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Lecture notes in Applied Analysis, January 2025





Applied Analysis (ACM30020)

The purpose of this course is to learn a variety of mathematical methods for deriving useful approx-

imate solutions of the differential equations and integrals found in the Mathematical Sciences. The

course will be structured as:

1. Existence and uniqueness results for ordinary differential equations: The Lipschitz condition

and Picard’s theorem. Comparison theorems.

2. Integral Equations: The Volterra integral equation and initial value problems, the Fredholm

integral equation and boundary value problems.

3. Sturm-Liouville Theory: The adjoint differential operator, the Sturm-Liouville problem, ba-

sic properties of a Sturm-Liouville eigenvalue problem, unboundedness of the eigenvalues,

completeness in the appropriate sense of the set of eigenfunctions.

4. Theory of Infinite-dimensional vector spaces: Inner product spaces, complete metric spaces,

Hilbert spaces, square summable series and square integrable functions, Least squares approx-

imation, projection theorem, generalized Fourier coefficients, Bessel’s inequality, Parseval’s

equality and completeness.

5. Introduction to generalised functions.

What will I learn?

On completion of this module students should be able to

1. Understand conditions guaranteeing existence and uniqueness results for ordinary differential

equations and recognize examples where those conditions do not hold;

2. State and prove Picard’s theorem;

3. Transform between an initial value problem and the corresponding Volterra integral equation;

4. Transform between a boundary value problem and the corresponding Fredholm integral equa-

tion;

5. State the axiomatic properties of the Green function for a second order initial value problem

and boundary value problem;

6. Understand the concept of the adjoint differential operator;

7. Recognise a Sturm-Liouville eigenvalue problem and prove the basic properties of eigenvalues

and eigenfunctions;

8. Understand the relationship between the Dirac delta function and the Fourier integral;

9. Understand the fundamental properties of infinite dimensional vectors spaces.

10. Prove key results such as Bessel’s inequality, Parseval’s equality and its relationship to com-

pleteness.
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Chapter 1

Integral and Differential Equations

Overview

In this chapter we formulate a general theory of ordinary differential equations. We introduce the

Initial Value Problem (IVP). We describe in detail the sufficient conditions for the IVP to be well-

posed, that is, for a solution to exist, to be unique, and to dependent continuously on the initial

conditions.

1.1 Introduction

To date we have derived differential equations (usually linear) such as the planetary orbit equation

and then solved them in closed form to derive exact physical solutions.

Unfortunately the real world is usually not so kind and although we may be able to derive differential

equations to model a system we may not be able to solve it analytically – indeed this is the rule not

the exception. Even very simple looking equations may be impossible to solve in terms of elementary

functions. Important example include;

y′(x) = 1 + xy2(x) (1.1)

y′′(x) = xy(x). (1.2)

Equation (1.1) is called the Riccati equation, it is non-linear in y and is important in control theory.

Equation (1.2) is called the Airy equation, it is linear in y and is important in the theory of rainbows

and in WKB theory.

If we can not find an analytical solution (and even if we can) then various questions arise:

� how do we know a solution exists?

� if it does, is it unique?
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Chapter 1. Integral and Differential Equations

� can we still determine properties of the solution?

� can we get useful approximate analytical solutions to it?

1.1.1 A heuristic approach to constructing a solution

Start with the simplest example of a first order differential equation so

y′(x) = F
(
x, y(x)

)
then to find a solution near x = x0 we may imagine trying to construct the Taylor series:

y(x) = y(x0) + y′(x0)(x− x0) +
1
2
y′′(x0)(x− x0)

2 + . . . .

Suppose for now we know y(x0) = y0 then we can also determine

y′(x0) = F
(
x0, y(x0)

)
.

Also by the chain rule

y′′(x) =
d

dx
y′(x) =

d

dx
F
(
x, y(x)

)
=
∂F

∂x

(
x, y(x)

)
+
∂F

∂y

(
x, y(x)

)dy
dx

=
∂F

∂x

(
x, y(x)

)
+
∂F

∂y

(
x, y(x)

)
F
(
x, y(x)

)
and hence we can also determine

y′′(x0) =
∂F

∂x

(
x0, y0

)
+
∂F

∂y

(
x0, y(x0)

)
F
(
x0, y(x0)

)
.

We may clearly now use the chain rule again (assuming suitable differentiability) to obtain y′′′(x0)

etc. but, even assuming infinite differentiability, we have no indication of the radius of convergence

of the resulting series.

Example: Let y′(x) = e−1/x2 , with x0 = 0, y(0) = 0 for x ∈ R, then this process yields y(n)(0) = 0

for every n.

Notwithstanding this, it can be checked by hand that the following is a solution to the IVP:

y(x) = xe−1/x2 +
√
π (erf (1/x)− 1)

(see Wikipedia or DLMF – The Digital Library of Mathematical Functions) but the failure of the

process suggests we should be cautious.
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1.1. Introduction

1.1.2 The Initial Value Problem

To see what we might be able to prove start with a very simple example

Example: Let y′(x) = 0 for x ∈ [−1, 1], i.e. take F (x, y) = 0.

The solution is clearly y(x) = c, (constant) for x ∈ [−1, 1]. At this stage we have infinitely many

solutions. To reduce these we may give the value of the solution at a single point x ∈ [−1, 1], e.g.

we may ask for the solution such that y(0) = 1, then we a left with the unique solution y(x) = 1

for x ∈ [−1, 1].

The sensible way to phrase the problem is then is through a definition.

Definition 1.1 (The Initial Value Problem (IVP)) Given the ODE y′(x) = F
(
x, y(x)

)
over an

interval I, find a solution y(x) (a differentiable function, by definition) over an interval J ⊂ I such

that y(x0) = y0 for given x0 ∈ J and y0 ∈ R.

Furthermore, we will say that the IVP is ’well-posed’ if

� a solution exists;

� the solution is unique;

� the solution depends continuously on y0 (in a way to be made precise).

To understand how problems may arise, let’s have a look at a couple of examples where issues arise:

Example: Suppose we want to solve the IVP

y′(x) =

0 −1 ≤ x ≤ 0

1 0 < x ≤ 1
y(0) = 0.

Integrating in each subdomain separately we easily find

y(x) =

0 −1 ≤ x ≤ 0

x 0 < x ≤ 1
.

The problem is made clear if we plot y(x) (Figure 1.1). The function is not differentiable at x = 0

and correspondingly in no interval J containing x0 = 0. We are forced to conclude that, in this

case, the IVP has no solution.

Example: Suppose we want to solve the IVP

y′(x) = 3y2/3(x), for − 1 ≤ x ≤ 1, y(0) = 0.

Dividing across by 3y2/3 we immediately find

1
3
y−2/3(x)y′(x) =

d

dx
y1/3(x) = 1

3
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Figure 1.1:

which we can integrate immediately, imposing the initial value, as

y1/3(x) = x =⇒ y(x) = x3,

and it is indeed easy to see that this is a solution to the IVP.

The trouble only arises when we realise that we divided across by y(x) and so should check the case

y(x) = 0 separately. When we do it is immediately clear that y(x) = 0 for −1 ≤ x ≤ 1 also solves

the IVP. In fact, we soon realise it’s even worse: suppose we pick any 0 ≤ x1 ≤ 1, then the function

y(x) =

0 −1 ≤ x ≤ x1

(x− x1)
3 x1 < x ≤ 1

is both differentiable and solves the IVP: we have an (uncountably) infinite number of solutions of

the IVP.

1.2 The Lipschitz condition

It turns out that continuity of F (x, y) is sufficient to guarantee the existence of at least one solution

through each point but is not sufficient to guarantee uniqueness.

F (x, y) continuously differentiable (in both arguments) is sufficient to guarantee the existence of a

unique solution but, in fact, a considerably weaker condition suffices.

Definition 1.2 (The Lipschitz Condition) F (x, y) satisfies a Lipschitz Condition with respect

to y in a region D ⊂ R2 if there exists a constant K ≥ 0 such that∣∣F (x, y1)− F (x, y2)
∣∣ ≤ K|y1 − y2|

for all (x, y1), (x, y2) ∈ D. K is called the corresponding Lipschitz constant.
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1.3. Re-expressing the IVP as an integral equation

Remark: If F (x, y) is continuously differentiable and D is closed, bounded and convex then, a

simple argument evoking the mean value theorem shows that it satisfies a Lipschitz Condition

taking

K = sup
(x,y)∈D

∣∣∣∣∂F∂y
∣∣∣∣ .

(Obviously any larger constant would also work and a smaller one might work.)

A previous example revisited: We have F (x, y) = 3y2/3 so taking y2 = 0

∣∣F (x, y1)− F (x, y2)
∣∣ = 3|y1|2/3 =

3

y
1/3
1

|y1 − y2|.

Clearly as y1 → 0 the prefactor increases without limit so it is not possible to find a suitable Lipschitz

constant in any domain D containing a point with y = 0 (i.e. any point on the x-axis).

1.3 Re-expressing the IVP as an integral equation

Let us assume from now on that F (x, y) is continuous in both its arguments then if we integrate

the ODE y′(x) = F
(
x, y(x)

)
from x0 (where y(x0) = y0) to an arbitrary point x we have∫ x

x0

y′(s) ds = y(x)− y(x0) =

∫ x

x0

F
(
s, y(s)

)
ds,

or

y(x) = y0 +

∫ x

x0

F
(
s, y(s)

)
ds.

Note that y(x) appears on both sides, we have not solved for it we’ve just re-expressed the IVP as

an integral equation.

The integral equation formula has numerous advantages:

� it encapsulates both the ODE and the IC;

� it allows us to deal with continuous functions - the Fundamental Theorem of Calculus then

guarantees differentiability;
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Chapter 1. Integral and Differential Equations

� it suggests a natural iterative scheme

y0(x) = y0

y1(x) = y0 +

∫ x

x0

F
(
s, y0(s)

)
ds

. . .

yn+1(x) = y0 +

∫ x

x0

F
(
s, yn(s)

)
ds

Example: The IVP y′(x) = ky(x) with y(0) = 1 clearly has solution y(x) = ekx. The integral

equation reformulation is

y(x) = 1 +

∫ x

x0

k y(s) ds,

so our integration scheme gives

y0(x) = 1

y1(x) = 1 +

∫ x

x0

k 1 ds = 1 + kx

y2(x) = 1 +

∫ x

x0

k (1 + ks) ds = 1 + kx+ 1
2
(kx)2

and so on, clearly generating the Taylor series expansion of our solution y(x) = ekx about our initial

point x = 0 which, in this case, we know converges for all x.

1.4 Picard’s Theorem

Let us start by stating the theorem that we shall prove in this section:

Theorem 1.1 (Picard’s Theorem (First Form)) Let F (x, y) be continuous and for all x ∈ [a, b]

and for all y ∈ R satisfy a Lipschitz condition, with Lipschitz constant K say. Then the IVP

y′(x) = F
(
x, y(x)

)
with y(x0) = y0 for some x0 ∈ [a, b] has a unique solution defined for all

x ∈ [a, b].

The idea of the proof is very simple: to show that the interative sequence converges to a solution

to the IVP. This will be done in three steps:

1. show that the sequence converges uniformly on [a, b] to a function y(x);

2. show that y(x) satisfies the IVP;

3. show that y(x) is the unique solution.
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1.4. Picard’s Theorem

1.4.1 Reminder of uniform convergence

Definition 1.3 (Pointwise convergence) A series
∑
un(x) of functions un : I → R converges

pointwise to u : I → R if for each x ∈ I, given ϵ > 0 there exits N such that

n∑
r=0

|ur(x)− u(x)| < ϵ,

for all n ≥ N .

Critically here N is only chosen after x is picked so can depend on N . This can lead to consequences

that would be disastrous for our approach: a series of continuous functions can sum pointwise to a

limit that is not continuous.

Example: Take u0(x) = 1, un(x) = xn − xn−1 on [0, 1] then

n∑
r=0

ur(x) = xn,

tends pointwise to

u(x) =

0 0 ≤ x < 1

1 x = 1
.

Since continuity is crucial to us we need a stronger form of convergence:

Definition 1.4 (Uniform convergence) A series
∑
un(x) of functions un : I → R converges

uniformly to u : I → R if, given ϵ > 0 there exits N such that

n∑
r=0

|ur(x)− u(x)| < ϵ,

for all n ≥ N and for all x ∈ I.

A fundamental theorem in analysis tells us that the limit function of a series of functions that

converges uniformly is continuous.

We need one more result:

Theorem 1.2 (Weierstrass M-test) Let Mn be numbers such that
∣∣un(x)∣∣ ≤ Mn for n =

0, 1, 2, . . . and for all x ∈ I then if the sum of numbers
∑
Mn converges so also the sum of

functions
∑
un(x) converges uniformly to a limit function on I.

7



Chapter 1. Integral and Differential Equations

1.4.2 Step 1 of the proof: uniform convergence

As before, we have:

y0(x) = y0

y1(x) = y0 +

∫ x

x0

F
(
s, y0(s)

)
ds

. . .

yn+1(x) = y0 +

∫ x

x0

F
(
s, yn(s)

)
ds.

We define u0(x) = y0 and un(x) = yn(x)− yn−1(x). Thus:

n∑
r=0

ur(x) = (yn − yn−1) + (yn−1 − yn−2) + · · ·+ (y1 − y0) + u0(x),

= yn −��y0 +��u0,

= yn

Here, we have suppressed the x-dependence momentarily, to make the equations neater.

Next, we let M denote a bound for the continuous function F (x, y0) for x ∈ [a, b]:

|F (x, y0)| ≤M, x ∈ [a, b].

Thus, we have:

|u1(x)| =
∣∣∣∣∫ x

x0

F
(
s, y0

)
ds

∣∣∣∣
≤
∣∣∣∣∫ x

x0

∣∣F(s, y0)∣∣ ds∣∣∣∣
≤
∣∣∣∣∫ x

x0

M ds

∣∣∣∣
=M |x− x0| .
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1.4. Picard’s Theorem

Next (assuming for clarity that x > x0, otherwise we just flip the limits on the second line)

|u2(x)| =
∣∣∣∣∫ x

x0

(
F
(
s, y1(s)

)
− F

(
s, y0(s)

))
ds

∣∣∣∣
≤
∫ x

x0

∣∣F(s, y1(s))− F
(
s, y0(s)

)∣∣ ds
≤
∫ x

x0

K |y1(s)− y0(s)| ds

≤
∫ x

x0

MK |s− x0| ds

= 1
2
MK |x− x0|2

The pattern is clear and suggests that

|un(x)| ≤ 1
n!
MKn−1 |x− x0|n

which follows easily by induction.

Since |x− x0| ≤ |b− a| we may take

Mn = 1
n!
MKn−1 |b− a|n

and

∞∑
n=0

Mn =
∞∑
n=0

1
n!
MKn−1 |b− a|n = (M/K) exp

(
K|b− a|

)
.

Combining the results, we have:

� |un(x)| ≤Mn

�

∑∞
n=0Mn <∞.

Hence, by the Weierstrass M -test that the sum yn(x) =
∑n

r=0 ur(x) converges uniformly to some

continuous function y(x) on [a, b].

1.4.3 Step 2 of the proof: solution

Now we must show that y(x) satisfies the ODE. We have:

yn(x) → y(x) =⇒
n∑
r=0

ur(x) → y(x).

9



Chapter 1. Integral and Differential Equations

Thus, for a given ϵ > 0 there exists an N such that
∣∣∑n ur(x)− y(x)

∣∣ = ∣∣yn(x)− y(x)
∣∣ < ϵ for all

x ∈ [a, b] and for all n ≥ N . We have:∣∣∣∣y(x)− y0 −
∫ x

x0

F
(
s, y(s)

)
ds

∣∣∣∣
=

∣∣∣∣∣∣∣∣y(x)− y0 −
∫ x

x0

F
(
s, y(s)

)
ds−

(
yN+1(x)− y0 −

∫ x

x0

F
(
s, yN(s)

)
ds

)
︸ ︷︷ ︸

=0

∣∣∣∣∣∣∣∣
=

∣∣∣∣(y(x)− yN+1(x)
)
−
∫ x

x0

[
F
(
s, y(s)

)
− F

(
s, yN(s)

)]
ds

∣∣∣∣
≤ |y(x)− yN+1(x)|+

∣∣∣∣∫ x

x0

[
F
(
s, y(s)

)
− F

(
s, yN(s)

)]
ds

∣∣∣∣
≤ ϵ+

∫ x

x0

∣∣F(s, y(s))− F
(
s, yN(s)

)∣∣ ds
≤ ϵ+

∫ x

x0

K |y(s)− yN(s)| ds

≤ ϵ+Kϵ|x− x0| ≤ ϵ(1 +K|b− a|)

which can be taken arbitrarily small so the left hand side must equal 0, i.e., we have a solution.

1.4.4 Step 3 of the proof: uniqueness

Suppose Y (x) is also a solution of the integral equation. Then as both y(x) and Y (x) are continuous

there exists a number, C, say, such that
∣∣Y (x)− y(x)

∣∣ < C for all x ∈ [a, b].

Next

∣∣Y (x)− y(x)
∣∣ = ∣∣∣∣y0 + ∫ x

x0

F
(
s, Y (s)

)
ds− y0 −

∫ x

x0

F
(
s, y(s)

)
ds

∣∣∣∣
≤
∫ x

x0

∣∣F(s, Y (s)
)
− F

(
s, y(s)

)∣∣ ds
≤
∫ x

x0

K |Y (s)− y(s)| ds (†)

≤
∫ x

x0

KC ds = KC|x− x0|.

Inserting this result back into (†)

∣∣Y (x)− y(x)
∣∣ ≤ ∫ x

x0

K2C |s− x0| ds =
1

2
K2C|x− x0|2

10



1.5. The dependence on y0

and iterating

∣∣Y (x)− y(x)
∣∣ ≤ 1

n!
KnC|x− x0|n ≤ 1

n!
KnC|b− a|n.

Taking the limit as n→ ∞ the right hand side tends to zero (it is the nth term in the Taylor series

of the exponential which we know converges for any argument). We conclude the left hand side

vanishes, i.e. Y (x) = y(x) and the solution is unique.

1.5 The dependence on y0

We can use very similar arguments to show that our solution depends continuously on the initial

condition in the following sense:

Theorem 1.3 Under the assumptions of Picard’s Theorem (First Form), suppose that y(δ)(x) de-

notes the solution for which y(δ)(x0) = y0 + δ then∣∣y(δ)(x)− y(x)
∣∣ ≤ |δ| exp

(
K|x− x0|

)
.

Remark: Of course, y(x) ≡ y(0)(x).

Proof: We may clearly construct the corresponding sequence starting with y
(δ)
0 (x) = y0 + δ. Then∣∣y(δ)0 (x)− y0(x)

∣∣ = δ and

∣∣y(δ)1 (x)− y1(x)
∣∣ = ∣∣∣∣y0 + δ +

∫ x

x0

F
(
s, y

(δ)
0 (s)

)
ds− y0 −

∫ x

x0

F
(
s, y0(s)

)
ds

∣∣∣∣
≤ |δ|+

∫ x

x0

∣∣∣F(s, y(δ)0 (s)
)
− F

(
s, y0(s)

)∣∣∣ ds
≤ |δ|+

∫ x

x0

K
∣∣∣y(δ)0 (s)− y0(s)

∣∣∣ ds
≤ |δ| (1 +K|x− x0|) .

It soon becomes clear, and can be proved by induction that

∣∣y(δ)N (x)− yN(x)
∣∣ ≤ |δ|

N∑
n=0

1

n!
(K|x− x0|)n,

and taking N → ∞ the theorem is proved.

Note that although this provides some sense of continuity and so well-posedness of the IVP problem

we should not be lulled into a false sense of security. According to our theorem the difference the

solutions can still grow exponentially, so even if the y start very close they can still diverge rapidly

– which of course gives rise to ‘chaos’.
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Chapter 1. Integral and Differential Equations

1.6 Picard’s Theorem (Local version)

There are certain circumstances where the assumptions of our First Form of Picard’s theorem are

not satisfied but we can still prove a different form (by essentially the same argument). We start

with an example:

Example: Consider the IVP y′(x) = −y2(x) with y(1) = 1 for x ∈ [−1, 3].

This may, of course, be written as
d

dx

1

y(x)
= 1 and so ’solved’ as y(x) =

1

x
. However, it is clear

that our ’solution’ blows up at x = 0 so is only a true solution on the restricted domain x ∈ (0, 3].

The problem is that
∣∣F (x, y1) − F (x, y2)

∣∣ = |y21 − y22| = |y1 + y2||y1 − y2| and as y is unbounded

we cannot bound |y1 + y2| and no Lipschitz condition holds in the whole domain.

Yet still we found a solution valid in a neighbourhood of the initial point, so we expect to be able

to formulate a local variant of Picard’s theorem:

Theorem 1.4 (Picard’s Theorem (Second Form)) Let F (x, y) be continuous and for all x ∈
[x0−α, x0+α] and y ∈ [y0−β, y0+β] satisfy a Lipschitz condition, with Lipschitz constant K say.

Further let M = sup
∣∣F (x, y)∣∣ over the domain. Then the IVP y′(x) = F

(
x, y(x)

)
with y(x0) = y0

has a unique solution defined for in the interval

|x− x0| ≤ min(α, β/M).

Remark: This obviously reduces to the First Form in the case where x0 lies at the centre of the

interval in the limit when we can take β → ∞.

Example: We took α = 2, but now restrict to y ∈ [1 − β, 1 + β]. Then |y1 + y2| ≤ 2(1 + β) so

we have a Lipschitz condition with K = 2(1 + β). In addition sup
∣∣F (x, y)∣∣ = sup |y2| = (1 + β)2

so our theorem proves existence in the interval

|x− x0| ≤ min

(
2,

β

(1 + β)2

)
.

Elementary calculus shows that the second term reaches a maximum value of 1
4
when β = 1,

consistent with our exact solution.

Proof: All the steps above go through if the iterations stay in the domain

{(x, y) : |x− x0| ≤ min(α, β/M), |y − y0| ≤ β} .

and the conditions ensure that this is the case.
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1.7. Extensions: systems of equations and higher order equations

1.7 Extensions: systems of equations and higher order equa-

tions

There are two natural ways in which we might extend this theorem: (1) more dependent variables,

(2) higher order equations. In fact the two turn out to be the same but we start with the former.

1.7.1 System of equations/Vector equations

In this subsection we consider a system of differential equations

y′i(x) = Fi(
(
x, y1(x), y2(x), . . . , yn(x)

)
i = 1, . . . , n

or equivalently taking y(x) to be a vector-valued function taking values in Rn with components

yi(x)

y′(x) = F
(
x,y(x)

)
.

Definition 1.5 (The Vector Initial Value Problem (IVP)) Given the ODE y′(x) = F
(
x,y(x)

)
over an interval I, find a solution y(x) (a differentiable function, by definition) over an interval J ⊂ I

such that y(x0) = y0 for given x0 ∈ J and y0 ∈ Rn.

In defining a Lipschitz Condition we need to be aware that there are many different norms on Rn,

for example, for any p ∈ N:

∥y∥p =

∣∣∣∣∣
n∑
i=1

|yi|p
∣∣∣∣∣
1/p

which in the limit p→ ∞ yields

∥y∥∞ = max |yi|.

Although these are all equivalent, (for example, ∥y∥2 ≤ ∥y∥1 ≤
√
n∥y∥2) one can be more conve-

nient to work with and in generalizing Picard’s theorem the ∞-norm is particularly convenient.

Definition 1.6 (The Vector Lipschitz Condition) F
(
x,y

)
satisfies a Lipschitz Condition with

respect to y in a region D ⊂ Rn+1 in the p-norm if there exists a constant K ≥ 0 such that

∥F (x,y1)− F (x,y2)∥p ≤ K∥y1 − y2∥p

for all (x,y1), (x,y2) ∈ D. K is called the corresponding Lipschitz constant in the p-norm.

13



Chapter 1. Integral and Differential Equations

Theorem 1.5 (Vector Picard’s Theorem (Second Form)) Let F
(
x,y(x)

)
be continuous and

for all x ∈ [x0 − α, x0 + α] and ∥y − y0∥∞ < β satisfy a Lipschitz condition with respect to the

∞-norm, with Lipschitz constant K say. Further let M = sup ∥F
(
x,y

)
∥∞ over the domain. Then

the IVP y′(x) = F
(
x,y(x)

)
with y(x0) = y0 has a unique solution defined for in the interval

|x− x0| ≤ min(α, β/M).

1.7.2 Higher-order equations

Next consider an equation relating derivatives up to the nth

y(n)(x) = F
(
x, y(x), y′(x), . . . , y(n−1)(x)

)
with initial conditions on y(x0), y

′(x0), . . . , y
(n−1)(x0).

We can reduce this to the problem of a system of equations by defining

y1(x) = y(x), y2(x) = y′(x), . . . , yn(x) = y(n−1)(x)

and so

y′i(x) = yi+1(x) ≡ Fi
(
x, y1(x), y2(x), . . . , yn(x)

)
i = 1, . . . , n− 1

y′n(x) = y(n)(x) = F
(
x, y(x), y′(x), . . . , y(n−1)(x)

)
≡ Fn

(
x, y1(x), y2(x), . . . , yn(x)

)
,

with ≡ denoting that this serves as a definition of the function on the right hand side.
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Chapter 2

Comparison Theorems

Overview

In this chapter we look at so-called comparison theorems. We show how these can be used to

address some of the well-posedness questions from the previous chapter – but in a greatly simplified

manner. This is a short chapter, which would seem to suggest that such comparison theorems are

of limited use. However, in the accompanying exercises we showcase the power and applicability of

comparison theorems in analyzing important systems of equations in Applied Mathematics.

2.1 Gronwall’s Inequality

Lemma 2.1 (Gronwall’s Inequality) Let σ(x) be a differentiable function satisfying the differen-

tial inequality

σ′(x) ≤ c σ(x), x0 ≤ x ≤ b,

for some constant c then σ(x) ≤ σ(x0)e
c(x−x0) for x0 ≤ x ≤ b.

Proof: Multiply our differential inequality by e−cx and rearrange to get

0 ≥ e−cxσ′(x)− c e−cxσ(x) =
[
e−cxσ(x)

]′
so e−cxσ(x) is a decreasing function and correspondingly

e−cxσ(x) ≤ e−cx0σ(x0)

which may be rearranged to the form given.

