 − y1|,

for all x in an interval (a, a+ L), and all y1 and y2 ∈ R.

(a) Show that
∥yn+1 − yn∥∞ ≤ KL∥yn − yn−1∥∞.

(b) Fix L such that KL < 1. Hence, deduce that yn 7→ yn+1, which maps
continuous functions to continuous functions, is a contraction mapping.

(c) Use the Contraction Mapping Principle to deduce that Equation (1) has a
solution, valid for x ∈ [a, a+ L].

The solution constructed in this way is called a local solution as it is valid on the
interval [a, a+L]. What happens for x > a+L is anyone’s guess. If the solution
remains valid for all x > a+ L, the solution is called a global solution.

(d) Consider the ODEs

dy

dx
= y3,

d

dx
y2 = −2y4, x > 0,

with y(0) = y0. Say in each case whether or not a global solution exists.

2



Applied Analysis Graded Assignment

2. Bessel Functions

Consider the expression

g(x, t) = e(x/2)(t−t−1) =
∞∑

n=−∞

Pn(x)t
n. (2)

In this problem we show that the Pn-coefficients are the Bessel functions of integer
order.

(a) Compute ∂g/∂t in two different ways to show that

2n

x
Pn = Pn−1 + Pn+1, n ∈ Z. (3)

(b) Compute ∂g/∂x in two different ways to show that

2P ′
n = Pn−1 − Pn+1, n ∈ Z. (4)

(c) View Equations (3) and 4 as simultaneous equations to get:

n

x
Pn + P ′

n = Pn−1, (5a)

n

x
Pn − P ′

n = Pn+1. (5b)

Hence, show that

x2P ′′
n + xP ′

n + (x2 − n2)Pn = 0. (6)

(d) By uniqueness of solutions, deduce in a couple of lines that Pn(x) is in fact
Jn(x), the Bessel function of integer order.

3. Bessel Functions, again

(a) From the product of generating functions g(x, t)g(x,−t), show that

1 = [J0(x)]
2 + 2 [J1(x)]

2 + 2 [J2(x)]
2 + · · · , (7)

and therefore that |J0(x)| ≤ 1 and |Jn(x)| ≤ 1/
√
2, n = 1, 2, 3, · · · .

(b) Using a generating function g(x, t) = g(u+v, t) = g(u, t) ·g(v, t), show that

Jn(u+ v) =
∞∑

m=−∞

Jm(u) · Jn−m(v). (8)

(c) Using only the generating function, show that Jn(x) has odd or even parity
according to whether n is even or odd, that is,

Jn(x) = (−1)nJn(−x). (9)
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Figure 1: A circular plate of unit radius with its faces insulated

4. Physical Application of Bessel Functions

A circular plate of unit radius has its plane faces insulated (see Figure 1). If
the initial temperature is F (ρ) and the rim is kept at temperature zero, find the
temperature of the plate at any time.

Hints: The boundary condition is:

u(1, t) = 0,

and the initial condition is:
u(ρ, 0) = F (ρ).

You may use the following orthogonality property of the Bessel Function J0:∫ 1

0

ρJ0(λmρ)J0(λpρ)dρ = 1
2
δmpJ

2
1 (λm).

where the λm’s are the positive roots of J0(λ) = 0.

5. Integral Equations

Let

I(x) =

∫ ∞

−∞
e−|x−ξ|Φ(ξ)dξ. (10)

(a) Verify that I ′′(x) = I(x)− 2Φ(x) for any continuous function Φ(x) which is
dominated by e|x| as |x| → ±∞.

(b) Use this result to show that any continuous solution of the integral equation

y(x) = λ

∫ ∞

−∞
e−|x−ξ|y(ξ)dξ + F (x) (11a)

must also satisfy the differential equation

y′′(x)− (1− 2λ)y(x) = F ′′(x)− F (x). (11b)
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Figure 2: A flow between two plates the x-direction, with spatial variation in the y-
direction

6. A priori analysis of solutions of ODEs

In Fluid Mechanics, the Taylor–Goldstein equation describes the small-amplitude
perturbation of a flow away from its mean value U(y) due to the effect of buoyancy.
The idea here is that the flow is in the x-direction but that the flow and the
buoyancy vary in the y-direction (hence, U(y), see Figure 2). For the same reason,
the variable

N2 = − g

ρ0

dρ0
dy

, N2 > 0

encodes the effect of the buoyancy – here g is acceleration due to gravity and ρ0
is the density.

With this set-up in mind, the Taylor–Goldstein equation reads:

v′′ +

[
N2

(c− U)2
+

U ′′

c− U
− k2

]
v = 0. (12)

Here, v is the perturbation velocity in the x direction (again though, v(y)), k is
the wavelength of the perturbation, and c is the wave speed. The flow is bounded
between two plates, −L ≤ y ≤ L, and satisfies the boundary conditions

v = 0, y = ±L. (13)

In this context, both v and c can be complex, and c is an eigenvalue to be
determined. The aim of this question is to say something definitive about the
eigenvalue, without having to solve Equation (12).

(a) Make the change of variable

v = (U − c)nq, (14)

where n is a parameter at our disposal, and re-write the Taylor–Goldstein
equation in terms of q ∝.

(b) By multiplying both sides of the resulting equation by q∗(· · · ), where the · · ·
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factor is to be determined, and integrating, show that:∫ L

−L

(U − c)2n
[
|q′|2 + k2|q|2

]
dy

=

∫ L

−L

[
{N2 + n(n− 1))U ′2}(U − c)2n−2 + (n− 1)U ′′(U − c)2n−1

]
|q|2dy.

(15)

(c) Write c = cr + ici and, by choosing n suitably, show that ci must be zero so
that the flow is stable, if

N2

(dU/dy)2
> 1

4
in − L ≤ y ≤ L. (16)
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