Applied Analysis (ACM30020)

Dr Lennon O Naraigh

Graded Assignment

Instructions:

e This is a graded assignment.

e Worth 20%. A small number of the available marks will be awarded for precision
and clarity.

e Open-book format — proper citation of any literature will count towards the marks
for precision and clarity.

e Please do not collaborate with friends (or enemies) — this assignment is to be
performed under the code of conduct outlined in the module introduction on
Brightspace.

e Please submit a hard copy in Latex. Sign and attach the code-of-conduct coversheet
to your work.

e Due date: Monday 24th March 09:00
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1. Local Existence Theory for ODEs
Consider the ODE system:

d
L =Fy), axa ®

with initial condition y(a) = yo. As before, construct the Picard iterative solution
scheme:

Yn+1(2) = Yo +/ F(z,y,(z))dz,n >0,

with initial guess yo(x) = yo. Suppose also that F' is Lipschitz, with Lipschitz
constant KX, such that:

|E (2, y2) = F(z,y0)| < Klya = 1],
for all z in an interval (a,a+ L), and all y; and y, € R.
(a) Show that

Hyn—f—l - ynHoo S KLHyn - yn—1||00'

(b) Fix L such that KL < 1. Hence, deduce that y, — y,+1, which maps
continuous functions to continuous functions, is a contraction mapping.

(c) Use the Contraction Mapping Principle to deduce that Equation has a
solution, valid for = € [a,a + L].

The solution constructed in this way is called a local solution as it is valid on the
interval [a, a + L]. What happens for x > a + L is anyone's guess. If the solution
remains valid for all z > a + L, the solution is called a global solution.

(d) Consider the ODEs

dy N d , 4
A — = =2 >0
dx v dxy v v ’

with 3(0) = yo. Say in each case whether or not a global solution exists.
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2. Bessel Functions
Consider the expression

[e.e]

glat) = DD = NP ()t (2)

n=—oo

In this problem we show that the P,-coefficients are the Bessel functions of integer
order.

(a) Compute dg/0t in two different ways to show that

2
—"P Poi+ P, nel. (3)

(b) Compute dg/0x in two different ways to show that
2P72:Pn_1—Pn+1, n € 2. (4)

(c) View Equations (3)) and [4] as simultaneous equations to get:

an +P = P, (5a)
an ~ P = P,.. (5b)

Hence, show that
*P" + 2P + (2* —n?®)P, = 0. (6)

(d) By uniqueness of solutions, deduce in a couple of lines that P, (z) is in fact
Jn(x), the Bessel function of integer order.

3. Bessel Functions, again

(a) From the product of generating functions g(z,t)g(z, —t), show that
L= [Jo(@)]* + 2[Ni(2)]* + 2[Ja(2)]* + -, (7)

and therefore that |Jy(z)| < 1 and |J,(2)| < 1/v/2, n=1,2,3,---
(b) Using a generating function g(x,t) = g(u+wv,t) = g(u,t)-g(v,t), show that

(w4 v) ZJ  Tem(V). (8)

(c) Using only the generating function, show that J,(z) has odd or even parity
according to whether n is even or odd, that is,

In(2) = (=1)"Jn (=), (9)
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Figure 1: A circular plate of unit radius with its faces insulated

4. Physical Application of Bessel Functions

A circular plate of unit radius has its plane faces insulated (see Figure [1). If
the initial temperature is F'(p) and the rim is kept at temperature zero, find the
temperature of the plate at any time.

Hints: The boundary condition is:
u(1,t) =0,
and the initial condition is:

u(p,0) = F(p).
You may use the following orthogonality property of the Bessel Function Jj:

1
/ pJo(Amp) Jo(App)dp = %5mpJ12()‘m)-
0

where the \,,,’s are the positive roots of Jy(\) = 0.

5. Integral Equations
Let

I(z) = /_ " et (e)de. (10)

(a) Verify that I”(x) = I(x) —2®(x) for any continuous function ®(x) which is
dominated by el*! as |z| — +oo0.

(b) Use this result to show that any continuous solution of the integral equation

y(z) = A / ety (€)de + F(a) (11a)

—00

must also satisfy the differential equation

y'(2) - (1 - 2\)y(a) = F'(x) - F(a). (11b)
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Figure 2: A flow between two plates the z-direction, with spatial variation in the y-
direction

6. A priori analysis of solutions of ODEs

In Fluid Mechanics, the Taylor—Goldstein equation describes the small-amplitude
perturbation of a flow away from its mean value U(y) due to the effect of buoyancy.
The idea here is that the flow is in the x-direction but that the flow and the
buoyancy vary in the y-direction (hence, U(y), see Figure[2)). For the same reason,
the variable
Nzo 9 e
po dy

encodes the effect of the buoyancy — here g is acceleration due to gravity and py
is the density.

With this set-up in mind, the Taylor—Goldstein equation reads:

N2 U//
"+ @—UP+C—U_k2”:Q (12)

Here, v is the perturbation velocity in the = direction (again though, v(y)), k is
the wavelength of the perturbation, and c is the wave speed. The flow is bounded
between two plates, —L < y < L, and satisfies the boundary conditions

v=0, y==+L. (13)

In this context, both v and ¢ can be complex, and c is an eigenvalue to be
determined. The aim of this question is to say something definitive about the
eigenvalue, without having to solve Equation (|12)).

(a) Make the change of variable
v=(U-0)"q (14)

where n is a parameter at our disposal, and re-write the Taylor—Goldstein
equation in terms of ¢ o.

(b) By multiplying both sides of the resulting equation by ¢*(- - - ), where the - - -
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factor is to be determined, and integrating, show that:

L
| = P+ Rl ay
~L

L
= / [{N?+n(n—1)UHU — o)+ (n— 1)U"(U — ¢)**'] |q|*dy.
~L
(15)
(c) Write ¢ = ¢, + i¢; and, by choosing n suitably, show that ¢; must be zero so
that the flow is stable, if

N2

——>1 in —L<y<L. 16
EEEE 1o