15



Chapter 2. Comparison Theorems

2.1.1 Continuity / Uniqueness Theorems Revisited

Let y(x) and Y (x) be solutions to y′(x) = F
(
x, y(x)

)
, with y(x0) = y0 and y(δ)(x0) = y0 + δ and

F satisfies a Lipschitz condition in y as before.

Consider σ(x) =
(
y(x)− y(δ)(x)

)2
, then

σ′(x) = 2
(
y(x)− y(δ)(x)

)(
y′(x)− y(δ)

′
(x)
)
,

= 2
(
y(x)− y(δ)(x)

)(
F
(
x, y(x)

)
− F

(
x, y(δ)(x)

))
,

≤ 2
∣∣y(x)− y(δ)(x)

∣∣ ∣∣F(x, y(x))− F
(
x, y(δ)(x)

∣∣ .
By the Lipschitz condition for F , we have:

σ′(x) ≤ 2K
∣∣y(x)− y(δ)(x)

∣∣2 ,
= Kσ.

Thus

σ′(x) ≤ 2Kσ(x),

and our theorem tells us that(
y(x)− y(δ)(x)

)2 ≤ e2K(x−x0)
(
y(x0)− y(δ)(x0)

)2
,

or ∣∣y(x)− y(δ)(x)
∣∣ ≤ eK(x−x0)

∣∣y(x0)− y(δ)(x0)
∣∣,

which is our continuity result. Equally for y(0)(x0) = y0 we get our uniqueness result, as we then

have y(0)(x) = y(x) for x0 ≤ x ≤ b. .

2.2 More advanced results

Theorem 2.2 Let F (x, y) satisfy a Lipschitz condition in [a, b]. Suppose that y(x) satisfies y′(x) =

F
(
x, y(x)

)
while z(x) satisfies the differential inequality (and also the Lipschitz condition above)

z′(x) ≤ F
(
x, z(x)

)
with the same initial condition y(x0) = z(x0) then

z(x) ≤ y(x) for x ≥ x0.
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2.2. More advanced results

Proof: Let σ(x) = z(x)− y(x) then

σ′(x) = z′(x)− y′(x) ≤ F
(
x, z(x)

)
− F

(
x, y(x)

)
.

Now the Lipschitz condition
∣∣F (x, z)− F (x, y)

∣∣ ≤ K|z − y| can be rewritten as

−K
∣∣z(x)− y(x)

∣∣ ≤ F
(
x, z(x)

)
− F

(
x, y(x)

)
≤ K

∣∣z(x)− y(x)
∣∣,

so
dσ

dx
≤ K|σ(x)|. (2.1)

We have σ(x0) = 0. Let x2 be the first x-value greater than x0 such that σ(x) > 0. From

Equation (2.1), we have:
dσ

dx
≤ −Kσ, x0 ≤ x ≤ x2.

By using the integrating-factor technique, we have:

d

dx
(eKxσ) ≤ 0,

so eKxσ(x) is a decreasing function, hence:

eKx2σ(x2) ≤ eKx0σ(x0).

But σ(x0) = 0, hence σ(x2) ≤ 0, which is a contradiction. Hence, so z(x2) > y(x2) is impossible.

Corollary 2.3 Suppose y′(x) = F
(
x, y(x)

)
and z′(x) = G

(
x, z(x)

)
where G(x, y) ≤ F (x, y) for

x ∈ [a, b] and that G satisfies a Lipschitz condition in y. Then if y(x0) = z(x0) it follow that

z(x) ≤ y(x) for x ≥ x0.

2.2.1 Worked example

Consider the horrible differential equation

y′(x) = cosh
(
x+ y(x)

)
+ y(x)2 ≡ F

(
x, y(x)

)
with y(0) = 0. We know that cosh z ≥ 1 for all z ∈ R so we may take G(x, y) = 1 + y2 and the

theorem will apply.

Now the solution to z′(x) = 1 + z(x)2 with z(0) = 0 is easily seen to be z(x) = tan x. Since this

diverges at x = π/2 we deduce that the solution of original equation must diverge at or before this

point.
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Chapter 2. Comparison Theorems

This is illustrated below (Figure 2.1) where the F solution is plotted in blue and the G solution in

orange.

0.0 0.5 1.0 1.5

1

2

3

4

5

Figure 2.1:
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Chapter 3

Linear equations: Homogeneous Case

Overview

In this chapter we look at linear ODEs and their properties.

3.1 Introduction

An ODE is said to be linear if it is linear in y(x) and all of its derivatives. Thus an nth order ODE

has the general form

pn(x)y
(n)(x) + pn−1(x)y

(n−1)(x) + · · ·+ p0(x)y(x) = r(x)

where if r(x) = 0 the equation is said to be homogeneous and otherwise is said to be inhomogeneous.

The focus of this chapter is on the homogeneous case.

If we assume that pi(x) and r(x) are continuous on [a, b], and pn(x) ̸= 0 for any x ∈ [a, b] (so

the equation truly determines y(n)(x)) then the first (global) version of Picard’s theorem holds since

continuity gives us a Lipschitz condition in the bounded interval [a, b] with

K = (n− 1) +
n−1∑
i=0

max
x∈[a,b]

∣∣∣∣ pi(x)pn(x)

∣∣∣∣ ,
using the ∞-norm (maximum-norm) on Rn.
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Chapter 3. Linear equations: Homogeneous Case

3.2 Linear Independence of Solutions

We will start by considering the homogeneous linear ODE and introduce the linear operator L defined

by

L = pn(x)
dn

dxn
+ pn−1(x)

dn−1

dxn−1
+ · · ·+ p0(x)

so our homogeneous linear ODE may be written compactly as L[y] = 0.

Now it is clear from linearity that if L[u] = 0 and L[v] = 0 then L[u + v] = 0 and L[c u] = 0 for

any constant c ∈ R. Hence we have a vector space of solutions and the first natural question is

’What is its dimension?’

Recall that we say that a set of functions {u1(x), u2(x), . . . , un(x)} are linearly dependent on the

interval [a, b] if there exist constants c1, c2, . . . , cn not all zero such that

c1 u1(x) + c2 u2(x) + · · ·+ cn un(x) = 0.

Theorem 3.1 There exist at most n linearly independent solutions of an nth order homogeneous

linear ODE.

Proof: Suppose we have n+1 solutions {u1(x), u2(x), . . . , un(x), un+1(x)}. Consider the problem
of finding constants c1, c2, . . . , cn, cn+1 such that, for some x0 ∈ [a, b]:

c1 u1(x0) + c2 u2(x0) + · · ·+ cn un(x0) + cn+1 un+1(x0) = 0

c1 u
′
1(x0) + c2 u

′
2(x0) + · · ·+ cn u

′
n(x0) + cn+1 u

′
n+1(x0) = 0

. . .

c1 u
(n−1)
1 (x0) + c2 u

(n−1)
2 (x0) + · · ·+ cn u

(n−1)
n (x0) + cn+1 u

(n−1)
n+1 (x0) = 0.

In other words, we seek a solution (c1, · · · , cn, cn+1) to the following n planar equations:

(c1, · · · , cn, cn+1) · n1 = 0, n1 = (u1(x0), · · · , un(x0), un+1(x0))

(c1, · · · , cn, cn+1) · n2 = 0, n2 = (u′1(x0), · · · , u′n(x0), u′n+1(x0))

...

(c1, · · · , cn, cn+1) · nn = 0, nn = (u
(n−1)
1 (x0), · · · , u′n(x0), u

(n−1)
n+1 (x0)).

A constant vector (c1, · · · , cn, cn+1)
T solving these equations can always be found: it lies in the

vector subspace orthogonal to that spanned by {n1, · · · ,nn}. As we are dealing with Rn+1, this

vector space is at least one-dimensional.
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3.2. Linear Independence of Solutions

Next, we introduce:

v(x) = c1 u1(x) + c2 u2(x) + · · ·+ cn un(x) + cn+1 un+1(x).

This clearly satisfies L[v] = 0 and by construction,

v(x0) = v′(x0) = · · · = v(n−1)(x0) = 0.

But the zero function also clearly satisfies this IVP and as the solution is unique we must have

v(x) = 0 for all x ∈ [a, b], that is, {u1(x), u2(x), . . . , un(x), un+1(x)} are linearly dependent.

Definition 3.1 The Wronskian of a set of r − 1-times differentiable functions

{u1(x), u2(x), . . . , ur(x)}

is defined as the r-dimensional determinant

W (x) =

∣∣∣∣∣∣∣∣∣∣
u1(x) u2(x) . . . ur(x)

u′1(x) u′2(x) . . . u′r(x)
...

...
...

...

u
(r−1)
1 (x) u

(r−1)
2 (x) . . . u

(r−1)
r (x)

∣∣∣∣∣∣∣∣∣∣
Theorem 3.2 If {u1(x), u2(x), . . . , ur−1(x), ur(x)} are linearly dependent then their Wronskian

vanishes identically.

Proof: As the functions are linearly dependent there exist constants c1, c2, . . . , cn not all zero such

that

c1 u1(x) + c2 u2(x) + · · ·+ cr ur(x) = 0.

and so also

c1 u1(x) + c2 u2(x) + · · ·+ cr ur(x) = 0

...

c1u
(r−1)
1 (x) + u

(r−1)
2 (x) + · · ·+ cru

(r−1)
r (x) = 0

which may be combined in matrix form as
u1(x) u2(x) . . . ur(x)

u′1(x) u′2(x) . . . u′r(x)
...

...
...

...

u
(r−1)
1 (x) u

(r−1)
2 (x) . . . u

(r−1)
r (x)



c1

c2
...

cr

 =


0

0
...

0


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Chapter 3. Linear equations: Homogeneous Case

and, of course, the condition for a non-trivial solution is precisely that the determinant of the matrix

vanishes but that is nothing other than the Wronskian.

The converse is not, in general, true as the following example shows:

Example: Define the differentiable functions

u1(x) =

0 x < 0

x2 x ≥ 0
u2(x) =

x2 x < 0

0 x ≥ 0
.

Then if c1u1(x) + c2u2(x) = 0, taking x = 1 we find c1 = 0 and taking x = −1 we find c2 = 0 so

the functions are linearly independent. On the other hand

W (x) =

∣∣∣∣∣u1(x) u2(x)

u′1(x) u′2(x)

∣∣∣∣∣ =



∣∣∣∣∣∣0 x2

0 2x

∣∣∣∣∣∣ = 0 x < 0

∣∣∣∣∣∣x
2 0

2x 0

∣∣∣∣∣∣ = 0 x ≥ 0

,

so the Wronskian vanishes identically.

Lemma 3.3 (Abel’s Identity) Suppose that {u1(x), u2(x), . . . , un−1(x), un(x)} are solutions to

a linear ODE. Then the Wronskian satisfies the relation for any value of x0 ∈ [a, b]

W (x) = W (x0) exp

−
x∫

x0

pn−1(s)

pn(s)
ds

 . (3.1)

Proof: We recall Leibniz’s formula for determinants:

det(A) =
∑
τ∈Sn

sgn(τ)
n∏
i=1

ai, τ(i) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

aσ(i), i

where sgn is the sign function of permutations in the permuation group: sgn = +1 if τ (σ) is an

even permulation, and −1 if τ (σ) is an odd permutation. This can be written more compactly

using the Levi–Cevita symbol:

det(A) = ϵi1···ina1,i1 · · · an,in .

Thus, if the matrix A is a function of a single variable x, then

d

dx
det(A) = ϵi1 i2···in

da1,i1
dx

a2,i2 · · · an,in + · · · ϵi1···in−1 ina1,i1 · · · an−1,in−1

dan,in
dx

,
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3.2. Linear Independence of Solutions

This can be written more compactly as:

d

dx
det(A) =

n∑
i=1

det[Ai(x)]

where Ai(x) is the matrix A(x) whose i−th row has been substituted by the derivative of each entry

of that row. We apply this result to the Wronskian W (x):

W ′(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

u′1(x) u′2(x) · · · u′n(x)

u′1(x) u′2(x) · · · u′n(x)

u′′1(x) u′′2(x) · · · u′′n(x)
...

...
. . .

...

u
(n−1)
1 (x) u

(n−1)
2 (x) · · · u

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

u1(x) u2(x) · · · un(x)

u′′1(x) u′′2(x) · · · u′′n(x)

u′′1(x) u′′2(x) · · · u′′n(x)
...

...
. . .

...

u
(n−1)
1 (x) u

(n−1)
2 (x) · · · u

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣∣∣

+ · · · +

∣∣∣∣∣∣∣∣∣∣∣∣

u1(x) u2(x) · · · un(x)

u′1(x) u′2(x) · · · u′n(x)
...

...
. . .

...

u
(n−2)
1 (x) u

(n−2)
2 (x) · · · u

(n−2)
n (x)

u
(n)
1 (x) u

(n)
2 (x) · · · u

(n)
n (x)

∣∣∣∣∣∣∣∣∣∣∣∣
.

However, note that every determinant from the expansion above contains a pair of identical rows,

except the last one. Since determinants with linearly dependent rows are equal to 0, the only one

left with the last one.

On the other hand every ui solves the ordinary differential equation, thus we have

u
(n)
i (x) +

1

pn(x)

[
pn−2 u

(n−2)
i (x) + · · ·+ p1 u

′
i(x) + p0 ui

]
= −pn−1

pn
u
(n−1)
i (x)

for every i ∈ {1, . . . , n}. Hence, adding to the last row of the above determinant p0 times its

first row, p1 times its second row, and so on until pn−2 times its next to last row, the value of the

determinant for the derivative of W is unchanged and we get

W ′(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

u1(x) u2(x) · · · un(x)

u′1(x) u′2(x) · · · u′n(x)
...

...
. . .

...

u
(n−2)
1 u

(n−2)
2 · · · u

(n−2)
n

−pn−1

pn
u
(n−1)
1 (x) −pn−1

pn
u
(n−1)
2 (x) · · · −pn−1

pn
u
(n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −pn−1

pn
W (x).

Hence

W (x) = W (x0) exp

−
x∫

x0

pn−1(s)

pn(s)
ds

 .
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Chapter 3. Linear equations: Homogeneous Case

so W (x) either vanishes identically or else never vanishes.

Theorem 3.4 If {u1(x), u2(x), . . . , un−1(x), un(x)} are solutions to a linear ODE L[u] = 0 and

W (x) = 0 then the functions are linearly dependent.

Proof: If W (x) = 0 then, in particular, W (x0) = 0 so there exists a non-zero solution to the linear

system 
u1(x0) u2(x0) . . . un(x0)

u′1(x0) u′2(0x) . . . u′n(x0)
...

...
...

...

u
(n−1)
1 (x0) u

(n−1)
2 (x0) . . . u

(n−1)
n (x0)



c1

c2
...

cr

 =


0

0
...

0


Now define v(x) = c1u1(x) + c2u2(x) + . . . cnun(x) the L[v] = 0 and v(x0) = v′(x0) = · · · =
v(n−1)(x0) = 0 as does the zero function so by our uniqueness theorem v(x) = 0 and our functions

are linearly dependent.

We can now complete the proof that the space of solutions to L[u] = 0 is a vector space of dimension

n.

Theorem 3.5 We may find an n-dimensional set of linearly independent solutions.

Proof: Choose solutions {u1(x), u2(x), . . . , un(x)} with

u
(j−1)
i (x0) = δj−1

i .

Here, δkl is the Kronecker-δ function, δ
k
l = 1, iff l = k). ThenW (x0) = 1 and so {u1(x), u2(x), . . . , un(x)}

are linearly independent.

Remark: We could clearly use u
(j−1)
i (x0) = aij where A is any invertible matrix.
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Chapter 4

Linear equations: Inhomogeneous Case

Overview

Second order inhomogeneous linear ODE play a central role in Applied & Computational Mathe-

matics, for example, in the case of a forced damped pendulum

ml2θ̈(t) +mνθ̇(t) +mglθ(t) = F (t).

Such equations will be the focus of this Chapter; while some the results, such as variation of

parameters, will be familiar we will build on it later in this Chapter and the following. Throughout

this course, we use the following notation for the generic 2nd order inhomogeneous linear ODE:

L[y] = p2(x)y
′′(x) + p1(x)y

′(x) + p0(x)y(x) = r(x).

4.1 Variation of Parameters

Suppose we have two linearly independent solutions u(x), v(x) of the homogeneous problem L[u] =

L[v] = 0. The general solution is αu(x) + βv(x) where α and β are constants. Now try to find a

solution to solve the inhomogeneous problem L[y] = r by elevating α and β to functions a(x) and

b(x), which we are free to choose, so we try to find a solution in the form

y(x) = a(x)u(x) + b(x)v(x).

Then

y′(x) = a′(x)u(x) + b′(x)v(x) + a(x)u′(x) + b(x)v′(x).
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Chapter 4. Linear equations: Inhomogeneous Case

We now use the freedom in a(x) and b(x) to ask that a′(x)u(x) + b′(x)v(x) = 0 and consequently

y′(x) = a(x)u′(x) + b(x)v′(x)

and so

y′′(x) = a′(x)u′(x) + b′(x)v′(x) + a(x)u′′(x) + b(x)v′′(x).

Then rewriting using the previous terms we have

L[y] = p2(x)
(
a′(x)u′(x) + b′(x)v′(x)

)
+ a(x)L[u] + b(x)L[v]

and since L[u] = L[v] = 0 finally L[y] = p2(x)
(
a′(x)u′(x) + b′(x)v′(x)

)
.

Since we want L[y] = r we have a pair of simultaneous equations

a′(x)u(x) + b′(x)v(x) = 0

a′(x)u′(x) + b′(x)v′(x) = r(x)/p2(x),

or equivalently, (
u(x) v(x)

u′(x) v′(x)

)(
a′(x)

b′(x)

)
=

(
0

r(x)/p2(x)

)
.

This is easily solved as(
a′(x)

b′(x)

)
=

1

W (x)

(
v′(x) −v(x)
−u′(x) u(x)

)(
0

r(x)/p2(x)

)
=

r(x)

p2(x)W (x)

(
−v(x)
u(x)

)
.

So

a(x) = α−
x∫

xα

v(s)r(s)

p2(s)W (s)
ds

b(x) = β +

x∫
xβ

u(s)r(s)

p2(s)W (s)
ds

where xα and xβ are arbitrary and may be chosen at our convenience, and recalling that W (s) ̸= 0

for s ∈ [a, b] since u(x), v(x) are linearly independent functions. So

y(x) = αu(x) + βv(x)− u(x)

x∫
xα

v(s)r(s)

p2(s)W (s)
ds+ v(x)

x∫
xβ

u(s)r(s)

p2(s)W (s)
ds. (4.1)
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4.2. The Initial-Value Problem

Remark: There appears to be a redundancy of constants in the formulation above (in a 2nd-order

inhomogeneous ODE, we would expect only 2 constants and not 4). However, once the integral

expressions are defined, α and β become functions of xα and xβ, meaning there are only two

independent constants of integration.

4.2 The Initial-Value Problem

First suppose we are looking for the particular solution with yP (x0) = y′P (x0) = 0; we can show that

is corresponds to taking xα = xβ = x0 and α = β = 0. In fact, proceeding with the calculations

we have

yP (x) = −u(x)
x∫

x0

v(s)r(s)

p2(s)W (s)
ds+ v(x)

x∫
x0

u(s)r(s)

p2(s)W (s)
ds. (4.2)

which clearly satisfies yP (x0) = 0 while

y′P (x) = −u′(x)
x∫

x0

v(s)r(s)

p2(s)W (s)
ds−

���������
u(x)

v(x)r(x)

p2(x)W (x)
+ v′(x)

x∫
x0

u(s)r(s)

p2(s)W (s)
ds+

���������
v(x)

u(x)r(x)

p2(x)W (x)

= −u′(x)
x∫

x0

v(s)r(s)

p2(s)W (s)
ds+ v′(x)

x∫
x0

u(s)r(s)

p2(s)W (s)
ds,

so also y′P (x0) = 0, as required. Notice that Equation (4.2) gives also the definition of the particular

solution of the inhomogeneous ODE.

Now suppose we want y(x0) = y0 and y
′(x0) = y′0, then y(x) = yP (x)+αu(x)+βv(x) is a solution

of the ODE and

y(x0) = yP (x0) + αu(x0) + βv(x0) = αu(x0) + βv(x0)

y′(x0) = y′P (x0) + αu′(x0) + βv′(x0) = αu′(x0) + βv′(x0)

since from the definition (4.2), the particular solution will vanish at the initial conditions. In compact

form we have the linear system (
u(x0) v(x0)

u′(x0) v′(x0)

)(
α

β

)
=

(
y0

y′0

)

which may be readily solved as the determinant of the matrix is W (x0) which by assumption is

non-zero (as u(x), v(x) are linearly independent).

Example: L[y] = y′′(x) + 2y′(x) + 2y(x) = r(x) with y(0) = 1 and y′(0) = 0.
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Chapter 4. Linear equations: Inhomogeneous Case

Linearly independent solutions are u(x) = e−x cosx and v(x) = e−x sinx. Hence,

W (x) = e−x cosx
(
−e−x sinx+ e−x cosx

)
− e−x sinx

(
−e−x cosx− e−x sinx

)
= e−2x.

Note that this is consistent with Abel’s Theorem, with W ′ = −[p1(x)/p2(x)]W = −2W . Then

yP (x) = −e−x cosx

x∫
0

es sin s r(s) ds+ e−x sinx

x∫
0

es cos s r(s) ds

=

x∫
0

es−x sin(x− s)r(s) ds.

Now we write y(x) = yP (x) + αu(x) + βv(x) and find we want

y(x0) = 1 = α

y′(x0) = 0 = −α + β

so the required solution is

y(x) = yP (x) + e−x(cosx+ sinx).

4.3 The Initial-Value Green’s Function

Definition 4.1 We can write our particular solution with initial condition yP (x0) = y′P (x0) = 0

compactly as

yP (x) =

x∫
x0

G(x, s)r(s) ds,

where

G(x, s) =
−u(x)v(s) + v(x)u(s)

p2(s)W (s)
.

G(x, s) is called the Green function for the initial value problem.

Theorem 4.1 The Green’s Function satisfies the following properties:

1. Defined for x0 ≤ s ≤ x;

2. Lx[G] = 0;

3. G(x, x−) = 0;
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4.3. The Initial-Value Green’s Function

4.
∂G

∂x
(x, x−) =

−u′(x)v(x) + v′(x)u(x)

p2(x)W (x)
=

1

p2(x)
.

Here we use Lx to denote we are thinking of L as a differential operator in x with s held fixed, and

x− to denote the (one-sided) limit s tends up to x (it has to be one-sided as G(x, s) is not defined

for s > x).

In fact, we can turn things around and use these properties to define G(x, s):

� Property 2 says G(x, s) = a(s)u(x) + b(s)v(x), then

� Property 3 says G(x, x) = 0 = a(x)u(x) + b(x)v(x), so a(x) = c(x)v(x), b(x) = −c(x)u(x)
for some c(x) and G(x, s) = c(s)

(
v(s)u(x)− u(s)v(x)

)
,

Then

∂G

∂x
(x, s) = c(s)

(
v(s)u′(x)− u(s)v′(x)

)
so

� Property 4 says c(x)W (x) = 1/p2(x).

4.3.1 The adjoint operator

Definition 4.2 If L[y] = p2y
′′ + p1y

′ + p0y then the operator

M [y] = (p2y)
′′ − (p1y)

′ + p0y

satsifies ∫
u
(
L[v]

)
=

∫
v
(
M [u]

)
+ boundary terms.

M is called the adjoint of L. (Note that we have omitted the variable x for simplicity).

In fact, this is just our standard concept of the adjoint:

Definition 4.3 If we define an inner product by

⟨u, v⟩ =
∫
uv dx

then the adjoint operator M = L† is given by

⟨u, Lv⟩ = ⟨L†u, v⟩ = ⟨Mu, v⟩.

Definition 4.4 A differential operator is said to be self-adjoint if M = L.
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Chapter 4. Linear equations: Inhomogeneous Case

If we write out M and L explicitly

M [y] = p2y
′′ + (2p′2 − p1)y

′ + (p′′2 − p′1 + p0)y

L[y] = p2y
′′ + p1y

′ + p0y

we see that that we need the y′ coefficient requires p′2 = p1 and this then guarantees the equality

of the y′ coefficient and consequently for the y one, too. Thus the general self-adjoint equation has

the form

L[y] = p2
d2y

dx2
+

dp2
dx

dy

dx
+ p0y =

d

dx

(
p2

dy

dx

)
+ p0y.

In this case Abel’s Theorem (Equation (3.1)) becomes

W (x) = W (x0) exp

−
x∫

x0

p′2(s)

p2(s)
ds

 = W (x0) exp (− ln p2(x) + ln p2(x0)) = W (x0)
p2(x0)

p2(x)
,

in other words

p2(x)W (x) = p2(x0)W (x0) (constant).

That is, the denominator of our Green function is constant.

Note that any linear equation may be cast in self-adjoint form by using an appropriate integrating

factor I(x):

Ip2y
′′ + Ip1y

′ + Ip0y = Ir

and try to choose I so that (Ip2)
′ = Ip1 which gives

I ′

I
=
p1 − p′2
p2

=⇒ I(x) =
1

p2(x)
exp

 x∫
x0

p1(s)

p2(s)
ds

 .

4.4 The IVP as an integral equation

Given the remarks at the end of the last section let us assume that we have a self-adjoint IVP:

L[y] = (p2y
′)′ + p0y = r,
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4.4. The IVP as an integral equation

with y(x0) = y0 and y′(x0) = y′0. Then rewriting as (p2y
′)′ = r − p0y and integrating we have

p2(x)y
′(x)− p2(x0)y

′(x0) =

x∫
x0

(
r(s)− p0(s)y(s)

)
ds

or

y′(x) = p2(x0)y
′
0

1

p2(x)
+

1

p2(x)

x∫
x0

(
r(s)− p0(s)y(s)

)
ds.

If we define

P (x) =

x∫
x0

ds

p2(s)
,

we may integrate again to get

y(x)− y0 = p2(x0)y
′
0P (x) +

x∫
x0

1

p2(s)

 s∫
x0

(
r(t)− p0(t)y(t)

)
dt

 ds.

Interchanging the order of integration in the last term (Figure 4.1), we arrive at

y(x) = y0 + p2(x0)y
′
0P (x) +

x∫
x0

(
r(t)− p0(t)y(t)

) x∫
t

1

p2(s)
ds

 dt

= y0 + p2(x0)y
′
0P (x) +

x∫
x0

(
r(t)− p0(t)y(t)

)
(P (x)− P (t)) dt (4.3)

Alternatively, this can be written as:

y(x) =

y0 + p2(x0)y
′
0P (x) +

x∫
x0

r(t) (P (x)− P (t)) dt


+

x∫
x0

p0(t) (P (t)− P (x)) y(t) dt. (4.4)

This has the form

y(x) = F (x) +

x∫
x0

K(x, t)y(t) dt. (4.5)
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Chapter 4. Linear equations: Inhomogeneous Case

Figure 4.1: A graphical description showing how the limits of integration can be flipped in Equa-
tion (4.3)

which is referred to as a Volterra integral equation – that the upper limit of the integral is x is the

key feature here.

4.4.1 Alternative derivation

We can derive Equation (4.3) in a different manner: we introduce a linear operator L0[y] = (p2y
′)′,

and we look for a particular integral of:

L0[y] = r − p0y.

The homogeneous problem L0[y] = (p2y
′)′ = 0 has solutions with p2(x)y

′(x) = A, or y′(x) =

A/p2(x) so

y(x) = A

x∫
ds

p2(s)

= AP (x) +B,

that is, we have independent solutions u(x) = P (x) and v(x) = 1 with Wronskian

W (x) = P (x).0− P ′(x).1 = − 1

p2(x)
.
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4.4. The IVP as an integral equation

Correspondingly we have p2(t)W (t) = −1 and

yP (x) =

x∫
x0

(u(x)v(t)− v(x)u(t)) (r(t)− p0(t)y(t)) dt

=

x∫
x0

(P (x)− P (t)) (r(t)− p0(t)y(t)) dt

Thus, the general solution of L0[y] = r − p0y is:

y = AP (x) +B +

x∫
x0

(P (x)− P (t)) (r(t)− p0(t)y(t)) dt

Since A and B are arbitrary constants, this can be matched up exactly with Equation (4.3)

4.4.2 Iterative Solution

The Volterra form Equation (4.5) suggests an iterative solution

y0(x) = F (x),

and

yn+1(x) = F (x) +

x∫
x0

K(x, t)yn(t) dt,

which as for the first order case we may show converges under suitable conditions on K(x, t). As

we have already proved existence for the IVP we will not pursue this further but just note that the

interation is important for example in perturbation theory in quantum field theory where it is known

as the Dyson series (Freeman Dyson, one of the pioneers of QED not the vacuum manufacturer!)
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Chapter 5

Solution of ODEs via Power Series

Overview

In this chapter we look at some constructive methods for generating solutions of second-order linear

ODEs, as the previous chapters have been a bit theoretical, indeed, maybe even frustrating, as the

construction of Green’s functions etc. relies on pulling solutions u(x) and v(x) out of thin air, as it

were. In contrast to your previous studies of such ODEs, we now look at cases where the coefficeints

are not constant. Hence, we look at solutions, in the neighbourhood of z = 0, of the ODE

y′′(z) + p(z)y′(z) + q(z)y(z) = 0. (5.1)

Obviously we can investigate the behaviour of an arbitrary point z = z0 by a linear shift z → z− z0.

We use independent variable z in this Chapter to emphasise that the analysis naturally belongs in

the complex plane, z ∈ Z.

5.1 Ordinary Points and Regular Singular Points

Refer to Equation (5.1). Now z = 0 is called an ordinary point of the equation if both p(z) and

q(z) are analytic at z = 0 and that otherwise z = 0 is a singular point of the equation. In the case

of an ordinary we can use standard argument to generate the Taylor series for y(z) about z = 0

(developed in the following); for a singular point we can not expand both p(z) and q(z) about 0 (in

general one of them is singular at z = 0 so the procedure breaks down).

Some singular points are more benign than others; in particular, if both zp(z) and z2q(z) are analytic

at z = 0, then z = 0 is called a regular singular point of the equation. Otherwise it is called an

irregular singular point.

Example: The function y(z) = e−1/z2 satisfies the ODE

y′′(z) + (3z−1 + 2z−3)y′(z) = 0.
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5.2. Solutions near an ordinary point

As zp(z) = 3 + 2z−2 is not analytic at z = 0, this corresponds to an irregular singular point. The

corresponding solution y(z) = e−1/z2 has the property that all derivatives vanish at z = 0 so the

Taylor series vanishes identically and has 0 radius of convergence.

By contrast near a regular singular point we may find solutions of the ODE as Taylor series solutions

with just minor modification..

5.2 Solutions near an ordinary point

We have the following theorem:

Theorem 5.1 If p(z) and q(z) are analytic in the disc |z| < R, then there exist two linearly

independent solutions of Equation 5.1, y1(z) and y2(z), such that:

� y1(z) and y2(z) are analytic in |z| < R (and possibly in a larger disc);

� y1(0) ̸= 0; if y2(0) = 0 and y′2(0) ̸= 0.

Remark: We can understand the theorem by noting that, near z = 0 the ODE is approximately

y′′(z) + p(0)y′(z) + q(0)y(z) = 0,

for which solutions are of the form either eα1z and eα2z when the roots of the quadratic α2 +

p(0)α + q(0) = 0 are distinct or eα1z and zeα1z when there is a repeated root. We may then take

y1(z) = eα1z and y2(z) = eα2z − eα1z in the distinct root case, while for the repeated root case we

may simply take y1(z) = eα1z and y2(z) = zeα1z. (Note, that no solution near an ordinary point

can then behave, for example, as z2 or z1/2).

5.3 Euler Linear Equation

We look at

y′′(z) +
p0
z
y′(z) +

q0
z2
y(z) = 0, (5.2)

known also as the Euler linear equation, for which we know to use a trial function or ansatz1

y(z) = zα. If we substitute y(z) = zα in the above ODE it yields[
α(α− 1) + p0α + q0

]
zα−2 = 0.

1It is a german word for “guess” or “hypothesis”. In mathematics it is referred to an assumed condition or guess
solution which is verified later being true.
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Chapter 5. Solution of ODEs via Power Series

Hence, the allowed values of α solve:

α(α− 1) + p0α + q0 = 0 =⇒ α1,2 =
1
2

[
(1− p0)±

√
(1− p0)2 − q0

]
.

Correspondingly the equation has independent solutions zα1 and zα2 when α1 and α2 are distinct.

When the roots are the same, we have:

α1,2 =
1
2
(1− p0) = α.

In this case, we write y1(z) = zα as the first solution, and attempt a second solution y2(z) =

y1(z)u(z). We substitute back into Equation (5.2) and obtain a reduced ODE for u(z):

u′′ +
1

x
u′ = 0.

We let u′ = v, and solve dv/dx = −v/x, with solution v = 1/x. Hence, u′ = 1/x, and u = ln(x).

Thus, the second solution is:

y2(x) = xα lnx.

5.4 Solutions near a regular singular point

Suppose now the weaker assumption that occurs frequently in practice that zp(z) and z2q(z) are

analytic in the disc |z| < R and write

zp(z) =
∞∑
n=0

pnz
n z2q(z) =

∞∑
n=0

qnz
n. (5.3)

Near z = 0 we now have the approximate equation

y′′(z) +
p0
z
y′(z) +

q0
z2
y(z) = 0

which is Euler’s equation again. Based on this to find a solution near an arbitrary singular point we

write

y(z) = zα
∞∑
n=0

anz
n, (5.4)

where the arbitrariness in α is removed by demanding that a0 ̸= 0. This type of solution (with

α ̸= 0) is known as a Frobenius series.
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5.4. Solutions near a regular singular point

5.4.1 Recurrence Relations

We start by substituting the Frobenius expansion (5.4) into the second order homogeneous ODE

Equation (5.1), with p(z) = z−1
∑∞

n=0 pnz
n and q(z) = z−2

∑
n=0 ∞qnz

n. We have

L[y] =
∞∑
n=0

an(n+ α)(n+ α− 1)zn+α−2 +

(
∞∑
n=0

pnz
n

)(
∞∑
n=0

an(n+ α)zn

)
zα

z2

+

(
∞∑
n=0

qnz
n

)(
∞∑
n=0

anz
n

)
zα

z2
,

L[y] = 0. (5.5)

We use the Cauchy product of series:(
∞∑
n=0

βnz
n

)(
∞∑
n=0

γnz
n

)
=

∞∑
n=0

zn

(
n∑
j=0

βjγn−j

)
.

Hence, Equation (5.5) becomes:

�
�
�zα

z2

∞∑
n=0

an(n+ α)(n+ α− 1)zn = −
�
�
�zα

z2

∞∑
n=0

zn
n∑
n=0

aj [(j + α)pn−j + qn−j] .

We break up the sum on the RHS into j ∈ {0, · · · , n} and j = n:

∞∑
n=0

an(n+ α)(n+ α− 1)zn = −
∞∑
n=0

zn
{ n−1∑

j=0

aj [(j + α)pn−j + qn−j] + an [(n+ α)p0 + q0]

}
.

We equate the coefficients of z0 to get:

a0α(α− 1) = −a0 (αp0 + q0) .

Or,

a0 [α(α− 1) + αp0 + q0]︸ ︷︷ ︸
=F (α)

= 0.

Thus, since a0 ̸= 0, we have the indicial equation:

F (α) = 0.

The roots α1 and α2 of this quadratic are the exponents of the leading powers in our solution and

satisfy

α1 + α2 = 1− p0, α1α2 = q0.
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Chapter 5. Solution of ODEs via Power Series

For coefficeints of zn with n ≥ 1, we have:

an(n+ α)(n+ α− 1) + an [(n+ α)p0 + q0] = −
n−1∑
j=0

aj [(j + α)pn−j + qn−j] .

This can also be written as:

anF (n+ α) = −
n−1∑
j=0

aj [(j + α)pn−j + qn−j]

Summarizing, we have:

a0F (α) = 0

anF (n+ α) = −
n−1∑
j=0

aj
[
(j + α)pn−j + qn−j

]
(n > 0). (5.6)

We can now solve sequentially with

an = − 1

(α− α1 + n)(α− α2 + n)

n−1∑
k=0

ak
[
(k + α)pn−k + qn−k

]
(n > 0), (5.7)

with α = α1 and α = α2.

Equation (5.7) is our final answer, and gives a power-series solution to the ODE. Indeed, with α = α1

and α = α2, we get two distinct power series and hence, two linearly indepenent solutions to the

ODE. However, there are two cases where this approach generates only one linearly indepenent

solution. We outline these cases carefully in what follows.

5.4.2 Equal Roots

In cases where the indicial equation has repeated roots, with α = α1, setting α = α1 in Equa-

tion (5.7) gives only one recurrence:

an = − 1

n2

n−1∑
k=0

ak
[
(k + α)pn−k + qn−k

]
(n > 0), (5.8)

This gives a perfectly good first solution to the ODE, but the linearly independent second solution

cannot be generated in this way.

5.4.3 Roots differing by an integer

If α1 = α2+N for some n = N (where n = 0, 1, 2, . . . ), the recurrence relations will give one solution

corresponding to α1 but will usually break down for the smaller root α2 when the denominator in
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5.5. Frobenius’s Method

the expression for aN in Equation (5.7) vanishes (because α2 − α1 +N = 0).

In both these scenarios, Frobenius’s Method can be used to generate the second linearly independent

solution.

5.5 Frobenius’s Method

It consists in finding a second solution for the case when the roots of the indicial equation differ

from an integer N . If we solve the recursion relations Eq. (5.6) without solving the indicial equation

we find that the corresponding series

yα(z) = zα
∞∑
n=0

an(α)z
n,

satisfies

y′′α(z) + p(z)y′α(z) + q(z)yα(z) = a0(α− α1)(α− α2)z
α−2,

where the terms associated to the coefficients an for n > 0 vanish (since we are satisfying all the

recurrence relations, but n = 0!). Clearly consistent with our results for our non-special cases.

5.5.1 Equal roots

Since this is true for all α we may now differentiate with respect to α to find

∂y′′α
∂α

(z) + p(z)
∂y′α
∂α

(z) + q(z)
∂yα
∂α

(z) =

a0(α− α1)z
α−2 + a0(α− α2)z

α−2 + a0(α− α1)(α− α2) ln z z
α−2,

since

∂

∂α
zα =

∂

∂α
eα ln z = ln zeα ln z = ln z zα.

Thus, in the case α2 = α1 it is clear that
∂yα
∂α

∣∣∣∣
α=α1

(z) satisfies the equation as well as yα1(x). Cf. If a

polynomial p(α) has a repeated root α1 then p(α1) = 0.

Writing this in terms of our series we have our second solution of the form

y2(z) =
∂yα
∂α

∣∣∣∣
α=α1

(z) = zα1

∞∑
n=0

∂an(α)

∂α

∣∣∣∣
α=α1

zn + ln z zα1

∞∑
n=0

an(α1)z
n

y2(z) = zα1

∞∑
n=0

∂an(α)

∂α

∣∣∣∣
α=α1

zn + ln z y1(z).

39



Chapter 5. Solution of ODEs via Power Series

5.5.2 Roots differing by an integer

In the case α1 = α2 +N where N = 1, 2, . . . our problem is that the denominator, which can now

be written as (α − α2 + n − N)(α − α2 + n) will contain a factor (α − α2) when we set n = N

and this factor will propagate into all higher terms an (n ≥ N). To counter this we keep α free and

multiply by (α− α2) before differentiating

∂(α− α2)yα
∂α

′′

(z) + p(z)
∂(α− α2)yα

∂α

′

(z) + q(z)
∂(α− α2)yα

∂α
(z) =

a0(α− α2)
2zα−2 + 2a0(α− α1)(α− α2)z

α−2 + a0(α− α1)(α− α2)
2 ln z zα−2.

Hence, together with our first solution yα1(z), we have now constructed a second solution

y2 =
∂(α− α2)yα

∂α

∣∣∣∣
α=α2

(z).

We write this in terms of our series:

y2(z) =
∂(α− α2)yα

∂α

∣∣∣∣
α=α2

(z) = zα2

∞∑
n=0

∂(α− α2)an(α)

∂α

∣∣∣∣
α=α2

zn + ln z zα2

∞∑
n=0

[
lim
α→α2

(α− α2)an(α)

]
zn

For n < N , the term an(α) is regular at α2, hence limα→α2 an(α) is well defined, and hence also,

limα→α2(α−α2)an(α) = 0. Thus, not all of the terms contribute in the second series in the above.

Hence, we have:

y2(z) = zα2

∞∑
n=0

∂(α− α2)an(α)

∂α

∣∣∣∣
α=α2

zn + ln z zα2

∞∑
n=N

[
lim
α→α2

(α− α2)an(α)

]
zn.

We re-index with n′ = n−N :

y2(z) = zα2

∞∑
n=0

∂(α− α2)an(α)

∂α

∣∣∣∣
α=α2

zn + ln z zα2

∞∑
n′=0

[
lim
α→α2

(α− α2)aN+n′(α)

]
zn

′
zN .

We gather up the powers zα2+N = zα1 . Hence, we have:

y2(z) = zα2

∞∑
n=0

∂(α− α2)an(α)

∂α

∣∣∣∣
α=α2

zn + C ln z zα1u1(z).

Here, u1(z) is a standard power series – it has a similar form to y1(z) with with coefficients changed

and related to some constant C to still get defined. This method and the resulting forms are most

easily understood with an example.
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5.6. Bessel’s Equation

5.6 Bessel’s Equation

Bessel’s equation can be written as

x2y′′ + xy′ +
(
x2 − ν2

)
y = 0

where, without loss of generality, we may assume that ν ≥ 0, or

y′′ +
1

x
y′ +

(
1− ν2

x2

)
y = 0.

Comparing to the form y′′ + py′ + qy = 0 we see that we have Taylor series for xp(x) and x2q(x)

possess the following Taylor series about x = 0:

xp(x) = 1 p0 = 1, all others 0

x2q(x) = −ν2 + x2 q0 = −ν2, q2 = 1, all others 0.

Inserting the Frobenius expansion y(x) = xα
∞∑
n=0

anx
n we have

∞∑
n=0

(n+ α)(n+ α− 1)anx
n+α−2 + x

∞∑
n=0

(n+ α)anx
n+α−1 + (x2 − ν2)

∞∑
n=0

anx
n+α = 0.

We re-index with p = n− 2 where appropriate. We also cancel out the factor of xα. This gives:

∞∑
p=−2

ap+2(p+ α + 2)(p+ α + 1)xp +
∞∑

p=−2

ap+2(p+ α + 2)xp +
∞∑
p=0

apx
p − ν2

∞∑
p=−2

ap+2x
p.

We equate coeffcients of like powers of x. At p = −2, we have:

α2 − ν2 = 0, (5.9)

which is the indicial equation, with solution

α = ±ν.

At p = −1 we have:

a1
[
α(α + 1) + (α + 1)− ν2

]
= 0 =⇒ a1 [±2ν + 1] = 0. (5.10)

Otherwise, we have p ≥ 0:

ap+2

[
(p+ α + 2)(p+ α + 1) + (p+ α + 2)− ν2

]
= −ap.
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We let n = p+ 2. This gives:

an
[
n2 + 2nα + (α2 − ν2)

]
= −an−2. (5.11)

Notice that this can also be written as:

an
[
(n+ α)2 − ν2

]
= −an−2, (5.12)

if necessary. We sub in for the solution of the indicial equation, α2 = ν2:

ann(n± 2ν) = −an−2. (5.13)

Provided n(n± 2ν) ̸= 0, this recurrence gives:

an = − an−2

n(n± 2ν)
. (5.14)

There are different cases of ν which we must go through systematically. In some cases, the recurrence

works, in others it does not, and Frobenius’s method has to be used.

5.6.1 2ν ̸∈ N

In particular, 2ν ̸= 1 so Equation (5.10) implies a1 = 0 and the denominator in Equation (5.13)

never vanishes. Hence by Equation (5.13) all odd coefficients must vanish: a2n−1 = 0, n ∈ N.
By the same argument (and using Equation (5.13) again), the even coefficients give 2 independent

solutions:

a2n = − 1

2n(2n± 2ν)
a2n−2 = · · · = (−1)n

22nn!(n± ν)(n− 1± ν) · · · (1± ν)
a0 . (5.15)

Convention dictates that we take the normalization to be given by a0 = 1/2±ν and that the

corresponding solutions are denoted by

J±ν(x) =
(x
2

)±ν ∞∑
n=0

(−1)n

n!(n± ν)(n− 1± ν) · · · (1± ν)

(x
2

)2n
(5.16)

known as the Bessel’s function of the first kind.
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5.6. Bessel’s Equation

5.6.2 ν = 0

From above we have indicial equation α2 = 0 so α1 = α2 = 0. The recurrence relations then give

a1 = 0 and

a2n = − 1

4n2
a2(n−1) =

(−1)n

22n(n!)2
a0 (5.17)

Taking a0 = 1 we have a solution

J0(x) =
∞∑
n=0

(−1)n

(n!)2

(x
2

)2n
To obtain the second solution we must use Frobenius’s method for equal roots, with:

y2 =
∂y1
∂α

∣∣∣∣
α=0

.

To do this computation, we take ν = 0 and a0 in Equation (5.12). We furthermore keep α arbitrary.

This gives:

a2n(α) = − 1

(2n+ α)2
a2(n−1)(α) =

(−1)n

(2n+ α)2(2(n− 1) + α)2 · · · (2 + α)2
,

= (−1)n
1

F (α)
.

Hence,

d

dα
a2n(α) = −(−1)n

1

F 2

dF

dα
,

= −(−1)n
1

F

1

F

dF

dα
,

= −a2n
d logF

dα
.

Furthermore,

logF = log
∏
j

(2j + α)2,

=
∑
j

log(2j + α)2,

=
∑
j

2 log(2j + α),

Hence,
d

dα
logF =

∑
j

2

2j + α
.
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Chapter 5. Solution of ODEs via Power Series

and so

da2n
dα

(α) = −
(

−2

2n+ α
+

−2

2(n− 1) + α
+ · · ·+ −2

2± α

)
a2n(α).

Hence, the second solution is given by

d

dα

(
xα

∞∑
n=0

a2n(α)x
2n

)
α=0

= lnx
∞∑
n=0

a2n(0)x
2n +

∞∑
n=0

da2n
dα

(0)x2n

Y0(x) = J0(x) lnx+
∞∑
n=0

(−1)n−1

22n(n!)2

(
1 +

1

2
+ · · ·+ 1

n

)
x2n.

This solution is denoted Y0(x) and it known as the Bessel’s function of the second kind. It clearly

diverges like lnx as x→ 0.

5.6.3 ν = 1

From above we have indicial equation α2 = 1, so α1 = 1, α2 = −1. The recurrence relations again

give (±2 + 1)a1 = 0 so a1 = 0 and

a2n = − 1
(2n+α)2−1

a2(n−1),

=
(−1)n

((2n+ α)2 − 1)((2(n− 1) + α)2 − 1) · · · ((4 + α)2 − 1)((2 + α)2 − 1)
a0.

Hence,

a2n
(−1)n

((2n+ α)2 − 1)((2(n− 1) + α)2 − 1) · · · ((4 + α)2 − 1)(α2 + 4α + 3)
a0, (5.18)

For α = α1 = 1 this gives a well-defined solution

J1(x) =
(x
2

) ∞∑
n=0

(−1)n

22nn!(n+ 1)!
x2n

Second solution: From Equation (5.18) for n = 1 we have

a2 = − 1

(2 + α)2 − 1
a0 = − 1

(α + 1)(α + 3)
a0
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5.6. Bessel’s Equation

so it is clear that we have problems taking α = α2 = −1. Following the Frobenius method we

multiply our coefficients by (α− α2) = (α + 1):

(α + 1)a2n(α) =
(−1)n

((2n+ α)2 − 1)((2(n− 1) + α)2 − 1) · · · ((4 + α)2 − 1)(α2 + 4α + 3)
(α + 1)a0,

=
(−1)n

((2n+ α)2 − 1)((2(n− 1) + α)2 − 1) · · · ((4 + α)2 − 1)(α + 3)�����(α + 1))
����(α + 1)a0.

Hence,

(α + 1)a2n(α) =
(−1)n

((2n+ α)2 − 1)((2(n− 1) + α)2 − 1) · · · ((4 + α)2 − 1)(α + 3)
a0 (5.19)

It will also be convenient to write this compactly as:

(α + 1)a2n(α) = (−1)n
1

F (α)
.

Hence, by the same reasoning as before,

d

dα
[(α + 1)a2n(α)] = −a2n

d

dα

[
log((2n+ α)2 − 1) + log((2(n− 1) + α)2 − 1) + · · ·+ log(α + 3)

]
.

Hence,

d

dα
[(α + 1)a2n(α)]

=

[
−2(2n+ α)

((2n+ α)2 − 1)
+

−2(2(n− 1) + α)

((2(n− 1) + α)2 − 1)
+ · · ·+ −2(4 + α)

((4 + α)2 − 1)
− 1

(α + 3)

]
(α+1)a2n(α).

(5.20)

We now look at evaluating this expression at α = −1. We start with the easy case:(
d

dα
[(α + 1)a0]

)
α=−1

= a0

Otherwise, we have n ̸= 1. The term inside the square bracket in Equation (5.20) safely evaluates

to: [
−2(2n− 1)

(2n− 2)(2n)
+

−2(2n− 3)

(2n− 4)(2n− 2)
+ · · ·+ −2(3)

(2)(4)
− 1

2

]
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Also, from Equation (5.19), we have:

lim
α→−1

[(α + 1)a2n(α)] = (−1)n
1

((2n− 1)2 − 1)c · · · (32 − 1)× 2
,

= (−1)n
1

((2n− 1)2 − 1) · · · (32 − 1)× 2
,

= (−1)n
1

(4n2 − 4n) · · · (8)× 2
,

= (−1)n
1

(22n(n− 1)) · · · (222(1))× 2
,

= (−1)n
1

22n−1(n− 1)!n!
.

Putting it all together, we have:(
d

dα
[(α + 1)a2n]

)
α=−1

=

[
−2(2n− 1)

(2n− 2)(2n)
+

−2(2n− 3)

(2n− 4)(2n− 2)
+ · · ·+ −2(3)

(2)(4)
− 1

2

]
× (−1)n

1

22n−1(n− 1)!n!
. (5.21)

Now according to the Frobenius method the second solution is given by

d

dα

(
zα

∞∑
n=0

(α + 1)a2n(α)z
2n

)
α=−1

= ln z.z−1

∞∑
n=0

((α + 1)a2n(α))α=−1 z
2n+

z−1

∞∑
n=0

d

dα
[(α + 1)a2n(α)]α=−1 z

2n

and from above ((α + 1)a0(α))α=−1 = 0 while for n ≥ 1,

((α + 1)a2n(α))α=−1 =
(−1)n

22n−1(n− 1)!n!
a0

with the convention 0! = 1 (the term is not present in that case). In addition,(
d

dα
[(α + 1)a0]

)
α=−1

= a0
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while for n ≥ 1(
d

dα
[(α + 1)a2n]

)
α=−1

=

[
−2(2n− 1)

(2n− 2)(2n)
+

−2(2n− 3)

(2n− 4)(2n− 2)
+ · · ·+ −2(3)

(2)(4)
− 1

2

]
× (−1)n

1

22n−1(n− 1)!n!

= −1

2

[(
1

n
+

1

n− 1

)
+

(
1

n− 1
+

1

n− 2

)
+ · · ·+

(
1

2
+

1

1

)
+ 1

]
(−1)n

22n−1(n− 1)!n!
a0

=

[
1

n
+ 2

∑
k=1

1

k

]
(−1)n+1

22n(n− 1)!n!
a0.

Putting this together our second solution, taking a0 = 1 is

= ln z.z−1

∞∑
n=1

(−1)n

22n−1(n− 1)!n!
z2n + z−1 + z−1

∞∑
n=1

[
1

n
+ 2

∑
k=1

1

k

]
(−1)n+1

22n(n− 1)!n!
z2n

= − ln(z).J1(z) + z−1 +
1

2

∞∑
n=1

[
1

n
+ 2

∑
k=1

1

k

]
(−1)n+1

(n− 1)!n!

(z
2

)2n−1

.

(relabelling n→ n− 1 in the first sum).

5.6.4 ν = 1
2

This case is addressed in the homeworks.

5.7 Infinity as a Singular Point

There is one important cases where the change of variable z → z− z0 is not sufficient namely when

the singular point is at infinity. In this case the appropriate action is to transform it to zero with

the transformation z → 1/w. Then

dy

dz
= −w2 dy

dw
d2y

dz2
= w4 d

2y

dw2
+ 2w3 dy

dw

so our equation becomes

d2y

dw2
+

[
2

w
− 1

w2
p

(
1

w

)]
dy

dw
+

1

w4
q

(
1

w

)
y = 0
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We then have an ordinary point at w = 0 if

2

w
− 1

w2
p

(
1

w

)
and

1

w4
q

(
1

w

)
are regular there, that is, have an ordinary point at z = ∞ if

2z − z2p (z) and z4q (z)

are regular at z = ∞. Correspondingly, we have a regular singular point at w = 0 if

2− 1

w
p

(
1

w

)
and

1

w2
q

(
1

w

)
are regular there, that is, have a regular singular point at z = ∞ if

2− zp (z) and z2q (z)

are regular at z = ∞ (and, of course, we may drop the 2 in the first condition!).
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Chapter 6

Boundary-Value Problems

Overview

When we have a second-order equation there is an alternative problem to the IVP which is when

we seek a solution on an interval [a, b] and we specify boundary conditions on y(x) or y′(x) (or

a combination) at a and b. We describe solving the equation L[y] = r subject to such boundary

conditions the Boundary Value Problem (BVP). In this section we outline some solution techniques

for the standard (linear) BVP.

6.1 Boundary Conditions

Standard homogeneous boundary conditions include:

� The Dirichlet Problem: y(a) = y(b) = 0

� The Neumann Problem: y′(a) = y′(b) = 0

� The Robin Problem:

αay(a) + βay
′(a) = αby(b) + βby

′(b) = 0. (6.1)

Clearly, the Robin Problem includes Dirichlet and Neumann problems as special cases.

Remark: In many cases we may also take either a = −∞ or b = ∞ subject to suitable limits on y

or y′ and, of course, taking the corresponding end to be open.
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6.2 The Solution

If we return to our general solution of the form Equation (4.1) it is now natural to take xα = b,

xβ = a and α = β = 0 so

yP (x) = y(x) = −u(x)
x∫
b

v(s)r(s)

p2(s)W (s)
ds+ v(x)

x∫
a

u(s)r(s)

p2(s)W (s)
ds,

and correspondingly

y′(x) = −u′(x)
x∫
b

v(s)r(s)

p2(s)W (s)
ds−

���������
u(x)

v(x)r(x)

p2(x)W (x)
+ v′(x)

x∫
a

u(s)r(s)

p2(s)W (s)
ds+

���������
v(x)

u(x)r(x)

p2(x)W (x)
,

so that

0 = αay(a) + βay
′(a) =

(
αau(a) + βau

′(a)
) b∫
a

v(s)r(s)

p2(s)W (s)
ds

0 = αby(b) + βby
′(b) =

(
αbv(b) + βbv

′(b)
) b∫
a

u(s)r(s)

p2(s)W (s)
ds

Hence we may satisfy the boundary conditions on y(x) by choosing the homogeneous solutions

such that u(x) satisfies the boundary condition at a (e.g. u(a) = βa, u
′(a) = −αa) and v(x) the

boundary condition at b.

Remark: A potential problem arises here in that we need u(x) and v(x) to be linearly independent

and this is not ensured by our construction – we will return to this point later.

Definition 6.1 Assume that u(x) and v(x) are linearly independent. Then we may write our

solution as

y(x) =

b∫
a

G(x, s)r(s) ds =

x∫
a

G1(x, s)r(s) ds+

b∫
x

G2(x, s)r(s) ds

where

G(x, s) =


G1(x, s) =

v(x)u(s)

p2(s)W (s)
a ≤ s < x ≤ b

G2(x, s) =
u(x)v(s)

p2(s)W (s)
a ≤ x < s ≤ b

(6.2)

G(x, s) is called the Green’s function for the Boundary-Value Problem.
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Remark: In the case that L is self-adjoint then p2(s)W (s) = constant, G(x, s) is symmetric, and

Equation (6.2) simplifies greatly.

Theorem 6.1 The Green’s Function has the following properties:

1. Defined for a ≤ x ≤ b, a ≤ s ≤ b;

2. Lx[G] = 0;

3. G(x, x−) = G(x, x+);

4.
∂G

∂x
(x, x−)− ∂G

∂x
(x, x+) =

1

p2(x)
;

5. αaG(a, s) + βa
∂G

∂x
(a, s) = 0 and αbG(b, s) + βb

∂G

∂x
(b, s) = 0.

Properties 1-3 and 5 are inherited from u(x) and v(x); property 4 follows from direct differentiation.

Here, and as before, we use Lx to denote that we are thinking of L as a differential operator in x

with s held fixed, and x− to denote the (one-sided) limit s tends up to x and likewise for x+.

Remark: These properties may instead be used as axioms to define G(x, s).

6.2.1 Worked Example

We solve the BVP

y′′(x) + y(x) = r(x)

subject to the boundary condition y(0) = 0 and y(π
2
) = 0.

Clearly u(x) = sinx and v(x) = cosx are solutions of the homogeneous equations satisfying the

appropriate boundary conditions and W (x) = −1 (constant since L is self-adjoint and p2(x) = 1).

Our solution to the inhomogeneous problem is then,

y(x) = − sinx

π
2∫

x

cos(s) r(s) ds− cosx

x∫
0

sin(s) r(s) ds

As an example, if r(x) = sin x

y(x) = − sinx
[
−1

2
cos2 s

]π
2

x
− cosx

[
1
2
s− 1

4
sin 2s

]x
0

= −1
2
sinx cos2 x− 1

2
x cosx+ 1

2
sinx cos2 x

= −1
2
x cosx,

which can be checked by direct substitution.
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6.3 The BVP alternative

Let us return to the question of our method when u(x) and v(x) are linearly dependent. That it

does not can be seen by a slight modification of our last example:

6.3.1 Worked Example

Solve the BVP y′′(x) + y(x) = r(x) subject to the boundary condition y(0) = 0 and y(π) = 0.

Clearly, the general solution of the homogeneous ODE is y(x) = A sinx+B cosx, then for u(0) = 0

we require 0 = B, while for v(π) = 0 we require 0 = −B leaving us with (up to irrelevant

normalization) u(x) = sinx = v(x). Since the Wronskian which appears in the denominator

vanishes our previous solution does not work.

The problem is that u(x) is a solution to the homogeneous BVP. Clearly if we can find any solution

of the inhomogeneous BVP we could add an arbitrary multiple of u(x) and still have a solution.

6.3.2 Progress

To make progress assume instead that u(x) is a solution that satisfies the ODE and both the

corresponding boundary condition at a and that at b and let v(x) be any solution linearly independent

of u(x). Note that this implies that αbv(b) + βbv
′(b) ̸= 0. To see this, note that because

0 ̸= W (b) = u(b)v′(b)− u′(b)v(b)

Hence,

0 ̸= αbW (b) = [αbu(b)] v
′(b)− [αbu

′(b)] v(b),
BC
= [−βbu′(b)] v′(b)− [αbu

′(b)] v(b),

= −u′(b) [βbv′(b) + αbv(b)] .

As u′(b) ̸= 0 in general, we have βbv
′(b) + αbv(b) ̸= 0 also.

Now we want

0 = αay(a) + βay
′(a) =

(
αau(a) + βau

′(a)
) b∫
a

v(s)r(s)

p2(s)W (s)
ds

0 = αby(b) + βby
′(b) = −

(
αbv(b) + βbv

′(b)
) b∫
a

u(s)r(s)

p2(s)W (s)
ds.
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The first of these holds true by the choice of u(x) while we have just shown that the prefactor of

the integral in the second is non-zero and so it can only hold if

0 =

b∫
a

u(s)r(s)

p2(s)W (s)
ds.

which is a restriction on the ’source’ r(x). This is therefore a necessary condition for the existence

of a solution and even if it holds, as noted above, the solution is not uniquely determined as we can

add an arbitrary multiple of u(x). We have therefore proved the following theorem called the BVP

Alternative.

Theorem 6.2 Take the ODE L[y] = r, with BCs (6.1). Suppose that u and v are solutions of

the homogeneous problem L[y] = 0; u satisfies both BCs, and v is a second linearly independent

solution. Then, either

�

b∫
a

u(s)r(s)

p2(s)W (s)
ds ̸= 0 and we have no solutions;

� Or,

b∫
a

u(s)r(s)

p2(s)W (s)
ds = 0 and we have infinitely many solutions differing by multiples of the

homogeneous solution of the ODE u(x).

6.3.3 Another Worked Example

We look at the BVP y′′(x)+y(x) = r(x) subject to the boundary condition y(0) = 0 and y(π) = 0,

where (a) r(x) = 1 and (b) r(x) = sin 2x.

As shown above we have u(x) = sin x, which satisfies the homogeneous ODE and both BCs. A

second linearly independent solution of the homogeneous problem is then v(x) = cosx, yielding

W (x) = −1.

We proceed by the ‘traditional’ method of guessing a particular solution:

� Case (a) Clearly, yP (x) = 1 is a particular solution so the general solution is y(x) = 1 +

A sinx+B cosx and imposing the boundary conditions gives

0 = y(0) = 1 +B

0 = y(π) = 1−B

which are clearly inconsistent so no solution exists.
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� Case (b) Only slightly less clearly, yP (x) = −1
3
sin 2x is a particular solution so the general

solution is y(x) = −1
3
sin 2x+A sinx+B cosx and imposing the boundary conditions gives

0 = y(0) = B

0 = y(π) = −B

giving B = 0 but leaving A undetermined in line with our previous observations.

If we now compare to our BVP Alternative:

� Case (a)

π∫
0

u(s)r(s)

p2(s)W (s)
ds = −

π∫
0

sin s.1 ds = 2 so we are in the ‘no solutions’ case.

� Case (b)

π∫
0

u(s)r(s)

p2(s)W (s)
ds = −

π∫
0

sin s. sin 2s ds = −
[
2
3
sin3 s

]π
0

= 0 so we are in the

‘infinitely many solutions’ case.
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Chapter 7

Fredholm Integral Equations: Introduction

In Chapter 4 we transformed the IVP into a Volterra integral equation. Now we will consider a

similar transformation in the case of a BVP, looking specifically at the self-adjoint case: For this

purpose, as noted in the IVP case, it is convenient to view this as the inhomogeneous equation(
p2(x)y

′(x)
)′
= r(x)− p0(x)y(x).

The corresponding homogeneous case is therefore [p2(x)y
′(x)]′ = 0, with solutions 1 and P (x) =∫ x

ds/p2(s). We will show how the solution of this problem can be written as:

y(x) = F (x) + λ

b∫
a

K(x, s)y(s) ds, (7.1)

which is called the Fredholm Integral Equation. We will show how the integral equation can be

solved in special cases where the kernel function K(x, s) has a simple form.

7.1 The Fredholm Integral Equation

Using the same idea and notation as in Chapters 4 and 6 we may rewrite our BVP as the integral

equation

y(x) =

b∫
a

G(x, s) [r(s)− p0(s)y(s)] ds,
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with u(x) = P (x) and v(x) = 1 with Wronskian p2(s)W (s) = −1 so

G(x, s) =


−P (s) a ≤ s < x ≤ b

−P (x) a ≤ x < s ≤ b

which is of the form

y(x) = F (x) +

b∫
a

K(x, s)y(s) ds, (7.2)

However, in applications, p0 is usually multiplied by a free parameter λ, so we let p0(s) → λp0(s)

and hence, we consider:

y(x) = F (x) + λ

b∫
a

K(x, s)y(s) ds. (7.3)

This is precisely the Fredholm Integral Equation (FIE).

7.2 Separable kernels

We first of all look at the special case where the kernel K(x, s) is separable, and takes the form:

K(x, s) =
n∑
j=1

uj(x)vj(s).

An example would be K(x, s) = sin(x+ s) = sin x cos s+ cosx sin s.

In this case, the FIE becomes:

y(x) = F (x) + λ

n∑
j=1

uj(x)

b∫
a

vj(s)y(s) ds︸ ︷︷ ︸
=cj

. (7.4)

Hence:

y(x) = F (x) + λ

n∑
j=1

cjuj(x).

56



7.3. Worked Example

We test both sides of the equation with v(x):

b∫
a

vi(x)y(x) dx︸ ︷︷ ︸
=ci

=

b∫
a

vi(x)F (x) ds︸ ︷︷ ︸
=bi

+λ
n∑
j=1

cj

∫ 1

0

vi(x)uj(x)dx︸ ︷︷ ︸
Aij

.

Here, we have defined:

bi =

b∫
a

vi(s)F (s) ds, Aij =

b∫
a

vi(s)uj(s) ds.

This may be written in matrix form as c = b− λAc or

(I− λA)c = b.

The homogeneous case has b = 0. In this case, standard (or nearly standard) theory from Linear

Algebra applies. In the homogeneous case, non-trivial solutions to the FIE are possible if, and only

if,

det (I− λA) = 0. (7.5)

Notice:

� The roots of the characteristic equation (7.5) are the inverse-eigenvalues of the matrix A.

� The roots of the characteristic equation (7.5) are called the eigenvalues of the FIE.

It is possible to theorize what the solutions of the FIE look like in the inhomogeneous case, but it

is more helpful to do this by way of a worked example in the first instance.

7.3 Worked Example

We consider the kernel

K(x, s) = u1(x)v1(s) + u2(x)v2(s),

where u1(x) = 1, u2(x) = −3x, v1(s) = 1, and v2(s) = s, hence

K(x, s) = 1− 3xs.

The Fredholm integral which we look at is therefore:
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y(x) = F (x) + λ

1∫
0

(1− 3xs)y(s) ds

= F (x) + λ(c1 − 3c2x)

with

c1 =

1∫
0

y(s) ds, c2 =

1∫
0

sy(s) ds

We follow the procedure outlined previously and obtain:

c1 = b1 + λ(c1 − 3
2
c2)

c2 = b2 + λ(1
2
c1 − c2)

where

b1 =

1∫
0

F (s) ds, b2 =

1∫
0

sF (s) ds.

In matrix form (
1− λ 3

2
λ

−1
2
λ 1 + λ

)(
c1

c2

)
=

(
b1

b2

)
. (7.6)

Correspondingly

det (I− λA) = 1− λ2 + 3
4
λ2 = 1− 1

4
λ2,

and the eigenvalues are λ = 2 and λ = −2.

7.3.1 Homogeneous Case

We look at the homogeneous case first, with b1 = b2 = 0. If λ ̸= ±2, then Equation (7.6) has only

the trivial solution c1 = c2 = 0, hence, the FIE has the solution y(x) = F (x). We therefore look at

the cases with λ = ±2.

Case 1: In the case λ = 2, we have: (
−1 3

−1 3

)(
c1

c2

)
= 0.
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Hence, c1 = 3c2. We subtitute back into:

y(x) = λ [c1u1(x) + c2u2(x)] ,

= λ [3c2(1) + c2(−3x)] ,

= λ(3c2) (1− x) ,

= αy2(x).

Here, α = λ(3c2) = 6c2 is a free parameter, and y2(x) = 1− x is an eigenfunction of the FIE:

y2(x) = 2

∫ 1

0

K(x, s)y2(s)ds.

Case 2: In the case λ = −2, we have:(
3 −3

1 −1

)(
c1

c2

)
= 0.

Hence, c1 = c2, and:

y(x) = λ [c1u1(x) + c2u2(x)] ,

= λ [c2(1) + c2(−3x)] ,

= λ(c2) (1− 3x) ,

= αy−2(x).

Here, α = λ(c2) = −2c2 is a free parameter, and y−2(x) = 1− 3x is an eigenfunction of the FIE:

y−2(x) = −2

∫ 1

0

K(x, s)y−2(s)ds.

7.3.2 Inhomogeneous Case

If λ ̸= ±2, then Equation (7.6) has a unique solution:(
c1

c2

)
=

(
1− λ 3

2
λ

−1
2
λ 1 + λ

)−1(
b1

b2

)
, (7.7)

and correspondingly, the FIE has a unique solution also. This case is obvious. So we next look at

the case when λ = ±2.

Case 1: In the case λ = 2, we have:
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(
−1 3

−1 3

)(
c1

c2

)
=

(
b1

b2

)
.

so the system is incompatible (no solution) unless b1 = b2, that is unless

1∫
0

F (s) ds =

1∫
0

sF (s) ds or, equivalently

1∫
0

(1− s)F (s) ds = 0.

In other words, the compatibility condition is:∫ 1

0

F (s)y2(s)ds = 0.

Under this condition, we have:

−c1 + 3c2 = b1 = b2 =⇒ c1 = 3c2 − b1. (7.8)

We now construct the solution y(x):

y(x) = F (x) + λ︸︷︷︸
=2

[c1 + c2(−3x)] ,

Eq. (7.8)
= F (x) + λ [(3c2 − b1) + c2(−3x)] ,

= F (x)− λb1 + λ [3c2 − 3c2x] ,

= F (x)− λb1 + λ(3c2) (1− x) ,

= F (x)− λb1︸ ︷︷ ︸
=F̃ (x)

+αy2(x).

Thus, the solution is:

y(x) = F (x)− λb1︸ ︷︷ ︸
=F̃ (x)

+αy2(x), (7.9)

that is, a function F̃ (x), plus an arbitrary multiple of an eigenfunction.

It is illustrative to validate the solution (7.9). Hence, with λ = 2 and y(x) = F (x)− λb1 +αy2(x),

we want to show that:

λ

∫ 1

0

K(x, s)y(s) = y(x)− F (x).
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We have:

LHS = λ

∫ 1

0

K(x, s)y(s)ds,

= 2

∫ 1

0

K(x, s)
[
F̃ (s) + αy2(s)

]
ds,

= 2

∫ 1

0

K(x, s)F̃ (s)ds+ 2

[
α

∫ 1

0

K(x, s)y2(s)dsds

]
,

Eigenfunction
= 2

∫ 1

0

K(x, s)F̃ (s)ds+ αy2(s),

Eq. (7.9)
= 2

∫ 1

0

K(x, s)F̃ (s)ds+ y(x)− F̃ (x),

= 2

∫ 1

0

K(x, s)F̃ (s)ds+ λb1 + [y(x)− F (x)] .

So, if we can show that 2
∫ 1

0
K(x, s)F̃ (s)ds+ λb1 = 0, we are done. We have:

2

∫ 1

0

K(x, s)F̃ (s)ds+ λb1 = 2

∫ 1

0

(1− 3xs) [F (s)− 2b1] + λb1,

= 2 (b1 − 2b1 − 3xb2 + 3xb1] + 2b1,

= 0.

Here, we have used compatibility, b1 = b2, and the eigenvalue condition λ = 2. Thus,

LHS = 0 + y(x)− F (x),

= RHS.

This completes the proof.

Case 2: In the case λ = −2 (
3 −3

1 −1

)(
c1

c2

)
=

(
b1

b2

)
.

so the system is incompatible (no solution) unless b1 = 3b2, that is unless

1∫
0

F (s) ds = 3

1∫
0

sF (s) ds or, equivalently

1∫
0

(1− 3s)F (s) ds = 0

In other words, the compatibility condition is:∫ 1

0

F (s)y−2(s)ds = 0.
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Under this condition, we have:

c1 = c2 + b2. (7.10)

We now construct the solution y(x):

y(x) = F (x) + λ︸︷︷︸
=−2

[c1 + c2(−3x)] ,

Eq. (7.10)
= F (x) + λ [(c2 + b2) + c2(−3x)] ,

= F (x) + λb2 + λc2 (1− 3x) ,

= F (x) + λb2 + λ(3c2) (1− x) ,

= F (x) + λb2︸ ︷︷ ︸
=F̃ (x)

+αy−2(x).

Again, the solution is a function F̃ (x), plus an arbitrary multiple of an eigenfunction.

7.4 General Results

It is possible now to put some results together for a general separable kernel

K(x, s) =
n∑
j=1

uj(x)vj(s). (7.11)

� The FIE is:

y(x) = F (x) + λ

∫ b

a

K(x, s)y(s)ds. (7.12a)

� By projecting on to the vj(s) functions, this becomes:

c = b+ λAc. (7.12b)

� The eigenvalues of the FIE solve the characteristic polynomial

det (I− λA) = 0. (7.12c)

Or,

λ ∈ {λ(1), λ(2), · · · , λ(n)} = S. (7.12d)

This gives rise to a number of cases.

1. Homogeneous case.

� If λ /∈ S, then the FIE has a unique solution – the trivial solution y(x) = F (x).

62



7.4. General Results

� If λ ∈ S, then the FIE has infinitely many solutions:

y(x) = α
n∑
j=1

uj(x)c
(p)
j .

Here, the p labels an eigenvector of Equation (7.12b). In other words,

y(x) = αy(p)(x),

where

y(p)(x) = λ(p)
∫ b

a

K(x, s)y(p)(s)ds.

2. General homogeneous case.

� If λ /∈ S, then the FIE has a unique solution.

� If λ ∈ S, and a compatibility condition is met, then the FIE has infinitely many

solutions:

y(x) = [F (x)− · · · ] + αy(p)(x), (7.13)

where the compatibility condition is given by:∫ b

a

F (s)y(p)(s)ds = 0. (7.14)

3. Special homogeneous case. In this case, F (x) ̸= 0, but
∫ b
a
F (x)vi(x)dx = 0 for each i ∈

{1, 2, · · · }. This case is similar to before:

� If λ /∈ S, then the FIE has a unique solution.

� If λ ∈ S, and the compatibility condition (7.14) is met, then the FIE has infinitely many

solutions:

y(x) = F (x) + αy(p)(x),

This is a nice, general theory. Of course, the · · · in Equation (7.13) is not satisfying, however,

these extra terms can be written down precisely using eigenfunctions of the FIE. We look at

this idea in the next chapter.
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Chapter 8

Fredholm Integral Equations: General

Case

Overview

In the last section, we looked at solutions of the Fredholm Integral Equation,

y(x) = F (x) + λ

b∫
a

K(x, s)y(s) ds, (8.1)

in cases where the kernel function K(x, s) was separable. Now we look at non-separable kernels. In

this case, the integral equation has infinitely many eigenvalues. This general case is very relevant

when K(x, s) is given by different analytic expressions in the intervals x < s and s > x. This theory

for non-separable kernels also goes by the name of Hilbert–Schmidt Theory.

8.1 Worked Example

We consider the BVP

x2y′′(x) + xy′(x) + (λx2 − 1)y(x) = 0, y(0) = 0, y(1) = 0

We start by putting the equation into self-adjoint form and move the λ-term to the right hand side

(
xy′(x)

)′ − 1

x
y(x) = −λxy(x).

Denoting the left hand side as L[y], the general solution of the homogeneous problem L[y] = 0

is y(x) = Ax + Bx−1 so we may take u(x) = x and v(x) = x − x−1 as solutions satisfying the
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boundary conditions at either end. The Wronskian is then 2/x so the Green function is

G(x, s) =


1
2
s(x− x−1) 0 ≤ s < x ≤ 1

1
2
x(s− s−1) 0 ≤ x < s ≤ 1

and the BVP is equivalent to

y(x) = λ

1∫
0

G(x, s)sy(s) ds.

On the other hand with the change of variable z =
√
λx we may recognise this as Bessel’s equation

of order 1. The solution regular at z = x = 0 is then J1(z) = J1(
√
λx) which is plotted in Figure 8.1.

We can see that we will have non-trivial solution if and only if J1(
√
λ). J1(z) has infinitely many

2 4 6 8 10 12

-0.2

0.2

0.4

0.6

Figure 8.1: The regular Bessel function of order 1, J1(z).

zeroes typically denoted by j1,n and correspondingly

λn = j21,n, n = 1, 2, 3, . . . .

8.2 Symmetric Kernels

We noted previously that for a self-adjoint 2nd order BVP the Green function is symmetric if the

corresponding ODE is self-adjoint. Correspondingly, we start by considering the important case

which appears naturally in the formulation of physically motivated problems that the kernel K(x, s)

is symmetric:

K(x, s) = K(s, x).
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We start by considering solutions of the homogeneous Fredholm problem f(x) = 0 so

y(x) = λ

b∫
a

K(x, s)y(s) ds.

The equation has special solutions for particular values of λ – eigenfunctions and eigenvalues:

yi(x) = λi

b∫
a

K(x, s)yi(s) ds, (8.2)

Remark: We assume that eigensolutions of the form (8.2) exist. In a later chapter we look at the

existence theory. But for now we assume that such eigensolutions exist, and just do computations.

To simplify the notation we introduce the integral operator K : C0[a, b] → C0[a, b] defined by

Kf(x) =
b∫

a

K(x, s)f(s) ds.

This is also written as a ‘convolution’, K ∗ f =
∫ b
a
K(x, s)f(s) ds.

8.2.1 Analogy with linear algebra

In linear algebra, a linear operator A is a matrix,

A : Rn → Rn,

x 7→ Ax.

The linear operator A on the vector x can be worked out using summation:

(Ax)i =
n∑
j=1

Aijxi.

Now, imagine approximating a function f(x) on an interval [a, b] by its value at equally-spaced

discrete points x = {x1, · · · , xn}, with each xi ∈ [a, b], and ∆x = xi+1 − xi. Thus, we would have

a vector {f(x1), · · · , f(xn)}. We could then look at a kernel function K(x, y) and correspondingly,

(Kx)i =
n∑
j=1

K(xi, xj)f(xj)∆x.

By taking the limit as ∆x→ 0 and n→ ∞, we would have:

Kf(x) =
∫ b

a

K(x, s)f(s)ds.
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Thus, the kernel function acting on a function is analogous to a matrix acting on a vector in

Rn. Just as a matrix has eigenvalues and eigenvectors, a kernel function will have eigenvalues and

eigenfunctions. We just have to be a bit careful, as the eigenvalue problem for integral operators is

written as f = λKf whereas the eigenvalue problem for linear algebra is written as λx = Ax.

8.2.2 Properties of the Eigenfunctions for a Symmetric Kernel

We look at two distinct eigensolutions yi(x) and yj(x) corresponding to different eigenvalues λi and

λj:

yi(x) = λi

b∫
a

K(x, s)yi(s) ds,

yj(x) = λj

b∫
a

K(x, s)yj(s) ds.

We may then prove a number of important (and familiar results).

Theorem 8.1 Eigenfunctions corresponding to different eigenvalues are orthogonal, in the sense

that:
b∫

a

yi(x)yj(x) dx = 0, i ̸= j.

Proof: Consider, focusing on yj(x)

b∫
a

yi(x)yj(x) dx =

b∫
a

yi(x)

λj b∫
a

K(x, s)yj(s) ds

 dx

= λj

b∫
a

b∫
a

yi(x)K(x, s)yj(s) ds dx

so, recalling that λ ̸= 0:

b∫
a

b∫
a

K(x, s)yi(x)yj(s) ds dx =
1

λj

b∫
a

yi(x)yj(x) ds.

But the same argument works equally as well focusing on yi(x) so

b∫
a

b∫
a

K(x, s)yi(s)yj(x) ds dx =
1

λi

b∫
a

yi(x)yj(x) ds.
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Now since the kernel is symmetric we may interchange x and s on the left hand side so subtracting

0 =

(
1

λi
− 1

λj

) b∫
a

yi(x)yj(x) ds,

and since by assumption λi ̸= λj we conclude that

b∫
a

yi(x)yj(x) dx = 0,

that is, yi(x) and yj(x) are orthogonal in the inner product (norm) defined by

⟨u, v⟩ =
b∫

a

u(x)v(x) dx,

we will return to show that this is indeed a norm over an appropriate space of functions, and discuss

its properties later.

If two or more linearly independent eigenfunctions correspond to the same eigenvalue then, using

the standard Gram-Schmidt process we may construct a orthogonal linear combinations of them and

henceforth we shall assume that this process has been completed when such exceptional cases arise.

Theorem 8.2 The eigenvalues of a Fredholm equation with a real symmetric kernel are all real.

Proof: Suppose that λi is an complex eigenvalue corresponding to a complex eigenfunction yi(x)

then correspondingly the complex conjugate number λ∗i would necessarily also be an eigenvalue with

eigenfunction y∗i (x) . Hence taking λj = λ∗i in our previous result

0 =

(
1

λi
− 1

λ∗i

) b∫
a

yi(x)y
∗
i (x) dx

=

(
λ∗i − λi
|λi|2

) b∫
a

∣∣yi(x)∣∣2 dx.
As an eigenfunction, by definition, cannot be zero we conclude that λ∗i = λi, i.e., that the eigenvalues

are real.
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8.3 Expansion in terms of eigenfunctions

In the later chapters of these notes, we will show that any function g(x) which can be written as a

convolution,

g(x) =

b∫
a

K(x, s)r(s) ds,

where K(x, s) is continuous, real and symmetric for some continuous function r(s) can be repre-

sented over the interval (a, b) by a linear sum of the eigenfunctions of the homogeneous Fredholm

integral equation

y(x) = λ

b∫
a

K(x, s)y(s) ds.

We take this fact as given for now. Hence, we write

g(x) =
∑
i

ciyi(x) x ∈ (a, b)

Because of the orthogonality, the coefficients in this representation of g(x) are determined by the

formula

ci

b∫
a

(
yi(x)

)2
dx =

b∫
a

g(x)yi(x) dx.

In cases where only a finite number of eigenvalues exist the functions generated by this process are

very restricted. For example, if K(x, s) = 1− 3xs then

b∫
a

K(x, s)r(s) ds =

b∫
a

(1− 3xs)r(s) ds

= 1.

b∫
a

r(s) ds+ x.

b∫
a

(3s)r(s) ds

so only functions of the form A+Bx can be generated. In this case it is clear that we can expand

such a solution in terms of the eigenfunctions y2(x) = (1− x) and y−2(x) = (1− 3x) we found in

Section 7.2.

Even when the number of independent eigenfunctions is infinite, it is not necessarily true that any

continuous function defined over (a, b) can be represented over that interval by a series of these

functions, that is, eigenfunctions may not form a complete set.
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8.4 Solution of the Inhomogeneous Fredholm Integral Equa-

tion

In this Section, we will show how knowledge of the eigenvalues and eigenfunctions of the homoge-

neous Fredholm problem allow a simple determination of the continuous solution of the corresponding

inhomogeneous Fredholm Integral Equation:

y(x) = f(x) + λ

b∫
a

K(x, s)y(s) ds. (8.3)

where f(x) is a given continuous real function.

We shall assume that the eigenvalues have been ordered with respect to magnitude, and that if any

are degenerate then the corresponding eigenfunctions have been orthogonalised. Indeed, to simplify

the formula we will also assume that they have been normalised in the sense that

1 =

b∫
a

(yi(x))
2 dx.

Now writing Equation (8.4) as

y(x)− f(x) =

b∫
a

K(x, s)λy(s) ds, (8.4)

we see that y(x) − f(x) is generated from a continuous function by the kernel and so can be

expanded as

y(x)− f(x) =
∑
i

aiyi(x) x ∈ (a, b).

where

ai =

b∫
a

(
y(x)− f(x)

)
yi(x) dx = ci − fi.

Remark: Just be careful here: it is tempting to think that you can expand the solution y(x) in

terms of eigenfunctions but that would be wrong. Instead, it is the difference y(x) − f(x) that is

expanded in terms of eigenfunctions.
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We make the natural definitions

ci =

b∫
a

y(x)yi(x) dx fi =

b∫
a

f(x)yi(x) dx.

We now use Equation (8.4) and we proceed with the calculations

ci − fi = λ

b∫
a

yi(x)

 b∫
a

K(x, s)y(s) ds

 dx

= λ

b∫
a

y(s)

 b∫
a

K(x, s)yi(x) dx

 ds

= λ

b∫
a

y(s)

 b∫
a

K(s, x)yi(x) dx

 ds

= λ

b∫
a

y(s)
1

λi
yi(s) ds

=
λ

λi
ci,

where we have used Fubini’s theorem (interchange of order of integration) and the symmetry of the

kernel. We conclude that

(λi − λ)ci = λifi and (λi − λ)ai = λfi (8.5)

and so

ci =
λi

λi − λ
fi and ai =

λ

λi − λ
fi, (λ ̸= λi) (8.6)

that is our solution is given by

y(x) = f(x) +
∑
i

λ

λi − λ
fiyi(x) x ∈ (a, b), (λ ̸= λi). (8.7)

Notice that while the fi would be coefficients of the expansion of f(x) in terms of the eigenfunctions

yi(x), nowhere in the proof above did we need to assume such an expansion existed.
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8.4.1 The Exceptional Cases

We are left with the exceptional cases where λ = λi for some i. Specifically, let λ = λi0 . Instead of

taking λ = λi0 directly in Equation (8.7), we look at a limit λ→ λi0 . Then we have:

y(x) = f(x) +
∑
i ̸=i0

λi0
λi − λi0

fiyi(x) + lim
λ→λi0

λi0
λi0 − λ

fi0yi0(x) (8.8)

This gives a contribution of the form 1/0 unless fi0 = 0. Therefore, a solvability condition is that

fi0 = 0 when λ→ λi0 . In this case, we can write:

fi0 = (λi0 − λ)C,

where C is an arbitrary constant. This guarantees that fi0 = 0. Then, Equation (8.8) becomes:

y(x) = f(x) +
∑
i ̸=i0

λi0
λi − λi0

fiyi(x) + Cyi0(x) (8.9)

Notice that eigenvalue λi0 which appeared in Equation (8.8) has been buried in the definition of the

constant C in Equation (8.9). Notice also that the constant C in Equation (8.9) is arbitrary. This

gives us the following Fredholm Alternative:

� Either fi0 ̸= 0 in which case no solution exists,

� Or fi0 = 0 in which case infinitely many solutions exist differing by an arbitrary multiple of

the corresponding eigenfunction yi0(x).

8.5 Worked Example

We look again at K(x, s) = 1 − 3xs. The (normalized) eigenfunctions are y2(x) =
√
3(1 − x)

and y−2(x) = (1 − 3x). As noted earlier, only functions of the form A + Bx can be generated.

Nevertheless we can solve

y(x) = x2 + λ

1∫
0

(1− 3xs)y(s) ds.

Reading off from Equation (8.6), we have

f1 =

b∫
a

x2 y2(x) dx =
1

4
√
3

f2 =

b∫
a

x2 y−2(x) dx = − 5

12
,
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8.6. A Variant of the Inhomogeneous Fredholm Integral Equation

Hence,

y(x) = x2 +
∑
i=2,−2

λ

λi − λ
fiyi(x), λ ̸= λi,

= x2 +
λ

2− λ

1

4��
√
3
�
�

√
3(1− x) +

λ

2 + λ

5

12
(1− 3x), (λ ̸= ±2).

Hence,

y(x) = x2 + 1
4

λ

2− λ
(1− x) + 5

12

λ

2 + λ
(1− 3x), (λ ̸= ±2).

8.6 A Variant of the Inhomogeneous Fredholm Integral Equa-

tion

A variant of the inhomogeneous Fredholm Integral Equation is the problem of finding y(x) such that

0 = f(x) + λ

b∫
a

K(x, s)y(s) ds. (8.10)

which is called a Fredholm IE of the first kind. From the result quoted in the previous section a

solution is only possible if it is possible to expand f(x) in terms of solutions of the homogeneous

Fredholm IE

y(x) = λ

b∫
a

K(x, s)y(s) ds.

In this case, we will be able to write

f(x) =
∑
i

fiyi(x) x ∈ (a, b).

Correspondingly,

0 =
∑
i

fiyi(x) + λ

b∫
a

K(x, s)y(s) ds

=
∑
i

fiλi

b∫
a

K(x, s)yi(s) ds+ λ

b∫
a

K(x, s)y(s) ds

=

b∫
a

K(x, s)

[∑
i

λifiyi(s) + λy(s)

]
ds
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This requires that

y(x) = −
∑
i

λi
λ
fiyi(x) + Y (x)

where Y (x) is a solution of the homogeneous equation

0 = λ

b∫
a

K(x, s)Y (s) ds.

Multiplying by yi(x) and using Fubini and symmetry in the now familiar way we deduce that any

solution Y (x) must satisfy

0 = Yi = λi

b∫
a

yi(x)Y (x) dx,

for all i. If the set of eigenfunctions is finite then infinitely many such solutions exist. On the other

hand if the yi(x) form a complete set then no non-trivial solution can exist.

8.6.1 Worked Example

Suppose K(x, s) = sin(x+ s) = sin x cos s+ cosx sin s on (0, 2π) then

λ

2π∫
0

K(x, s)y(s) ds = sinxλ

2π∫
0

cos s y(s) ds+ cosxλ

2π∫
0

sin s y(s) ds

we will clearly only have a solution for functions of the form

f(x) = A sinx+B cosx. (8.11)

Eigenfunctions: The eigenfunctions of the Fredholm operator satisfy y = λ
∫ 2π

0
K(x, s)y(s)ds.

These must also be of the form (8.11). We have:

α sinx+ β cosx = λ sinx

∫ 2π

0

cos(s) [α sin s+ β cos s] ds+ λ cosx

∫ 2π

0

sin s [α sin s+ β cos s] ds.

Hence:

α sinx+ β cosx = λπβ sinx+ λπα cosx.

Equating coefficients gives two equations in three unknowns:

α− λπβ = 0,

β − λπα = 0.
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8.6. A Variant of the Inhomogeneous Fredholm Integral Equation

In matrix form: (
1 −λπ

−λπ 1

)(
α

β

)
= 0.

There is no non-trivial solution unless the characteristic equation is satisfied. The characteristic

equation is: ∣∣∣∣∣ 1 −λπ
−λπ 1

∣∣∣∣∣ = 0.

The eigenvalues are λ2π2 = 1, hence λ = ±1/π. In the case where λ = 1/π we get α = β, and

the normalized eigenfunction is:

y1(x) =
1√
2π

(sinx+ cosx).

In the case where λ = −1/π, we get α = −β, and the normalized eigenfunction can be written as:

y2(x) =
1√
2π

(sinx− cosx).

Notice that y1(x) and y2(x) are orthogonal. We also have:

f1 =

∫ 2π

0

y1(x)f(x)dx =
√
π/2(A+B),

and

f2 =

∫ 2π

0

y2(x)f(x)dx =
√
π/2(A−B).

Now:

y(x) = −
∑
i

λi
λ
fiyi(x) + Y (x),

= −
{
1

λ

1

π

√
π

2
(A+B)

1√
2π

(sinx+ cosx)

− 1

λ

1

π

√
π

2
(A−B)

1√
2π

(sinx− cosx)

}
+ Y (x),

= − 1

λπ
(B sinx+ A cosx) + Y (x).

Here, Y (x) is any function orthogonal to y1(x) and y2(x), or equivalently, sinx and cosx over

(0, 2π). Clearly there are infinitely many such functions, for example, sinnx or cosnx for n ∈ N\{1}.
Thus, the general solution is:

y(x) = − 1

λπ
(B sinx+ A cosx) +

∞∑
n=2

[an sin(nx) + bn cos(nx)] ,

where the an’s and bn’s are arbitrary.
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Chapter 9

Perturbative Solution of Fredholm

Equations

Overview

We look at an iterative method to solve the Fredholm Integral Equation known in the literature as

Neumann (or Liouville–Neumann) series. When certain conditions, e.g., on the kernel, the parameter

λ, etc., are satisfied, such series will converge to the solution of the integral equation.

9.1 An Iteration Scheme for Fredholm Equations

The form of a Fredholm Integral Equation (IE) of the second kind

y(x) = f(x) + λ

b∫
a

K(x, s)y(s) ds.

might remind us of our approach to Picard’s theorem and suggest an iterative scheme where we

start with an initial guess at our solution y0(x) and then iterate through

yn+1(x) = f(x) + λ

b∫
a

K(x, s)yn(s) ds.

Notice that the initial guess might influence convergence speed but not whether the iteration con-

verges. Also, a standard initial guess is y0(x) = f(x) (otherwise, you should have some better

choice through some numerical or alternative methods!).
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9.1. An Iteration Scheme for Fredholm Equations

Explicitly

y1(x) = f(x) + λ

b∫
a

K(x, s)y0(s) ds

y2(x) = f(x) + λ

b∫
a

K(x, s)y1(s) ds

= f(x) + λ

b∫
a

K(x, s)f(s) ds+ λ2
b∫

a

K(x, s)

 b∫
a

K(s, t)y0(t) dt

 ds

= f(x) + λ

b∫
a

K(x, s)f(s) ds+ λ2
b∫

a

b∫
a

K(x, s)K(s, t)y0(t) dt ds.

We see a crucial difference here, in that while in the first order Picard scheme, or indeed the

corresponding Volterra IE where the region of integration on the final line would have reduced to a

triangle, here the integral covers the whole square – this will affect the convergence proof.

We again use the integral operator notation for K : C0[a, b] → C0[a, b], where:

Kg(x) =
b∫

a

K(x, s)g(s) ds.

Then we may write

yn+1(x) = f(x) +Kyn(x),

and correspondingly

y1(x) = f(x) + λKy0(x)
y2(x) = f(x) + λKf(x) + λ2KKy0(x)

= f(x) + λKf(x) + λ2K2y0(x)

. . .

yn(x) = f(x) + λKf(x) + λ2K2f(x) . . . λn−1Kn−1f(x) + λnKny0(x)
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9.1.1 Convergence

The idea here is that under suitable conditions as we continue this process the final ’remainder’ term

gets smaller and smaller and we will have a convergent series representation

y(x) = f(x) +
∞∑
n=1

λnKnf(x).

The proof is similar to the local version of Picard’s theorem: first as f(x), y0(x) and K(x, s) are

assumed continuous there exist constants C, D and M such that∣∣f(x)∣∣≤ C,
∣∣y0(x)∣∣≤ D and

∣∣K(x, s)
∣∣≤M

on [a, b], [a, b] and [a, b]× [a, b], respectively. Then

|Ky0(x)| =

∣∣∣∣∣∣
b∫

a

K(x, s)y0(s) ds

∣∣∣∣∣∣
≤

b∫
a

|K(x, s)| |y0(s)| ds ≤ DM |b− a|

and so, by induction,

|Kny0(x)| ≤ DMn|b− a|n

and correspondingly

|Knf(x)| ≤ CMn|b− a|n.

Thus the ’remainder’ term in yn(x) is bounded by

DλnMn|b− a|n

and so tends to zero as n→ ∞ provided that

λ <
1

M |b− a|
. (9.1)

Indeed, for clarity, we will write the requirement (9.1) as:

λ ≤ r

M |b− a|
, 0 ≤ r < 1. (9.2)

Note that the limit did not depend on our choice of initial guess y0(x) (only that it was bounded).
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To use the Weirstrass M -test, we take y(x) = f(x) +
∑∞

n=1 un(x), where un(x) = λnKnf . Each

un(x) is bounded by Mn = CλnMn|b− a|n. Furthermore, we have:

∞∑
n=1

Mn = C

∞∑
n=1

λnMn|b− a|n

≤ C

∞∑
n=1

rn
1

Mn|b− a|n
×Mn|b− a|n,

=
∞∑
n=1

rn,

= C

[
1

1− r
− 1

]
., 0 ≤ r < 1.

Thus, the series converges when Equation (9.1) holds. Hence, we may invoke the Weierstrass M -

test to conclude that our limit function is continuous. Although the series might converge it is not

straightforward to check that the limit function is indeed a solution.

In order to observe that this series not only converges but converges to the solution we look at:

y(x) = f(x) + λ

∫ b

a

K(x, s)y(s)ds,

yn+1(x) = f(x) + λ

∫ b

a

K(x, s)yn(s)ds,

hence

y(x)− yn+1(x) = λ

∫ b

a

K(x, s)[y(s)− yn(s)]ds.

We choose x to maximize |y(x)− yn+1(x)| over [a, b], i.e. x = argmax[a,b]|y(x)− yn+1(x)|. Hence,

∥y(x)− yn+1(x)∥∞ = |y(x)− yn+1(x)|,

≤ λ

∫ b

a

K(x, s)[y(s)− yn(s)]ds,

≤ λM |b− a|∥y(x)− yn(x)∥∞,
≤ r∥y(x)− yn(x)∥∞, 0 ≤ r < 1.

By telescoping the result, we obtain:

∥y(x)− yn+1(x)∥∞ ≤ rn+1∥y(x)− f(x)︸︷︷︸
=y0(x)

∥∞.

With 0 ≤ r < 1 as per Equation (9.2) we have:

∥y(x)− yn+1(x)∥∞ → 0, n→ ∞,
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hence

yn+1(x) → y(x), n→ ∞. (9.3)

9.1.2 Formal Manipulations

Another way to see why the iterative solution y(x) = f(x)+
∞∑
n=1

λnKnf(x) converges to the solution

of the IE is to re-write the IE

y(x) = f(x) + λ

b∫
a

K(x, s)y(s) ds,

as

y(x) = f(x) + λKy(x) or (I − λK)y(x) = f(x).

Then, in a formal notation, so the solution is:

y(x) = (I − λK)−1f(x).

On the other hand, if we apply the binomial expansion (A−B)−1 =
∑∞

k=0(A
−1B)kA−1 we obtain

our iterative solution

y(x) = (I − λK)−1f(x) =
∞∑
n=0

λnKnf(x).

Note that the fact that we have a bound on |λ| is not in hindsight a surprise as we know that when

λ is equal to an eigenvalue we cannot find a unique solution so our process must break down at

some |λ| < |λ1|, where λ1 denotes the eigenvalue with smallest absolute value. One can eventually

make rigorous sense of these equations provided |λ| < |λ1| through appropriate functional analysis.

9.1.3 Worked Example

We look again at a familiar example:

y(x) = 1 + λ

1∫
0

(1− 3xs)y(s) ds,

The kernel is separable, so it is easy to determine the solution by direct computation:

y(x) =
4(λ+ 1)

4− λ2
− 6λ

4− λ2
x λ ̸= ±2.
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Here, however, we illustrate the application of the iterative method instead.

Kg(x) =
1∫

0

(1− 3xs)g(s) ds,

and so, as f(x) = 1,

Kf(x) =
1∫

0

(1− 3xs) ds = 1− 3
2
x

K2f(x) =

1∫
0

(1− 3xs)
(
1− 3

2
s
)
ds = 1

4

K3f(x) =

1∫
0

(1− 3xs)1
4
ds = 1

4

(
1− 3

2
x
)
.

The structure is clearly alternating between the two functions. Thus, we furthermore have:

K4f(x) = 1
42
,

K5f(x) = 1
42

(
1− 3

2
x
)
,

K6f(x) = 1
43
,

etc. Thus, we have:

y(x) = 1 + λKf(x) + λ2K2f(x) + · · ·
= 1 + λ

(
1− 3

2
x
)
+ λ2 · 1

4
+ λ3 1

4

(
1− 3

2
x
)
+ λ4 · 1

42
+ λ5 · 1

42

(
1− 3

2
x
)
+ λ6 · 1

43
+ · · · .

We re-group the terms to get:

y(x) = 1 + λ2 · 1
4
+ λ4 · 1

42
+ λ6 1

43
+ · · ·+ λ

(
1− 3

2
x
) [

1 + λ · 1
4
+ λ4 1

42
+ · · ·

]
.

This can be further simplified to:

y(x) =
(
1 + 1

4
λ2 + 1

16
λ4 + . . .

) [
1 + λ

(
1− 3

2
x
)]
.

The prefactor is clearly a geometric progression which converges to 1/(1 − 1
4
λ2) provided |λ| < 2,

reproducing

y(x) =
4

4− λ2
[
(1 + λ)− 3

2
λx
]
.

81



Chapter 9. Perturbative Solution of Fredholm Equations

9.2 The Resolvent Kernel

In the previous section we defined

Kg(x) =
b∫

a

K(x, s)g(s) ds.

and found that, for sufficiently small |λ|, we could write

y(x) = f(x) +
∞∑
n=1

λnKnf(x).

If we look first at K2f(x) we may write

K2f(x) =

b∫
a

K(x, s)

 b∫
a

K(s, t)f(t) dt

 ds

=

b∫
a

 b∫
a

K(x, s)K(s, t) ds

 f(t) dt
=

b∫
a

K2(x, t)f(t) dt,

where K2(x, t) is defined by the term in square brackets on the previous line.

Repeating the argument it is clear that we can write

Knf(x) =

b∫
a

Kn(x, t)f(t) dt,

where

Kn(x, t) =

b∫
a

K(x, s)Kn−1(s, t) ds

which also applies to n = 2 with the understanding that K1(x, t) = K(x, t). Indeed it is not hard

to see that

Kn(x, t) =

b∫
a

Km(x, s)Kn−m(s, t) ds

for any 1 ≤ m ≤ n− 1.
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In addition if |K(x, s)| is bounded by M on [a, b] then

|Kn(x, t)| ≤Mn|b− a|n−1.

We go back to the power-series expansion of the solution of the FIE:

y(x) = f(x) +
∞∑
n=1

λnKnf(x).

Using the notation Kn(x, t) for the self-convolution, we can write the solution, for sufficiently small

|λ|, as

y(x) = f(x) +
∞∑
n=1

λn
b∫

a

Kn(x, t)f(t) dt

= f(x) + λ

b∫
a

[
∞∑
n=0

λnKn+1(x, t)

]
f(t) dt.

This suggests that we introduce the function

Γ(x, t;λ) =
∞∑
n=0

λnKn+1(x, t),

called the resolvent kernel, in terms of which we have

y(x) = f(x) + λ

b∫
a

Γ(x, t;λ)f(t) dt.

Theorem 9.1 The resolvent kernel satisfies the inhomogeneous Fredholm IE.

Proof: From its definition

Γ(x, t;λ) =
∞∑
n=0

λnKn+1(x, t)

= K(x, t) +
∞∑
n=1

λnKn+1(x, t).
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Continuing thus, we have:

Γ(x, t;λ) = K(x, t) + λ
∞∑
n=1

λn−1Kn+1(x, t)

p=n−1
= K(x, t) + λ

∞∑
p=0

λpKp+2(x, t)

Dummy Indices
= K(x, t) + λ

∞∑
n=0

λnKn+2(x, t)

= K(x, t) + λ

∞∑
n=0

λn
b∫

a

K(x, s)Kn+1(s, t) ds

= K(x, t) + λ

b∫
a

K(x, s)

[
∞∑
n=0

λnKn+1(s, t)

]
ds

= K(x, t) + λ

b∫
a

K(x, s)Γ(s, t;λ) ds

That is, the resolvent kernel Γ, considered as a function of x and t and the parameter λ satisfies

the inhomogeneous Fredholm IE when the function f(x) is replaced by the kernel K considered as

a function of x and t.

9.2.1 Worked Example

We revisit the FIE

y(x) = f(x) + λ

1∫
0

(1− 3xt)y(t) dt.

The kernel is K(x, t) = 1− 3xt, so

K1(x, t) = 1− 3xt.

Then ,

K2(x, t) =

1∫
0

(1− 3xs)(1− 3st) ds

= 1− 3
2
(x+ t) + 3xt,
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9.2. The Resolvent Kernel

and so

K3(x, t) =

1∫
0

(1− 3xs)
(
1− 3

2
(s+ t) + 3st

)
ds

= 1
4
(1− 3xt).

It is then clear that Kn(x, t) =
1
4
Kn−2(x, t) for n ≥ 3 and hence

Γ(x, t;λ) =
(
1 + 1

4
λ2 + 1

16
λ4 + . . .

)
K1(x, t) + λ

(
1 + 1

4
λ2 + 1

16
λ4 + . . .

)
K2(x, t)

so

Γ(x, t;λ) =
1

1− 1
4
λ2

[K1(x, t) + λK2(x, t)]

=
1

1− 1
4
λ2
[
(1− 3xt) + λ

(
1− 3

2
(x+ t) + 3xt

)]
=

1

1− 1
4
λ2
[
(1 + λ)− 3

2
λ(x+ t)− 3(1− λ)xt

]
for |λ| < 2. In fact, the summed form may easily be checked to be valid for all λ except the

characteristic values λ = ±2 (as may be also argued by analytic continuation).

Remark: In many of these examples, the key step is to derive a difference equation for Kn, such

as Kn+2 = (· · · )Kn+1 + (· · · )Kn + · · · . Typically, such a difference equation provides a means of

computing the sum
∑∞

n=0 λ
nKn+1.
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Chapter 10

Functional Analysis of the Fredholm

Equation

Overview

In this section we explore the theory that guarantees the existence of an eigensolution of the Fredholm

Integral Equation. There are a few steps that we have to leave out, but we nevertheless endeavour

to outline the key steps involved. This is an important discussion in any serious study of Applied

Mathematics, as the theory (e.g. compact operators) can be used quite generally to make statements

about the existence and uniqueness of solutions of various problems in ODEs and PDEs.

10.1 Analogy with Linear Algebra

In Linear Algebra, we have the (L2) operator norm for a linear operator A, where:

A : Rn → Rn,

x 7→ Ax.

In this instance, the L2 operator norm is defined as:

∥A∥2 = sup
∥x∥2=1

∥Ax∥2.

If the matrix A is self-adjoint, the eigenvalues are real and the eigenvectors are orthogonal and

moreover, span Rn, so any vector x can be written as a linear combination of eigenvectors:

x =
n∑
i=1

cixi, (10.1)
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10.1. Analogy with Linear Algebra

where Axi = λixi and ⟨xi, xj⟩ = δij. Here, the angle brackets are the usual inner product on Rn.

Hence, the coefficients ci in Equation (10.1) are given by

ci = ⟨xi,x⟩.

We assume the eigenvalues are ordered so that λ1 is the maximum eigenvalue. Thus,(
∥Ax∥2
∥x∥2

)2

=

∑n
i=1 λ

2
i c

2
i∑n

i=1 c
2
i

.

The way to maximize this sum is by taking c1 = 1 and corresponding to the λ1-eigenvalue, and by

taking ci = 0 for i ̸= 1. Thus,

∥A∥2 = |λ1|.

Clearly, another way to write this – in case of A self-adjoint and symmetric is:

|λ1| = ∥A∥2 = sup{⟨x, Ax⟩ : ∥x∥2 = 1}.

The identification of the eigenvalue with the supremum of the set is called Rayleigh’s Principle,

which we give its own heading here because it is so important:

Theorem 10.1 (Rayleigh Principle)

|λ1| = sup{⟨x, Ax⟩ : ∥x∥2 = 1}.

In cases where the eigenvalues are strictly ordered as λ1 > λ2 > · · · > λn, we can extend Rayleigh’s

Principle to pick out λ2:

|λ2| = sup{⟨x, Ax⟩ : ∥x∥2 = 1, ⟨x1,x⟩ = 0}.

This can also be got by ‘projecting out the λ1-eigenvalue’. Assuming the eigenvectors are column

vectors, we define:

A1 = A− x1x
T
1 ,

then

|λ2| = sup{⟨x, A1x⟩ : ∥x∥2 = 1}

And so, guessing the pattern,

Ak = A−
k∑
j=1

xjx
T
j

and

|λk+1| = sup{⟨x, Akx⟩ : ∥x∥2 = 1}, k < n.
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Chapter 10. Functional Analysis of the Fredholm Equation

10.2 Hilbert spaces

To extend the concept of operator norms to kernel functions, we introduce the concept of Hilbert

Space.

Definition 10.1 (Inner Product Space) A (real) inner product space is a (real) vector space V

equipped with an inner product, that is, a map (·, ·) : V × V → R which is

� Symmetic: (u, v) = (v, u) for all u, v ∈ V

� Linear: (au+ bv, w) = a(u,w) + b(v, w) for all u, v, w ∈ V and a, b ∈ R
� Positive definite: (u, u) > 0 for all 0 ̸= u ∈ V .

If V is an inner product space then ∥u∥ =
√
(u, u) defines a norm on V , that is,

� ∥au∥ = |a| ∥u∥ for all a ∈ R and u ∈ V

� ∥u+ v∥ ≤ ∥u∥+ ∥v∥ for all u, v ∈ V

� ∥u∥ > 0 for all 0 ̸= u ∈ V .

Definition 10.2 (Convergent Sequence) Let V be an inner product space with corresponding

norm ∥u∥ =
√
(u, u). A sequence u1, u2, . . . in V converges to u ∈ V if ∥un− u∥ → 0 as n→ ∞.

Definition 10.3 (Convergent Sequence; Completeness) A sequence u1, u2, . . . in V is called

a Cauchy sequence if, for all ϵ > 0, there exists N such that ∥un − um∥ < ϵ for all n,m ≥ N . We

say that V is complete if every Cauchy sequence in V converges to a limit in V .

Definition 10.4 (Hilbert Space) A complete (real) inner product space is called a (real) Hilbert

space.

The Euclidean space Rn with the usual inner (or ‘dot’) product ⟨x, y⟩ =
∑n

i=1 xiyi is an example of

a Hilbert space. Another important example is the space L2([a, b]) of Lebesgue measurable functions

f : [a, b] → R satisfying ∫ b

a

f(x)2 dx <∞,

with functions which are equal almost everywhere1 identified. This is a real vector space and, when

equipped with the inner product

⟨f, g⟩ =
∫ b

a

f(x)g(x)dx, (10.2)

is a Hilbert space. We denote the corresponding norm by

∥f∥2 =
√

(f, f) =

(∫ b

a

f(x)2dx

)1/2

,

1I.e. equal everywhere except on sets of measure zero
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10.2. Hilbert spaces

and refer to it as the L2-norm.

The space C([a, b]) of continuous f : [a, b] → R may be regarded as a subspace of L2([a, b]) and

is also an inner product space in its own right, with inner product defined by (10.2). However it is

not complete with respect to this inner product, as the following example shows.

10.2.1 Pathological Example

Without loss of generality, we may assume that a = 0 and b = 2, and consider the sequence of

functions fn ∈ C([0, 2]) defined by

fn(x) =

xn 0 ≤ x < 1

1 1 ≤ x ≤ 2.

Then

∥fn − fm∥22 =
∫ 1

0

(xn − xm)2dx =
1

2n+ 1
− 2

n+m+ 1
+

1

2m+ 1
→ 0

as n,m→ ∞, hence fn is a Cauchy sequence with respect to the L2-norm in C([0, 2]). But it does

not converge to a continuous limit, rather it converges to the discontinuous function

f(x) =

0 0 ≤ x < 1

1 1 ≤ x ≤ 2

since, as n→ ∞,

∥fn − f∥22 =
∫ 1

0

x2ndx =
1

2n+ 1
→ 0.

In fact, C([a, b]) is dense in L2([a, b]), that is, its closure in L2([a, b]) is L2([a, b]).

10.2.2 Properties of Hilbert Spaces

We record here some important properties of Hilbert spaces. For these purposes, let H be a (real)

Hilbert space with inner product ⟨·, ·⟩ and corresponding norm ∥u∥ =
√

(u, u).

1. Two vectors u, v ∈ H are orthogonal if (u, v) = 0.

2. If M is a vector subspace of H the orthogonal complement of M , denoted M⊥, is the set of

v ∈ H such that (u, v) = 0 for all u ∈M .

3. A (possibly finite) sequence of vectors u1, u2, . . . in H are called orthonormal if (ui, uj) = δij

for all i, j.

4. An orthonormal sequence u1, u2, . . . in H is a (orthonormal) basis for H if every v ∈ H can

be written as v =
∑

i ciui where, if the sum is infinite, it is understood to be convergent with

respect to the norm on H, that is, writing vn =
∑n

i=1 ciui, it holds that ∥vn − v∥ → 0 as

n→ ∞.
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Chapter 10. Functional Analysis of the Fredholm Equation

5. A set of vectors in H is complete if the only vector orthogonal to every member of the set is

the zero vector.

We also have:

Theorem 10.2 (Bessel’s Inequality) If u1, u2, . . . is an orthonormal sequence in H then for all

v ∈ H, ∑
i

(v, ui)
2 ≤ ∥v∥2.

Proof: Writing ci = (v, ui),

0 ≤

∥∥∥∥∥v −
n∑
i=1

ciui

∥∥∥∥∥
2

=

(
v −

n∑
i=1

ciui, v −
n∑
i=1

ciui

)

= ∥v∥2 − 2
n∑
i=1

c2i +
n∑
i=1

c2i = ∥v∥2 −
n∑
i=1

c2i ,

hence
n∑
i=1

c2i ≤ ∥v∥2.

If u1, u2, . . . is a finite sequence we are done, otherwise let n → ∞ to conclude that
∑

i c
2
i is

convergent and not greater than ∥v∥2.

Finally, we have the following key results which we simply state here:

� Parseval’s relation: If u1, u2, . . . is an orthonormal sequence in H then it is a basis if, and

only if, for all v ∈ H, ∑
i

(v, ui)
2 = ∥v∥2.

� Completeness: An orthonormal sequence in H is a basis if, and only if, it is complete.

� Riesz-Fisher Theorem: If u1, u2, . . . is an orthonormal basis for H and
∑

i c
2
i < ∞ then

v =
∑

i ciui converges (with respect to the norm) in H and ci = (v, ui).

� Orthogonal Projection: If M is a vector subspace of H then

H =M ⊕M⊥,

that is, every w ∈ H can be written uniquely as w = u+ v where u ∈M and v ∈M⊥.

10.3 Linear Operators on Hilbert Spaces

A linear operator A : H → H is a linear map such that

A(λx+ µy) = λAx+ µAy,
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10.3. Linear Operators on Hilbert Spaces

for all real scalars λ and µ and all vectors x and y in H. A further key definition, especially relevant

for spaces of functions concerns the boundedness of such operators:

Definition 10.5 A linear operator A : H → H is bounded if there exists a number M such that

∥Au∥ ≤M∥u∥ for all u ∈ H.

The set of bounded linear operators on H is itself a normed vector space, with norm defined by

∥A∥ = sup{∥Au∥ : u ∈ S}

where S = {u ∈ H : ∥u∥ = 1}. Here the choice of notation is important, as one should think of

S as being the unit sphere in the Hilbert space. We note in particular, if 0 ̸= u ∈ H, then ∥u∥ ≠ 0

and u/∥u∥ ∈ S. Thus, if ∥A∥ = 0 then Au = 0 for all u ∈ H.

In particular, if K(x, y) is a real-valued continuous kernel function valid on [a, b]2, then the convo-

lution Ky = K ∗ y is a linear operator on L2([a, b]). Furthermore, K is a bounded linear operator,

since:

∥Ky∥22 =

∫ b

a

[∫ b

a

K(x, y)y(s)ds

]2
dx,

=

∫ b

a

[∫ b

a

K(x, y)y(s)ds

] [∫ b

a

K(x, y)y(s)ds

]
dx,

C.S.
≤

∫ b

a

[∫ b

a

K2(x, s)ds

]1/2 [∫ b

a

K2(x, s)ds

]1/2
∥y∥22,

=

[∫ b

a

∫ b

a

K2(x, s)dxds

]
∥y∥22,

≤ M2|b− a|2∥y∥22.

Furthermore, a linear operator A : H → H is called self-adjoint if ⟨Au, v⟩ = ⟨u,Av⟩ for all u, v ∈ H.

Theorem 10.3 If the kernel function K(x, y) is symmetric, then the linear operator K is self-

adjoint.

This follows by direct computation, e.g.

⟨f,Kg⟩ =

∫ b

a

[
f(x)

∫ b

a

K(x, s)ds

]
dx,

Fubini
=

∫ b

a

∫ b

a

f(x)g(s)K(x, s)dsdx,

Symmetric
=

∫ b

a

∫ b

a

f(x)g(s)K(s, x)dsdx,

Fubini
=

∫ b

a

[∫ b

a

K(s, x)f(x)dx

]
g(s)ds,

= ⟨Kf, g⟩.
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Chapter 10. Functional Analysis of the Fredholm Equation

Like in the case of linear algebra, for self-adjoint operators we are able to identify

∥A∥2 = sup
u∈S

⟨Au, u⟩,

which is now a key theorem for us.

Theorem 10.4 If A : H → H is bounded and self-adjoint, then its norm may be represented as

∥A∥ = sup{|(Au, u)| : u ∈ S}.

The strategy of the proof is to show that supu∈S⟨Au, u⟩ ≤ ∥A∥ and also that supu∈S⟨Au, u⟩ ≥ ∥A∥,
which will allow us to conclude that equality holds.

Part 1: For u ∈ S, we have:

⟨Au, u⟩
C.S.

≤ ∥Au∥2∥u∥2,
≤ ∥A∥2.

Part 2: Consider:

⟨A(x+ y), (x+ y)⟩ − ⟨A(x− y), (x− y)⟩ = ⟨Ax, x⟩+ ⟨Ax, y⟩+ ⟨Ay, x⟩+ ⟨Ay, y⟩
− ⟨Ax, x⟩+ ⟨Ax, y⟩+ ⟨Ay, x⟩ − ⟨Ay, y⟩.

The terms either cancel out or are equal to ⟨Ax, y⟩ by self-adjointness so overall we get:

⟨Ax, y⟩ = 1
4
[⟨A(x+ y), (x+ y)⟩ − ⟨A(x− y), (x− y)⟩] .

Hence,

|⟨Ax, y⟩| ≤ 1
4
[⟨A(x+ y), (x+ y)⟩+ ⟨A(x− y), (x− y)] ,

≤ sup
u∈S

⟨Au, u⟩
[
∥x+ y∥2 + ∥x− y∥22

]
.

We use the parallelogram law:

∥u+ v∥2 + ∥u− v∥2 = 2∥u∥2 + 2∥v∥2,

and conclude:

|⟨Ax, y⟩| ≤ 1
2

(
sup
u∈S

⟨Au, u⟩
)(

∥x∥22 + ∥y∥22
)
.

This is true for all vectors x and y. Hence, for x and y in S, we have:

|⟨Ax, y⟩| ≤ sup
u∈S

⟨Au, u⟩.
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Take y = Ax/∥Ax∥2:

∥Ax∥2 =
⟨Ax,Ax⟩
∥Ax∥2

≤ sup
u∈S

⟨Au, u⟩.

As this is true for all x ∈ S we have:

∥A∥2 ≤ sup
u∈S

⟨Au, u⟩.

Combining Parts (1) and (2) we have:

∥A∥2 = sup
u∈S

⟨Au, u⟩.

10.4 Compact Operators

For real numbers, given a sequence {un} with a ≤ un ≤ b, it is always possible to extract a conver-

gent subsequence. This is called the Bolzano–Weirstrass theorem. This is called the compactness

property of the interval I = [a, b], which is the same thing as saying that the interval contains its

own boundary points, or is closed. The aim of this section is to extend these concepts to sets of

operators.

Let H be a Hilbert space and let U be a subset of H.

Definition 10.6 The set U is called bounded if there exists a positive real number M such that

∥u∥ < M for all u ∈ U .

Definition 10.7 The set U is called relatively compact if every sequence {un} in U has a

convergent subsequence which converges to a limit in H.

Theorem 10.5

If the set U is relatively compact then it is bounded.

Remark: If H = Rn, then a set U ∈ H is relatively compact if and only if it is bounded. This is

the Bolzano–Weirstrass theorem, extended to Rn.

We now look at extending the concept of compactness to operators.

Definition 10.8 A linear operator is sequentially compact if it maps bounded sets to relatively

compact sets.

Suppose that A : H → H is compact and self-adjoint, and that ∥A∥ ≠ 0. Then, by self-adjointness,

∥A∥ = sup
u∈S

∥Au∥2 = sup
u∈S

|⟨Au, u⟩|. (10.3)
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Chapter 10. Functional Analysis of the Fredholm Equation

Given µ = ±∥A∥, we want to find v ∈ H such that v attains the bound in Equation (10.3), that

is, v ∈ S maximizes |⟨Av, v⟩|. This can be achieved if A is a compact operator.

Now, we can always find a point wn ∈ S such that ⟨Awn, wn⟩ is within 1/n of the supremum µ.

Using the axiom of choice, we can construct a sequence {wn} such that each ⟨wn, Awn⟩ is within
1/n of the supremum. The limit of this sequence gives:

⟨Awn, wn⟩ → µ, as n→ ∞. (10.4)

Since A is a compact operator, not only is the sequence of real numbers in Equation (10.4) conver-

gent, but Avn, a sequence of vectors, is also convergent, and we can write:

Avn → µv.

We have:

∥Avn − µvn∥22 = ∥Avn∥22 − 2µ⟨Avn, vn⟩+ µ2∥vn∥22,
≤ ∥A∥22 − 2⟨Avn, vn⟩+ µ2.

Hence,

∥Avn − µvn∥22 → 0, as n→ ∞. (10.5)

The claim now is that not only does Avn converge to a limit point, but that vn does also. We have:

µ(vn − v) = µvn − µV + Avn − Avn,

= − (Avn − µvn) + (Avn − µv),

µ∥vn − v∥2
∆

≤ ∥Avn − µvn∥+ ∥Avn − µv∥2.

The first term vanishes because of Equation (10.5) while the second term vanishes because {Avn}
is the convergent subsequence. Hence, ∥vn − v∥2 → 0,

vn → v,

and thus, the supremum is attained.

10.5 Continuous Operators

We prove that the linear operator K is continuous in the following sense:

Theorem 10.6 If K(x, s) is continuous and r ∈ H then g = Kr is continuous.
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Proof: First note that since r ∈ H = L2([a, b]), it is also in L1([a, b]), that is:

∥r∥1 =

∫ b

a

|r(s)|ds,

= ⟨|r|, 1⟩,
C.S.
≤ ∥r∥2∥1∥2,
= ∥r∥2|b− a|1/2,
≤ ∞.

We want to show that g is continuous, that is, for each x ∈ [a, b] and ϵ > 0 there exists δ > 0 such

that |g(x)− g(y)| < ϵ for all y such that |x− y| < δ. To prove this we will use the fact that since

K is continuous and its domain [a, b]× [a, b] is compact, it is also uniformly continuous, that is, for

each ϵ′ > 0, there exists δ > 0 such that

|K(x, s)−K(y, t)| < ϵ′ whenever |x− y|+ |s− t| < δ. (10.6)

Let ϵ > 0 and set ϵ′ = ϵ/max{∥r∥1, 1}. Then there exists δ > 0 such that |K(x, s)−K(y, t)| < ϵ′

whenever |x− y|+ |s− t| < δ, hence for all x, y satisfying |x− y| < δ, we have

|g(x)− g(y)|
∆

≤
∫ b

a

|K(x, s)−K(y, s)|︸ ︷︷ ︸
s=t,Cf. (10.6)

|r(s)|ds,

≤ ϵ′∥r∥1 ≤ ϵ,

as required.

10.6 The Totality of Eigenfunctions

We look at the definition

∥K∥ = sup{|(y,Ky)| : y ∈ S}. (10.7)

The supremum is generated by a sequence of functions {yn} with yn ∈ S, which get ever closer to

realising the least upper bound. But is not true a priori that the sequence has a limit.

However, the Fredholm Integral Equation defines a compact operator2. As such, the bounded

sequence of functions {yn} possesses a convergent subsequence, with limit y0 ∈ S. Thus, the

supremum is realised by y0 ∈ S, so we can write:

∥K∥ = max{|(y,Ky)| : y ∈ S}. (10.8)

2Unfortunately it is beyond the scope of the course to prove this result
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Chapter 10. Functional Analysis of the Fredholm Equation

Furthermore, there is a generalisation of Rayleigh’s principle3 which implies that the supremum

satisfies the Fredholm Integral Equation y0(x) = λ0
∫ b
a
K(x, s)y0(s)ds, with eigenvalue 1/|λ0| =

∥K∥.

Another fact which we rely on is that, under our assumptions, the operator K is continuous, that

is, if ∥vn − v∥2 → 0 then ∥Kvn −Kv∥2 → 0.

Note that, by Theorem (10.6), the eigenfunction y1(x) is continuous. Given this eigenfunction, we

may now construct a new symmetric kernel by

K1(x, s) = K(x, s)− y1(x)y1(s)

λ1
.

Note that

b∫
a

K1(x, s)y1(s) ds =

b∫
a

K(x, s)y1(s) ds−
y1(x)

λ1

b∫
a

(
y2(s)

)2
ds

=
1

λ1
y1(x)−

1

λ1
y1(x) = 0.

Now, either K1(x, s) is trivial, so K(x, s) = y1(x)y1(s)/λ1 is separable, or K1(x, s) is non-trivial

and, as above, we conclude that K1(x, s) possesses an eigenfunction y2 ∈ S, say, with eigenvalue

λ2, such that

1

|λ2|
= max{|⟨y,Ky⟩| : y ∈ S ∩Q1}, Q1 = {y ∈ H : (y, y1) = 0}.

Note also that K maps Q1 into itself, since for y ∈ Q1,

⟨Ky, y1⟩ = ⟨y,Ky1⟩ =
1

λ1
⟨y, y1⟩ = 0.

Proceeding in this way we see we have two options:

� either the process stops after a finite number of steps with Kn(x, s) = 0 and

K(x, s) =
n∑
i=1

yi(x)yi(s)

λi
, (10.9)

and the kernel is separable;

� or we have a (countably) infinite number of eigenvalues.

In the latter case we may prove:

Theorem 10.7 If K(x, s) is not separable then |λn| → ∞ as n→ ∞.

3See Chapter 12, Section 12.4
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Proof: The functions yi(x)yj(s) are orthonormal in the Hilbert space L2([a, b]2) and∫ b

a

∫ b

a

K(x, s)yi(x)yj(s)dxds =
1

λi
δij.

It therefore follows from Bessel’s inequality that

∞∑
i=1

1

λi2
≤

b∫
a

b∫
a

(K(x, s))2 ds dx.

In particular, this implies that

1

λn2
→ 0 as n→ ∞,

hence |λn| → ∞ as n→ ∞.

We are now in a position to show:

Theorem 10.8 If g = Kr, for some r ∈ H, the g may be expanded as

g(x) =
∑
i

aiyi(x), ai =
1

λi

∫ b

a

r(s)yi(s)ds.

Proof: In the separable case this follows immediately from the representation (10.9), so let us

assume that K is not separable. Now the proof breaks into two parts.

Part 1: Let M = S{y1, y2, · · · }, and write g = Kr. Since H is a Hilbert space, we can write r

uniquely as:

r = u+ v, u ∈M, v ∈M⊥.

Now the aim of Part 1 is to show that Kv = 0.

If v = 0 we are done immediately, so assume that v ̸= 0 and let v1 = v/∥v∥2. We introduce the

notation

Qn = {y ∈ H : (y, y1) = · · · = (y, yn) = 0}.

Hence,
1

|λn+1|
= max{|⟨y,Ky⟩| : y ∈ S ∩Qn},

The space M⊥ involves more constraints than Qn but there is overlap hence M⊥ ⊂ Qn for all n.

Thus, M⊥ is a subset of Qn, and hence,

|⟨v1,Kv1⟩| ≤ 1/|λn+1|

97



Chapter 10. Functional Analysis of the Fredholm Equation

or equivalently |⟨v,Kv⟩| ≤ ∥v∥22/|λn+1|, for all n. We take n→ ∞. We have 1/|λn+1| → 0 hence

⟨v,Kv⟩ = 0, as n→ ∞.

Now, K maps the subspace M⊥ into itself so may be considered as a linear operator from M⊥

to M⊥ (homework). Analogous to Equation (10.7), the norm of this restricted operator is the

maximum value of |⟨y,Ky⟩| for y ∈ S ∩M⊥, which must therefore be zero, and this implies that

Kv = 0 for all v ∈M⊥, as required.

Part 2: We have Kv = 0, hence g = K(u+ v) = Ku, and since u ∈M we may write

u(x) =
∞∑
i=1

biyi(x).

for some sequence of real numbers bi. Hence, the aim of Part 2 is to establish the values of bi.

As a closed subspace of the Hilbert space H, the space M is also a Hilbert space and moreover

has the sequence y1, y2, . . . as an orthonormal basis. Thus, according the Riesz-Fischer Theorem,

the coefficients are given by bi = ⟨u, yi⟩ or equivalently bi = ⟨r, yi⟩, since r = u + v and v ∈ M⊥.

Applying K to both sides yields (recall that K is continuous) the expansion

g(x) = (Ku)(x) =
∞∑
i=1

aiyi(x),

where ai = bi/λi, as required.

Remark: The condition that K(x, s) is continuous is not necessary for the above conclusions to

hold, for example it can be weakened to the requirement that K ∈ L2([a, b]× [a, b]), that is, K(x, s)

is a measurable function on [a, b]× [a, b] which satisfies∫ b

a

∫ b

a

K(x, s)2 dx ds <∞.

The condition that K(x, s) is continuous does however ensure that the eigenfunctions yi(x) are

continuous, a fact that will be important later.
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Chapter 11

The Sturm-Liouville Problem:

Introduction

Overview

In this chapter, we study the eigenvalues of the Sturm–Liouville problem,

d

dx

[
p(x)

du

dx

]
+ q(x)u(x) = −λr(x)u(x), (11.1)

where p(x) > 0 and r(x) > 0 are continuous functions. As all second-order linear problems can be

put into the form
d

dx

[
p(x)

du

dx

]
+ q(x)u(x) = 0, (11.2)

corresponding to λ = 0 in Equation (12.1) the resulting theory is very general and can be used to

sole a wide range of problems in Applied Mathematics, Physics, and Engineering.

Key terminology:

� Equation (12.1) with appropriate boundary conditions is called a Sturm–Liouville problem.

The eigenvalue λ is TBC.

� Equation (11.2) is called a Sturm–Liouville equation.

11.1 Motivating Example

Consider an elastic string of variable mass density, ρ(x), stretched horizontally between two points

positioned in x = a and x = b (as in Figure 11.1). Because of the stretching the string is under

variable tension, T (x), along its length. Let A(x, t) be the transverse displacement of the string.
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Chapter 11. The Sturm-Liouville Problem: Introduction

Figure 11.1: Vibrations in a stretched string.

Application of Newton’s second law of motion, to an element of length dx with corresponding mass

ρ(x)dx of each segment leads to the wave equation for A(x, t),

ρ(x)
∂2A(x, t)

∂t2
=

∂

∂x
T (x)

∂A(x, t)

∂x
.

The force (per unit length) on the right hand side is due to the bending of the string. We may

additionally suppose that the string experiences a restoring force −k(x)A(x, t), where k(x) is the
position dependent Hooke’s constant experienced by the string segment dx. Consequently, the more

general version of the wave equation is

ρ(x)
∂2A(x, t)

∂t2
=

∂

∂x
T (x)

∂A(x, t)

∂x
− k(x)A(x, t).

We look for normal modes, that is, solutions of the pure harmonic form have vibrational frequencies

ω and amplitudes:

A(x, t) = y(x) cosω(t− t0).

Thus the spatial function y(x) then must satisfy

d

dx

[
T (x)

dy(x)

dx

]
+
(
ω2ρ(x)− k(x)

)
y(x) = 0 x ∈ (a, b). (11.3)

If we change notation using u(x) = y(x), p(x) = T (x), ρ(x) = r(x), q(x) = −k(x) and λ = ω2

we obtain a Sturm-Liouville problem,

d

dx

[
p(x)

du(x)

dx

]
+ q(x)u(x) = −λr(x)u(x) x ∈ (a, b). (11.4)

From the Physics of the example, it is clear that u(a) = 0 and u(b) = 0 are the appropriate boundary

conditions.

Furthermore, it is clear that p(x) = T (x) is positive everywhere except possibly at an end-point

(actually the tension must vanish at the bottom of the string in our example), and r(x) = ρ(x) is

positive everywhere. To ensure existence of solutions we assume that the functions q(x) and r(x)
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are continuous and the function p(x) is continuously differentiable.

11.2 Boundary Conditions

To specify a Sturm–Liouville (SL) problem completely, we specify appropriate boundary conditions:

� Regular SL problem: αau(a) + βau
′(a) = 0 and αbu(b) + βbu

′(b) = 0.

� Periodic SL problem: When the coefficients are periodic with period b−a (so, in particular,

p(a) = p(b)), we require u(a) = u(b) and u′(a) = u′(b).

We refer to the first set of BCs here as regular BCs.

11.2.1 Other possible boundary conditions

We can also look at SL problems with (a, b) replaced with (−∞, 0] or [0,∞) or (−∞,∞). In this

case, the boundary conditions are behavioural at the infinite endpoint(s), e.g. u and u′ should

vanish. Similarly, if (a, b) is finite as before, but if the coefficient functions in the SL equation:

u′′(x) +
p′(x)

p(x)
u′(x) +

λr(x)− q(x)

p(x)
u(x) = 0 x ∈ (a, b).

are regular-singular1 at x = a (say), then we would have a behavioural BC at x = a and a standard

BC at x = b, such as αbu(b) + βbu
′(b) = 0.

11.3 Reduction to Sturm–Liouville form

Theorem 11.1 Every homogeneous second order ODE can be transformed to a Sturm–Liouville

equation.

Proof: We start with a general second-order ODE

u′′(x) + P (x)u′(x) +Q(x)u(x) = 0. (11.5)

We wish to show that this reduces to:

d

dx

[
p
du

dx

]
+ q(x)u(x) = 0.

1Refer back to Chapter 5 for the taxonomy of ODEs as either ordinary, regular-singular and irregular-singular.
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To do this, we multiply both sides of Equation (11.5) by an as-yet unknown integrating factor:

µu′′ + Pµu′ + µQu = 0.

If we take Pµ = µ′, then this becomes:

(µu′)
′
+ µQu = 0.

This is in Sturm–Liouville form, with µQ = q. Summarizing, we have:

µ′ = µP =⇒ µ = e
∫
P (x)dx and q = µQ.

11.3.1 Worked Example

Transform the following Bessel’s equation into a SL form

x2y′′ + xy′ + (x2 − ν2)y = 0 .

First we bring it in the standard form

y′′ +
y′

x
+

(
1− ν2

x2

)
y = 0

so that we can notice that P (x) =
1

x
. From here our integrating factor is

µ(x) = e
∫
dx/x = eln x = x.

Finally Bessel’s equation in the SL form becomes

[xy′]
′
+

(
x− ν2

x

)
y = 0.

11.4 The adjoint Sturm-Liouville operator

We have previously been cavalier with the boundary terms in constructing our adjoint. Let us

introduce the operator (functional) L such that

L
[
u
]
(x) =

d

dx

[
p(x)

du(x)

dx

]
+ q(x)u(x)

so our Sturm-Liouville equation is

L
[
u
]
(x) = −λr(x)u(x) x ∈ (a, b).
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From this perspective we can now define λ as the eigenvalue of the SL equation and u(x) the

corresponding eigenfunction. The function r(x), (usually different from 0) is instead known as the

weight or density function. In this sense the eigenvalues, respectively, eigenfunctions are defined

with respect to the weight function r(x).

Recall now the definition of the inner product (u, v) =
∫ b
a
u(x)v(x)dx. Based on that we can prove

an important property for the Sturm-Liouville equation:

Theorem 11.2 (Lagrange Identity) Let u(x) and v(x) be functions with continuous second

derivatives in the interval (a, b). Then,

b∫
a

u(x)
(
L[v](x)

)
dx =

b∫
a

(
L[u](x)

)
v(x) dx+

[
p(x)

(
u(x)v′(x)− v(x)u′(x)

)]b
a
.

Proof: After suppressing some of the explicit x-dependencies, we have:

b∫
a

u(x)
(
L[v](x)

)
dx =

∫ b

a

d

dx

(
p
dv

dx

)
u dx+

∫ b

a

quv dx,

=

∫ b

a

[
d

dx

(
p
dv

dx
· u
)
− p

dv

dx

du

dx

]
dx+

∫ b

a

quv dx,

= [pv′u]
b
a −

∫ b

a

p
dv

dx

du

dx
+

∫ b

a

quv dx,

= [pv′u]
b
a −

∫ b

a

[
d

dx

(
pv

du

dx

)
− v

d

dx

(
p
du

dx

)]
dx+

∫ b

a

quv dx,

= [p(x) (v′(x)u(x)− u′(x)v(x))]
b
a +

∫ b

a

[
d

dx

(
p
du

dx

)
+ qu

]
v dx,

= [p(x) (v′(x)u(x)− u′(x)v(x))]
b
a +

b∫
a

v(x)
(
L[u](x)

)
dx.

Notice that our regular or periodic boundary conditions above ensure that the second term of the

right hand side vanishes so the operator is truly self-adjoint on the space of functions satisfying the

boundary conditions, ⟨u, Lv⟩ = ⟨Lu, v⟩. In fact, for the case of periodic boundary conditions is

trivial, but for the regular ones we should check that for only one of the bound, let’s say x = a,

then we have the following relations

u′(a)v(a)− v′(a)u(a) = −v(a)αa
βa
u(a) + u(a)

αa
βa
v(a) = 0

and similarly for x = b.

For the case of a singular Sturm-Liouville problem we may need to restrict the class of functions we

consider to ensure that the corresponding boundary term vanishes.
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11.4.1 Example

Consider the case p(x) = 1, q(x) = 0, r(x) = 1 on (0, π) with Dirichlet boundary conditions so:

u′′(x) + λu(x) = 0, u(0) = u(π) = 0

It is easy to find the eigenfunctions (solutions) of this homogeneous ODE with constant coefficients

starting from the characteristic equationm2+λ = 0 which roots arem1 = −
√
−λ andm2 = +

√
−λ.

Then the solutions are constituting by the fundamental sets of functions em1x and em2x.

Assuming for the moment that λ must be real (something we will prove in the next section), there

are 3 possibilities:

� Case 1, λ < 0: then we may write λ = −ω2 (ω > 0), our solutions are e±ωx so our general

solution is Aeωx +Be−ωx and our boundary conditions require

A+B = 0

Aeωπ +Be−ωπ = 0

but this has only trivial solutions for A and B as the determinant is e−ωπ− eωπ = −2 sinhωπ

which does not vanish on ω > 0.

� Case 2, λ = 0: In this case we have repeated roots and our general solution is A+ Bx and

our boundary conditions require

A = 0

A+Bπ = 0

giving again the trivial solution.

� Case 3 , λ > 0: In this case, we may write λ = ω2 (ω > 0) and being the routes purely

imaginary our solutions are cosωx and sinωx so our general solution is A cosωx+ B sinωx

our boundary conditions require

A = 0

(((((A cosωπ +B sinωπ = 0

so a non-zero solution exists if and only if sinωπ = 0 that is if ω = n where n ∈ N as shown

in Figure 11.4.1.

11.5 General Properties

Looking at our simple example we note a number of properties that we shall prove are valid for an

arbitrary Sturm–Liouville problem:
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Figure 11.2: The lowest 4 eigenfunctions showing the increased oscillations and number of zeros as
n increases (1:blue, 2:yellow, 3:green, 4:red).

1. The eigenvalues are real;

2. Eigenfunctions corresponding to different eigenvalues are orthogonal with respect to weight

function r(x);

We have some further results, which are valid for regular SL problems with a finite domain:

3. Eigenvalues of a regular Sturm-Liouville problem are discrete if the domain is finite; further-

more, the eigenfunctions are complate and span the Hilbert space:

H =

u(x)|
b∫

a

r(x)u(x)2 dx exists and αau(a) + βau
′(a) = 0, αbu(b) + βbu

′(b) = 0

 .

4. The eigenfunctions oscillate;

5. The larger the eigenvalue the faster the eigenfunction oscillates;

6. The modulus of the eigenvalues have a lowest member and increase without limit.

We prove the first two results in this chapter; the rest of the proofs are left to Chapter 12.

To understand the first two results we denote by G(x, s) the Green’s function for the operator

L[u](x) =
d

dx

[
p(x)

du(x)

dx

]
+ q(x)u(x), x ∈ (a, b).

Hence, the solution to

L[u](x) = −λr(x)u(x), x ∈ (a, b),

subject to the corresponding boundary conditions of the Sturm–Liouville problem can be written as

a Fredholm Integral Equation

u(x) = −λ
b∫

a

G(x, s)r(s)u(s) ds.
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Given our assumption that r(x) > 0 we may rewrite this in symmetric form as

√
r(x)u(x) = λ

b∫
a

[
−
√
r(x)G(x, s)

√
r(s)

]√
r(s)u(s) ds,

or

y(x) = λ

b∫
a

K(x, s)y(s) ds,

where y(x) =
√
r(x)u(x) and K(x, s) = −

√
r(x)G(x, s)

√
r(s) is symmetric.

It follows from the results of Chapter 8 that the eigenvalues are real and that if λi ̸= λj then

0 =

b∫
a

yi(x)yj(x) dx =

b∫
a

r(x)ui(x)uj(x) dx,

which is what we mean by being orthogonal with respect to weight function r(x).

Next we prove the following result:

Theorem 11.3 Suppose u1(x) and u2(x) solve the regular Sturm–Liouville problem on a finite

domain with the same eigenvalue then they are proportional (i.e. the eigenspace is of dimension 1).

Proof: Since both u1(x) and u2(x) satisfy exactly the same equation (same eigenvalue and same

BCs), we have:

αau1(a) + βau
′
1(a) = 0,

αau2(a) + βau
′
2(a) = 0.

Thus, u1 and u2 are linearly dependent at a, so W (a) = 0. By Abel’s identity applied to pu′′ +

p′u′+(· · · )u = 0, we have p(x)W (x) = p(x0)W (x0), where x0 is an arbitrary reference point. If we

take x0 = a, we get p(x)W (x) = 0, and since p(x) > 0 for a regular SL problem, we get W (x) = 0

for all x ∈ [a, b]. Hence:

u1u
′
2 = u2u

′
1,

and
u′2
u2

=
u′1
u1
.

This is a simple ODE with solution u2 = Cu1, where C is a constant. Hence, linear dependence is

shown.
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11.5.1 Special Case

In the periodic case we don’t have enough information to deduce that W (u1, u2)(a) vanishes and

the eigenvalues can be degenerate. For example, u′′ + λ2u = 0 with u(0) = u(2π) has solutions

un(x) = sin(2πλnx), with λn ∈ {1/2, 1, 3/2, 2, · · · } and vn(x) = cos(2πµnx) with µn ∈ {1, 2, · · · }.
But even in this case, the lowest eigenvalue (= λ1 = 1/2) is non-degenerate with eigenfunction

sin(x/2).

11.6 Sturm Comparison Theorem

In this section we prove an important result:

Theorem 11.4 (Sturm Comparison Theorem) Let ui(x) and uj(x) be eigenfunctions of Equa-

tion (11.4) subject to regular boundary conditions where λj > λi then between any two zeroes of

ui(x) there exists at least one zero of uj(x).

Remark: This is a key result which will enable us to prove properties #3–#6 in Section 11.5.

Loosely speaking, what it means is that ‘the bigger the eigenvalue, the faster eigenfunction oscillates’.

Proof: We take i = 1 and j = 2 to simplify the notation. Thus, we are working with:

λ2 > λ1 (11.6)

Thus, we also have L[u1](x) = −λ1r(x)u1(x) and L[u2](x) = −λ2r(x)u2(x). The boundary

conditions are the same for u1 and u2.

So now we have:

u1(x)L[u2](x)− u2(x)L[u1](x) = − (λ2 − λ1)︸ ︷︷ ︸
>0

r(x)u1(x)u2(x).

We integrate from a to x and obtain:∫ x

a

[
u1

d

dx

(
p
du2
dx

)
− u2

d

dx

(
p
du1
dx

)]
dx = −(λ2 − λ1)

∫ x

a

ru1u2 dx.

Hence:∫ x

a

[
−du1

dx
p
du2
dx

+
d

dx

(
u1p

du2
dx

)]
dx+

∫ x

a

[
+
du1
dx

p
du2
dx

− d

dx

(
u1p

du2
dx

)]
dx

= −(λ2 − λ1)

∫ x

a

ru1u2 dx.
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This gives:

[
p(s)

(
u1(s)u

′
2(s)− u2(s)u

′
1(s)

)]x
a︸ ︷︷ ︸

=0 at s=a

= −(λ2 − λ1)

x∫
a

r(s)u1(s)u2(s) ds.

Here, we have switched to using a proper dummy index, s. We apply the BCs at x = a to get:

p(x)
(
u1(x)u

′
2(x)− u2(x)u

′
1(x)

)
= −(λ2 − λ1)

x∫
a

r(s)u1(s)u2(s) ds

Now suppose ξ1 and ξ2 are successive zeros of u1(x), with ξ2 > ξ1, say, then

−p(ξ1)u2(ξ1)u′1(ξ1) = −(λ2 − λ1)

ξ1∫
a

r(s)u1(s)u2(s) ds

−p(ξ2)u2(ξ2)u′1(ξ2) = −(λ2 − λ1)

ξ2∫
a

r(s)u1(s)u2(s) ds

and subtracting

−p(ξ2)u2(ξ2)u′1(ξ2) + p(ξ1)u2(ξ1)u
′
1(ξ1) = −(λ2 − λ1)

ξ2∫
ξ1

r(s)u1(s)u2(s) ds. (11.7)

Here, we have used: ∫ ξ2

a

(· · · )−
∫ ξ1

a

(· · · ) =
∫ ξ2

ξ1

(· · · ), ξ2 > ξ1.

Since ξ1 and ξ2 are the successive zeros of u1(x), we have two cases to consider:

� u1(x) > 0 for x ∈ (ξ1, ξ2) with u
′
1(ξ1) > 0... u1 is ∩-shaped;

� u2(x) < 0 for x ∈ (ξ1, ξ2) with u
′
1(ξ1) < 0 and u′1(ξ2) > 0... u1 is ∪-shaped.

For definiteness assume the first (otherwise we just multiply by −1). Now, for contradiction, assume

that u2(x) has no zero between ξ1 and ξ2 then, as before, we may assume it is positive over the whole

interval so that u2(ξ1) ≥ 0 and u2(ξ2) ≥ 0, then looking just at the sign of terms in Equation (11.7),

on the left hand side we have

−p(ξ2)u2(ξ2)u′1(ξ2) + p(ξ1)u2(ξ1)u
′
1(ξ1) = −(+)(+)(−)0 + (+)(+)(+)0 = (+)0

where, (+)0 means positive or 0 while (+) means strictly positive. On the other hand, on right
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hand side we have

−(λ2 − λ1)

ξ2∫
ξ1

r(s)u1(s)u2(s) ds = −(+)

ξ2∫
ξ1

(+)(+)(+) ds = (−).

This gives us our contradiction and we conclude that as claimed u2(x) must have a zero between

ξ1 and ξ2.

There is a more general result than Theorem 11.4, which we state here as follows:

Theorem 11.5 (Sturm–Picone Comparison Theorem) Let yi be real-valued continuous func-

tions on the interval [a, b], with i = 1, 2, and let

(p1(x)y
′)′ + q1(x)y = 0, (11.8a)

(p2(x)y
′)′ + q2(x)y = 0, (11.8b)

0 < p2(x) ≤ p1(x)

and

q1(x) ≤ q2(x).

Let u be a non-trivial solution of (11.8a) with successive roots at z1 and z2 and let v be a non-trivial

solution of (11.8b). Then one of the following properties holds:

� There exists an x ∈ (z1, z2) such that v(x) = 0, or

� There exists a µ ∈ R such that v(x) = µu(x).
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Chapter 12

Theoretical Analysis of the

Sturm-Liouville Problem

Overview

In Chapter 11 we showed – using results built up already – that the solution to the SL problem can be

exapanded in terms of eigenfunctions. Buried in the detail, this relies on the compactness property if

integral operators, and the existence of a solution of the Rayleigh–Ritz variational problem – which

we have not proved. This can be a bit unsatisfactory. Therefore, in this Chapter, we look at a more

intuitive way of characterizing the eigenfunctions of the SL equation, and proving a lot of important

results along the way. As before, we are concerned with the eigenvalue problem

d

dx

[
p(x)

du

dx

]
+ q(x)u(x) = −λr(x)u(x), x ∈ (a, b), (12.1a)

where p(x) > 0 and r(x) > 0 are continuous functions, with boundary conditions

αau(a) + βau
′(a) = 0, αbu(b) + βbu

′(b) = 0. (12.1b)

12.1 The Prüfer System

To examine the zeros of the eigenfunctions it turns out to be convenient to introduce an argument-

phase representation of our solution in the (conventional) form

u(x) = ρ(x) sin θ(x)

p(x)u′(x) = ρ(x) cos θ(x).
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Note that

� a non-trivial solution can never pass through the origin ρ(x0) = 0 as that would imply u(x0) =

0 and u′(x0) = 0 and so, by Picard u(x) = 0;

� zeroes of u(x) correspond to points where θ(x) = 0,±π,±2π, . . .

For notational simplicity, and to emphasise the generality of the results, we write our equation as

d

dx

[
p(x)

du(x)

dx

]
−Q(x)u(x) = 0

so the Sturm–Liouville equation corresponds to Q(x) = q(x)− λr(x). Then

p(x)
d

dx
(ρ(x) sin θ(x)) = ρ(x) cos θ(x)

d

dx
(ρ(x) cos θ(x)) = Q(x)ρ(x) sin θ(x)

so

ρ′(x) sin θ(x) + ρ(x)θ′(x) cos θ(x) =
ρ(x)

p(x)
cos θ(x)

ρ′(x) cos θ(x)− ρ(x)θ′(x) sin θ(x) = Q(x)ρ(x) sin θ(x)

or (
sin θ(x) ρ(x) cos θ(x)

cos θ(x) −ρ(x) sin θ(x)

)(
ρ′(x)

θ′(x)

)
=

 ρ(x)

p(x)
cos θ(x)

Q(x)ρ(x) sin θ(x)

 .

Solving we obtain

ρ′(x) = ρ(x)

(
1

p(x)
+Q(x)

)
sin θ(x) cos θ(x)

θ′(x) =
1

p(x)
cos2 θ(x)−Q(x) sin2 θ(x).

Obvious but important properties follow

� The θ′(x) equation does not involve ρ(x) and so is just a first order ODE for θ(x);

� once we have θ(x) the ρ′(x) equation maybe solved immediately by quadrature:

ρ(x) = A exp

 x∫
a

(
1

p(s)
+Q(s)

)
sin θ(s) cos θ(s) ds

 ;
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Figure 12.1: Illustration of the Prüfer system with p(x) = 1, Q(x) = −x2, y(0) = 0, y′(0) = 1.
Panel (a): the solution as a function of x; Panel (b): ρ(x) (blue) and θ(x) (orange) Panel (c) Phase-
space plot (ρ(x) cos θ(x), ρ(x) sin θ(x)) =

(
p(x)u′(x), u(x)

)
Top left: the solution as a function of

x, top right: ρ(x) (blue) and θ(x) (orange). In panel (c) the zeros of u(x) correspond to crossings
of the horizontal axis or equivalently θ(x) = 0,±π,±2π, . . . .

� this form emphasises our comment about not passing through the origin and that zeroes of

u(x) are determined entirely by the θ′(x) equation.

Considering then the angular equation

θ′(x) =
1

p(x)
cos2 θ(x)−Q(x) sin2 θ(x),

we may make an important observation: at any point x0 where we have a zero of u(x) and so

sin θ(x0), we also have cos θ(x0) = ±1 and so

θ′(x0) =
1

p(x0)
> 0,

in other words, θ(x) may only cross a line θ = 0,±π,±2π, . . . in an increasing direction An

immediate consequence is that sin θ(x0) = 0 cannot have a repeated root as this would require

θ′(x0) cos θ(x0) = 0,

in other words a solution of a self-adjoint differential equation cannot have a repeated zero (a point

where it just touches the x-axis).
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12.2 Incorporating the boundary conditions into the Prüfer

system

Our boundary condition on αau(a) + βau
′(a) = 0 directly implies

0 = αap(a)u(a) + βap(a)u
′(a) = r(a) (αap(a) cos θ(a) + βa sin θ(a))

and so, since r(a) must be non-zero, θ(a) is determined by

cos
(
θ(a)− ϵa

)
= 0

where, using the freedom to multiply the boundary condition by −1 so that we may take αa ≥ 0,

ϵa ∈ [−π/2, π/2) is uniquely defined by

cos ϵa =
αap(a)((

αap(a)
)2

+ β2
a

)1/2 , sin ϵa =
βa((

αap(a)
)2

+ β2
a

)1/2 .
In turn, we may determine a unique value of θ(a) = π

2
+ ϵa ∈ [0, π) encapsulating the boundary

condition.

Since r(a) was an arbitrary normalisation we may then integrate our first order system from x = a

to x = b. Obviously as we do so, θ(x) may increase beyond this range and cross the line θ = π,

then θ = 2π etc but as we have shown it can then never cross back. At x = b we will have a

corresponding condition

cos
(
θ(b)− ϵb

)
= 0

with ϵb ∈ (−π/2, π/2] defined in the analogous way (with modified endpoints for later convenience).

In the light of our comments at the end of the last paragraph we must seek out the values

θ(b) = π
2
+ ϵb + nπ n ∈ N ∪ {0}.

12.3 The Sturm-Liouville Problem as a Prüfer System

Now specialising to the case of the Sturm-Liouville problem we have Q(x) = q(x)−λr(x). We may

consider the one parameter family of solutions θλ(x) which all satisfy the same initial θλ(a) =
π
2
+ϵa,

but where for now we do not worry about the boundary condition at x = b. Given that we have

chosen θλ(a) ∈ [0, π), and θλ(x) can only increase through the lines θ = nπ, it is clear that the

first zero, if one exists, of uλ(x) in the open interval (a, b) occurs where θλ(x) = π, and by trivially

extending the argument, the nth zero of uλ(x), if one exists, occurs where θλ(x) = nπ.
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The final value θ(b) will then dependent on the parameter λ. The fundamental question is then: do

there exists appropriate values for λ such that we can attain each of the values θ(b) = π
2
+ ϵb + nπ

for every n ∈ N ∪ {0}? To see that the answer is yes, we need to understand how the phase θλ(x)

with fixed initial condition θλ(a) =
π
2
+ ϵa behaves as a function of λ.

To see this just requires a minor modification to the Comparison Theorems of Chapter 2:

Theorem 12.1 (Oscillation Theorem) For i = 1, 2 let

dθi
dx

=
1

p(x)
cos2 θi(x)−Qi(x) sin

2 θi(x), x ∈ (a, b),

where Q1(x) > Q2(x) for x ∈ (a, b). Suppose θ1(a) = θ2(a) then θ1(x) < θ2(x) for all x ∈ (a, b].

Proof: Take

F (x, y) =
1

p(x)
cos2 y(x)−Q2(x) sin

2 y(x), G(x, y) =
1

p(x)
cos2 z(x)−Q1(x) sin

2 z(x).

Then clearly as continuously differentiable functions they satisfy a Lipschitz condition in y. In

addition,

G(x, y) = F (x, y)−
(
Q1(x)−Q2(x)

)
sin2 y < F (x, y)

and the result follows.

Remark: Here we have applied the result with a strict inequality rather that the ‘less than or equal’

result of Chapter 2 but it is trivial to modify the proof there to cover the current case.

For the Sturm–Liouville case, writing Qi(x) = q(x)− λir(x) and recalling that r(x) > 0 our result

says that if λ1 < λ2 then θλ1(x) < θλ2(x) for all x ∈ (a, b].

We may deduce the following lemma:

Lemma 12.2 For all x ∈ (a, b], θλ(x) is a strictly increasing function of λ (and clearly depends

continuously on λ).

We are now ready to prove our fundamental result:

Theorem 12.3 The solution θλ(x) satisfies

� lim
λ→−∞

θλ(x) exists and is equal to 0;

� θλ(x) → ∞ as λ→ ∞.
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Figure 12.2: Illustration of the Prüfer system for a Sturm-Liouville system with p(x) = 1, Q(x) =
q(x)− λr(x) = 1− λx2, y(0) = 0, y′(0) = 1. θ(x) as a function of x, for a series of values of λ.

Proof:

Case 1, λ→ −∞:

By definition, θλ(a) ∈ [0, π), but we know that θ(x) can only cross 0 (= 0π) in an upward direction

so θλ(b) > 0 for all λ. Thus θλ(b) is a continuous increasing function of λ bounded below by 0

hence the limit (as λ→ −∞) exists and is greater than or equal to 0. Next our phase equation

dθλ
dx

=
1

p(x)
cos2 θλ(x)− [q(x)− λr(x)] sin2 θλ(x).

implies

θλ(x)− θλ(a)

λ
=

1

λ

x∫
a

[
1

p(s)
cos2 θλ(s)− q(s) sin2 θλ(s)

]
ds+

x∫
a

r(s) sin2 θλ(s) ds.

On the left-hand side, and for λ < 0, we have that θλ(a) and θλ(x) are both bounded between 0
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and max{θ0(a), θ0(x)}. So in the limit as λ → −∞, the LHS tends to zero. Similarly, the first

term on the RHS vanishes as the integrand is easily bounded. We conclude that:

0 = 0 +

x∫
a

r(s) sin2 θ−∞(s) ds.

and since r(x) > 0 we deduce that sin2 θ−∞(s) = 0, so θ−∞(s) = 0 mod π and θ−∞(s) = 0 is the

only possible solution.

Case 2, λ→ ∞:

We use Gronwall’s Inequality:

dθλ
dx

=
1

p(x)
cos2 θ(x)− [q(x)− λr(x)] sin2 θ(x),

≥ (λrmin − qmax) sin
2 θ.

Hence
dθλ

sin2 θλ
≥ (λrmin − qmax)dx.

Hence

− cot θλ(x) ≥ cot(θ0) + (λrmin − qmax)(x− x0).

Hence,

cot θλ(x) ≤ − cot(θ0)− (λrmin − qmax)(x− x0),

As λ→ ∞, we get cot θλ(x) ≤ −∞, which forces θ(x) = nπ, where nπ is an integer. But the only

way for this to be true for all x is either n = 0 or n = ∞. The value n = 0 is ruled out as being

inconsistent with the phase equation, so the only other possibility is n = ∞, hence θλ(x) → ∞ as

λ→∞.

We summarize our results so far as follows:

Theorem 12.4 Any regular Sturm-Liouville problem has an infinite number of solutions un(x) which

belong to the real eigenvalues λ0 < λ1 < λ2 < . . . with limn→∞ λn = ∞.

Furthermore, each eigenfunction un(x)

1. has exactly n zeroes in the interval a < x < b,

2. is unique up to a constant multiplicative factor.

12.4 Completeness of Sturm-Liouville Eigenfunctions

We are now in a position to show – in a quite direct fashion – that the set of eigenfunctions of the

regular Sturm-Liouville problem is a generalized Fourier basis. That is, that the eigenfunctions form
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a complete set. We introduce the Hilbert Space H, where

H =

u(x)|
b∫

a

r(x)u(x)2 dx exists and αau(a) + βau
′(a) = 0, αbu(b) + βbu

′(b) = 0

 .

We show: We have the eigenfunctions

L[un](x) = −λnr(x)un(x), n ∈ {0, 1, 2, · · · }.

As r(x) > 0 strictly, we further write this eigenvalue problem as Lr[un](x) = −λnun(x). Now,

given eigenfunctions u0(x), u1(x), . . . we introduce

TN = Span{u0, u1, · · · , uN}

and following Chapter 9 we write:

H = TN ⊕ T⊥
N ,

The key to proving completeness is to consider the Rayleigh quotient defined by

Q[u] =
(u,−Lru)
(u, u)

.

Theorem 12.5 (The Rayleigh Variational Principle)

min
u∈H

Q[u] = λ0

and as a generalization

min
u∈T ⊥

N

Q[u] = λN+1

The Rayleigh quotient is a functional mapping functions u(x) ∈ H to R. Extreme ‘points’ (actually

functions) must be stationary with respect to arbitrary variations δu(x) to first order, so that

dropping term of order δu2:

0 = Q[u+ δu]−Q[u] =
⟨u+ δu,−Lru− Lrδu⟩

⟨u+ δu, u+ δu⟩
− ⟨u,−Lru⟩

⟨u, u⟩

=
⟨u,−Lru⟩+ 2⟨δu,−Lru⟩
⟨u, u⟩

(
1 + 2⟨δu, u⟩/⟨u, u⟩

) − ⟨u,−Lru⟩
⟨u, u⟩

=
2

⟨u, u⟩

[
⟨δu,−Lru⟩ −

⟨u,−Lru⟩
⟨u, u⟩

⟨δu, u⟩
]

=
2

⟨u, u⟩
⟨δu,−Lru−

⟨u,−Lru⟩
⟨u, u⟩

u⟩.
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For this to hold true for arbitrary δu(x) we conclude that the extreme points must satisfy

Lru(x) =
⟨u, Lru⟩
⟨u, u⟩

u(x),

that is u(x) must correspond to an eigenfunction of our Sturm-Liouville problem. Since

Q[ui] = λi

the result is now immediate.

Theorem 12.6 The set of eigenfunctions of the regular Sturm–Liouville problem form a complete

basis set for H.

Proof: We consider the error function

dN(x) = u(x)−
N∑
i=0

ciui(x)

which, of course, satisfies

⟨ui, dN⟩ = 0, i = 0, . . . , N

that is, dN ∈ T⊥
N so

Q[dN ] ≥ λN+1.

If we write this out in full it says

⟨dN ,−LrdN⟩ ≥ λN+1⟨dN , dN⟩.

or

⟨dN , dN⟩ ≤
⟨dN ,−LrdN⟩

λN+1

.

Now as before

⟨dN ,−LrdN⟩ = ⟨u−
N∑
i=0

ciui,−Lru−
N∑
j=0

cj(−Lruj)
)

= ⟨u,−Lru⟩ − 2
N∑
i=0

ciλi⟨u, ui⟩,−
N∑
i=0

N∑
j=0

cicjλj⟨ui, uj⟩

= ⟨u,−Lru⟩ −
N∑
i=0

c2iλi,
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where in the second line we have used the self-adjointness of Lr. Now since the eigenvalues tend

to infinity only a finite number n0, say of them can be negative. Correspondingly every subsequent

term in the sum is negative, so we have

(dN ,−LrdN) = ⟨u,−Lru⟩ −
N∑
i=0

c2iλi ≤ ⟨u,−Lru⟩ −
n0∑
i=0

c2iλi

independent of N . Hence

∥dN∥2 = ⟨dN , dN) ≤
⟨u,−Lru⟩ −

n0∑
i=0

c2iλi

λN+1

.

where the only dependence on N on the right hand side is in the denominator. But we know that

λN+1 → ∞ as N → ∞ so correspondingly

∥dN∥ =

∥∥∥∥∥u(x)−
N∑
i=0

ciui(x)

∥∥∥∥∥→ 0 as N → ∞.

Hence, the result is shown.

12.5 Expansions of Green functions

Suppose we want to solve

L[u] + λr(x)u(x) =
d

dx

[
p(x)

du

dx

]
− q(x)u+ λr(x)u(x) = f(x), (12.2)

subject to appropriate Sturm-Liouville boundary conditions, where we include the λ term for gener-

ality.

Let Gλ(x, s) be the Green’s Function of the linear operator

L+ λr.

Thus, the solution of Equation (12.2) can be written as:

u(x) =

∫ b

a

Gλ(x, s)f(s)ds.

However, by completeness of the eigenfunctions of the SL operator L[u], u(x) has the expansion:

u(x) =
∞∑
n=0

anun(x).
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Substitution into Equation (12.2) gives:

an =
⟨f, un⟩
λ− λn

, λ ̸= λn.

Thus,

u(x) =
∞∑
n=0

anun(x),

=
∞∑
n=0

⟨f, un⟩
un(x)

λ− λn
,

=
∞∑
n=0

∫ b

a

f(s)un(s)
un(x)

λ− λn
,

=

∫ b

a

(
∞∑
n=0

un(x)un(s)

λ− λn

)
f(s)ds.

Thus, we have the following spectral representation of the Green’s function:

Gλ(x, s) =
∞∑
n=0

un(x)un(s)

λ− λn
, λ ̸= λn.

12.5.1 Example

Consider the boundary value problem u′′ + λu = f with u(0) = u(π) = 0. The normalized

eigenfunctions and respective eigenvalues are given, for n ≥ 1, by

un(x) =

√
2

π
sinnx, λn = n2.

Using the above Green function expansion, the solution to the BVP is given, for λ /∈ {λn}, by

u(x) =
∞∑
n=1

cn
λ− n2

√
2

π
sinnx,

where

cn =

√
2

π

∫ π

0

f(x) sin(nx)dx.

For example, if λ = 0 and f(x) = −x, the solution is

u(x) = 2
∞∑
n=0

(−1)n+1

n3
sinnx.
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Note that in this case we may also solve the BVP directly using the Greens’ function formula

G(x, s) =

s(x− π)/π s < x

x(s− π)/π x < s,

which yields

u(x) =

∫ π

0

G(x, s)(−s)ds = 1

6
x(π2 − x2).

12.6 Fourier series

Consider the boundary value problem u′′+λu = 0 with periodic boundary conditions u(−π) = u(π)

and u′(−π) = u′(π). In this case, 0 is an eigenvalue with corresponding eigenfunction given by the

constant function 1/(2π). The other eigenvalues are again n2 for n ≥ 1, but these are not simple:

there are two eigenfunctions with eigenvalue n2, namely sin(nx)/
√
π and cos(nx)/

√
π.

From the Sturm-Liouville theory, these eigenfunctions form a complete basis for the Hilbert space

L2([−π, π]). In other words, any f ∈ L2([−π, π]) may be expanded as

f(x) = 1
2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx),

where

an =
1

π

∫ π

−π
f(x) cosnxdx, bn =

1

π

∫ π

−π
f(x) sinnxdx.

Note that in this expansion, the convergence of the series is in L2([−π, π]) and the limit equals f(x)

almost everywhere. In this context, Parseval’s identity may be expressed as

1

π

∫ π

−π
f(x)2dx = 1

2
a20 +

∞∑
n=1

(a2n + b2n).

The above Fourier series may also be written as

f(x) =
∞∑

n=−∞

cne
inx, cn =

1

2π

∫ π

−π
f(x)e−inxdx.

In this notation, Parseval’s identity may be written as

1

2π

∫ π

−π
f(x)2dx =

∞∑
n=−∞

|cn|2.
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12.6.1 Example

Letting f(x) = x, we have c0 = 0 and, for n ̸= 0, cn = i(−1)n/n. Now

∞∑
n=−∞

|cn|2 = 2
∞∑
n=1

1

n2
,

1

2π

∫ π

−π
x2dx =

π2

3
,

so in this example Parseval’s identity yields Euler’s remarkable formula

∞∑
n=1

1

n2
=
π2

6
.

The Fourier series is given by

f(x) = 2
∞∑
n=1

(−1)n+1

n
sinnx.

Recall that this identity is in an L2 sense. In the next chapter we will see that, in fact, it holds

pointwise for −π < x < π. So for example when x = π/2 this yields the identity

π

4
=

∞∑
k=1

(−1)k+1

2k − 1
.

On the other hand, it is easy to see that the Fourier series equals zero at x = π and x = −π and

in fact this is also the value of (f(π) + f(−π))/2, as we shall explain in the next chapter.
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Chapter 13

Fourier Series and their Convergence

Overview

As a special case of a Sturm-Liouville system, we have shown that Fourier series converge in a

mean-square sense. However, given the simplicity of the eigenfunctions (which are, of course, just

the trigonometric functions) we are able to prove stronger results that we summarise in this Chapter.

13.1 Formal Definition

Recall the formal definition: if f : [−π, π] → R is integrable on [−π, π] or in other words that

f ∈ L1[−π, π]:

π∫
−π

|f(x)| dx <∞

then we may define for n ∈ N ∪ {0}

an =
1

π

π∫
−π

f(x) cosnx dx, bn =
1

π

π∫
−π

f(x) sinnx dx ,

and

cn =
1

2π

π∫
−π

f(x)e−inxdx.

Clearly, an, bn ∈ R, b0 = 0, and

cn =
1

2
(an − ibn) and c−n =

1

2
(an + ibn) .
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Definition 13.1 With these ‘Fourier coefficients’ defined we may define the formal real Fourier

series as:

1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx),

and the formal complex Fourier series as

∞∑
n=−∞

cne
inx.

The partial sums of these two series, interpreted as the sum up to N including the n = 0 term in

the real case and the sum from −N to N in the complex case, are clearly equal so we may work

with whichever is more convenient. We choose the complex form, and define

sN(x) =
N∑

n=−N

cne
inx. (13.1)

Remark: As Equation (13.1) involves a finite sum, sN(x) is perfectly well defined unlike the formal

infinite sums where we must address the issue of convergence.

Remark: The integrals above could have been defined for a general interval [x0, x0 + T ] where T

is the period f(x+ T ) = f(x) and where the coefficients becomes e.g.

an =
2

T

∫ x0+T

x0

f(x) cos
2πnx

T
dx.

One could transform variables T → 2π to resort to the previous notation.

There are two central question we address below:

1. To what extent do the formal Fourier series determine the function pointwise (rather than just

in a mean-square sense)?

2. If it does, how can we recover the function under the least restrictive conditions?

13.2 Some Properties of the Fourier Coefficients

Theorem 13.1 (Riemann–Lebesgue Lemma) Let f ∈ L2[−π, π] then

cn → 0 as |n| → ∞.
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Proof: This is an immediate consequence of (the obvious complex extension of) Bessel’s inequality

as

N∑
n=−N

|cn|2 ≤
1

2π

π∫
−π

∣∣f(x)∣∣2 dx,
since e−inx are orthogonal eigenfunctions and also here the weight function r(x) = 1/2π being also

the normalization term. The only way for the sum above to be upper bounded for any N is that

limn→∞ cn = 0.

Theorem 13.2 (Bounds related to smoothness) Let f be periodic with period 2π and Ck then

|nkcn| is bounded as n→ ∞.

Remark: For those familiar with the ‘Big-oh’, O, notation, this may be rephrased as cn = O(n−k)

as n→ ∞.

Proof: We simply integrate by parts (for n ̸= 0):

cn =
1

2π

π∫
−π

f(x)e−inxdx

=
1

2π

[f(x)e−inx

−in

]π
−π

− 1

−in

π∫
−π

f ′(x)e−inxdx


=

1

2π(in)

π∫
−π

f ′(x)e−inxdx

as the boundary term vanishes by periodicity. Recall that the T -periodicity of f induce also the

T -periodicity of the higher order derivatives f (k). Repeating k times

cn =
1

2π(in)k

π∫
−π

f (k)(x)e−inxdx

and as

∣∣2π(in)kcn∣∣ =
∣∣∣∣∣∣
π∫

−π

f (k)(x)e−inxdx

∣∣∣∣∣∣ ≤
π∫

−π

∣∣f (k)(x)
∣∣∣∣e−inx

∣∣ dx ≤ 2π sup
[−π,π]

∣∣f (k)(x)
∣∣,

recalling the norm of complex numbers involved the result follows.

Remark: We emphasize that here we are requiring the corresponding degree of smoothness even at

±π. A common problem involves a function f ∈ Ck(−π, π) with a weaker definition of periodicity,
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Chapter 13. Fourier Series and their Convergence

so only f(−π+) = f(π−), . . . , f (j−1)(−π+) = f (j−1)(π−) (j < k). In this case we may integrate

by parts j + 1 times to find

cn =
1

2π(in)j

[f (j)(x)
e−inx

−in

]π
−π

− 1

−in

π∫
−π

f (j+1)(x)e−inx dx


=

1

2π(in)j+1

(−1)n
[
f (j)(−π+)− f (j)(π−)

]
+

π∫
−π

f (j+1)(x)e−inxdxx

 .

As f (j+1)(x) is assumed integrable we may in general expect cn = O(n−(j+1)).

13.2.1 Example

The periodic extension of x2 from (−π, π] to R is f ∈ C0(−π, π) and f(−π+) = f(π−), but

f ′(−π+) = −2π while f ′(π−) = 2π, so taking j = 1

cn =
1

2π(in)2

(−1)n(−4π) +

π∫
−π

2e−inxdx


= 2

(−1)n

n2
+

1

πin3

[
e−inx

]π
−π = 2

(−1)n

n2
(n ̸= 0).

13.3 Uniform convergence for C1 functions

We show now that not only do Fourier series converge to the generating function in the norm, but

in the case of C1 functions, that a much stronger result holds:

Theorem 13.3 (Absolute and Uniform Convergence) If the periodic function f is continuous

on [−π, π], with continuous first derivative on the same interval, then its Fourier series converges

uniformly to f(x), i.e. limN→∞ sN(x) = f(x).

Proof: We have:

SN(x) =
N∑

n=−N

cne
inx,

where

cn =
1

2π

∫ π

−π
f(x)dx.

Here, f is 2π-periodic, it’s continuous on [−π, π] and so is its derivative, so we can do integration

by parts and re-write cn as:

cn =
1

2π

1

in

π∫
−π

f ′(x)e−inxdx.
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Hence,

|cn| ≤
1

2π|n|
dn, dn =

∣∣∣∣∣∣
π∫

−π

f ′(x)e−inxdx

∣∣∣∣∣∣ .
Then by our proof of the Riemann-Lebesgue

∞∑
n=−∞

|dn|2 converges and |dn| → 0 as n → ∞, the

sum being bounded by:

∞∑
n=−∞

|dn|2 ≤
π∫

−π

|f ′(x)|2dx

(The bound here follows by applying Bessel’s Inequality and / or Parseveal’s Identity to f ′(x)).

Thus, if we identify Mn = |dn|/|n|, we see that Mn → 0 as n → ∞. Furthermore, we look at∑
nMn, but we have to avoid the n = 0 term. Thus, letting

∑′ denote the sum excluding the

n = 0 term, we have:

N∑′

n=−N

Mn =

N∑′

n=−N

|dn||n|,

CS
≤

(
N∑′

n=−N

|dn|2
)1/2( N∑′

n=−N

1

n2

)1/2

.

The sum
∑′∞

n=−∞
n−2 is clearly bounded (by B2, say), thus:

N∑′

n=−N

Mn ≤ B

(
N∑′

n=−N

|dn|2
)1/2

,

≤ B

 π∫
−π

|f ′(x)|2dx

1/2

,

< ∞.

Thus, each function cne
inx is bounded by Mn, and

∑
nMn < ∞, so by the Weirstrass M -test,

sN(x) converges uniformly (to something). Due to the completeness of the trigonometric functions

that something is f(x), establishing the result that limN→∞ sN(x) = f(x).

Remark: The completeness of the Fourier eigenfunctions or equivalently the validity of the Parse-

val’s identity might seem sufficient for the convergence of the Fourier series. However, such results

ensure the mean-square convergence rather than the uniform one that we obtained in the previous

Theorem. The latter is a much stronger convergence condition.

Now that we established the condition for the convergence let see an example where Fourier expansion

is used.
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13.3.1 Example

Find the Fourier series of the following 2π-periodic function as shown in Figure 13.1 (upper panel)

f(x) =

−x, −π ≤ x < 0,

x, 0 ≤ x < π.

We first notice that such function satisfies the conditions to have a convergent Fourier expan-

sion being periodic, continuous and also picewise continuously differentiable. We look first at the

trigonometric series by finding the corresponding coefficients

a0 = − 1

π

∫ 0

−π
x dx+

1

π

∫ π

0

x dx =
[x2]

π
0 − [x2]

0
−π

2π
= π

and for n ̸= 0

an =
1

π

∫ 0

−π
(−x) cosnx dx+ 1

π

∫ π

0

x cosnx dx = −nx sin (nx) + cos (nx)

n2

∣∣∣∣0
−π

+
nx sin (nx) + cos (nx)

n2

∣∣∣∣π
0

= 2
(−1)n − 1

n2
=

− 4

n2
n odd

0 n even

where we have integrated by parts. Similarly it can be shown that bn = 0. The Fourier series is then

f(x) =
π

2
− 4

∞∑
n=1

cosnx

n2
.

One can see from Figure 13.1 (lower panel) how the first two term of the Fourier series approx-

imate the original triangular function. Notice that being an even function will have only cosine

eigenfunctions and the same for an odd one that will be a combination of only sine eigenfunctions.

13.4 Uniform Convergence for Piecewise C1 functions; The

Dirichlet Kernel

We can extend these ideas to a larger class of functions, namely those that are piecewise continuously

differentiable.

Definition 13.2 A function f defined on an interval [a, b] is piecewise continuously differentiable

if there exists a finite subdivision a = x0 < x1 < · · · < xs = b such that

� f is continuously differentiable on (xi−1, xi) for i = 1, 2, . . . , s;

� the one-sided limits f ′(xi−1+) = lim
x↘xi−1

f ′(x) and f ′(xi−) = lim
x↗xi

f ′(x) for i = 1, 2, . . . , s.
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Figure 13.1:

13.4.1 Basel Problem

The previous results mean that the graphs of of f and f ′ may have only finitely many jumps. The

existence of the left and right derivatives an each xi also means that the corresponding limits of the

function itself must exist.

Theorem 13.4 (Basel Problem) The following sum is true:

∞∑
n=1

1

n2
=
π2

6

Proof: We will this result using Parseval’s identity. Let us start considering the (Fourier) coefficients

of f(x) = x

cn =
1

2π

π∫
−π

xe−inxdx =
(inx+ 1) e−inx

2πn2

∣∣∣∣π
−π

= i
cos(nπ)

n
= i

(−1)n

n
(n ̸= 0 and c0 = 0).

This means that |cn|2 =
1

n2
for n ̸= 0. Now using the Parseval’s identity we finally have

1
2

∞∑
n=−∞

|cn|2 =
∞∑
n=1

1

n2
=

1

4π

π∫
−π

x2 dx =
π2

6
.

Notice here that for the Parseval identity we don’t require the periodicity of f(x) but just the

completeness of the eigenfunctions e−inx.
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13.4.2 Partial Sums

We look at sN(x) in cases where the generating function f(x) is:

� Continuous on [−π, π];
� The first derivative possesses a finite number of jump discontinuities but is otherwise piecewise

differentiable.

We have:

sN(x) =
N∑

n=−N

cne
inx,

and

cn =
1

2π

∫ π

−π
f(x)dx.

Here, f is 2π-periodic. We perform integration by parts here, remembering that f ′(x) is defined on

sub-intervals [xi−1, xi], where i = 1, 2, · · · , s, and x0 = −π, and xs = π. We have:

cn =
1

2π

s∑
i=1

[f(x)e−inx

−in

]xi
xi−1

− 1

−in

xi∫
xi−1

f ′(x)e−inxdx

 .

Also,

s∑
i=1

[
−f(x)e−inx

]xi
xi−1

=
(
f(x0)e

−inx0 − f(x1)e
−inx1

)
+
(
f(x1)e

−inx1 − f(x2)e
−inx2

)
+ · · ·

+
(
f(xs−2)e

−inxs−2 − f(xs−1)e
−inxs−1

)
+
(
f(xs−1)e

−inxs−1 − f(xs)e
−inxs

)
= f(−π)e−inπ − f(π)einπ = 0.

Hence,

cn = − 1

2πin

s∑
i=1

xi∫
xi−1

f ′(x)e−inxdx

and

|cn| ≤
1

2π|n|

s∑
i=1

∣∣∣∣∣∣
xi∫

xi−1

f ′(x)e−inxdx

∣∣∣∣∣∣ ≤ 1

2π|n|
s dn,

where we have defined

dn = max
1≤i≤s

Ii, Ii =

∣∣∣∣∣∣
xi∫

xi−1

f ′(x)e−inx dx

∣∣∣∣∣∣ .
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Let the maximum in this equation be realised at i = M . Thus, for the full range of n, the values

±dn can themselves be viewed as a set of Fourier coefficients of f ′(x) over the [xM−1, xM ] Then

by our proof of the Riemann-Lebesgue Lemma,
∞∑

n=−∞
|dn|2 converges and |dn| → 0 as n→ ∞, the

sum being bounded by

∞∑
n=−∞

|dn|2 ≤ max
1≤i≤s

∣∣∣∣∣∣
xi∫

xi−1

|f ′(x)|2dx

∣∣∣∣∣∣ ≤
π∫

−π

|f ′(x)|2dx.

Following the same procedure as before, we have:

2π

s

N∑′

n=−N

|cn| ≤
N∑′

n=−N

dn
|n|

≤

(
N∑′

n=−N

|dn|2
)1/2( N∑′

n=−N

1

n2

)1/2

≤ π√
3

 π∫
−π

∣∣f ′(x)
∣∣2dx

1/2

,

where we have used the Cauchy-Schwarz inequality and the result of the Basel problem. Now, if

f(x) is continuous at x, then all of the previous calculations involving the M -test go through as

before, and we have

sN(x) → f(x), N → ∞.

In cases where f(x) has a jump discontinuity, more work needs to be done, as below.

13.4.3 The Dirichlet Kernel

Consider the partial sum

sN(x) =
N∑

n=−N

cne
inx

=
1

2π

N∑
n=−N

einx
π∫

−π

f(x′)e−inx
′
dx′

Continuing thus, we have:

sN(x) =
1

2π

π∫
−π

(
N∑

n=−N

ein(x−x
′)

)
f(x′)dx′

=
1

2π

π∫
−π

(
N∑

n=−N

e−inu

)
f(x+ u)du
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on letting u = x′−x and using the periodicity of the integrand. This looks like an Fredholm integral

equation of the First Kind. We have:

N∑
n=−N

e−inu GP
=

eiNu(1− e−i(2N+1)u)

1− e−iu
,

=
ei(N+ 1

2
)u − e−i(N+ 1

2
)u)

ei
1
2
u − e−i 1

2
u

.

Continuing thus, we have:

N∑
n=−N

e−inu =


sin(N + 1

2
)u

sin 1
2
u

u ̸= 0

2N + 1 u = 0,

= DN(u).

Here, we have identified the Dirichlet kernel, DN(u), a plot of which is shown in Figure 13.2.

-π -
π

2

π

2 π

5

10

Figure 13.2: Illustration of the Dirichlet kernel for N = 6.

Theorem 13.5 (Properties of the Dirichlet Kernel) The following properties are true:

1. DN(−π) = DN(π) = (−1)N .

2.
π∫

−π
DN(u) du = 2π.
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Proof: For (i), we have:

DN(±π) =
± sin(N + 1

2
)π

± sin 1
2
π

,

=
sinNπ cos 1

2
π + cosNπ sin 1

2
π

sin 1
2
π

,

= cosNπ,

= (−1)N .

For (ii) we have:

π∫
−π

DN(u) du =

π∫
−π

N∑
n=−N

e−inudu,

=

N∑′

n=−N

2π
1

−in
δn0 + 2π

= 2π.

Remark: As DN(u) is manifestly even
0∫

−π
DN(u)du =

π∫
0

DN(u)du = π.

We are now able to show our key result regarding the convergence of the partial sum sN(x) at points

of discontinuity.

Theorem 13.6 Let f(x) be an absolutely integrable 2π−periodic function, i.e., a piecewise C0

and C1 in the interval [−π, π]. Then at every point where f(x) has a right-hand and left-hand

derivative, the Fourier series of f(x) converges with

lim
N→∞

sN(x) =
1
2
[f(x+) + f(x−)] .

Proof: Let x0 ∈ [−π, π] be a point where f(x) is continous. We have:

SN(x0)− f(x0) =
1

2π

∫ π

−π
f(x0 − y)DN(y)dy − f(x0)

[
1

2π

∫ π

−π
DN(y)dy

]
,

=
1

2π

∫ π

−π
[f(x0 − y)− f(x0)]DM(y)dy,

=
1

2π

∫ π

−π

f(x0 − y)− f(x0)

y

y

sin 1
2
y
sin
[
(N + 1

2
)y
]
dz,

=
1

2π

∫ π

−π
g(y) sin

[
(N + 1

2
)y
]
dy.

As y → 0, the expression

g(y) =
f(x0 − y)− f(x0)

y

y

sin 1
2
y
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tends to

2f ′(x0 ± 0),

where x0 ± 0 indicates the left- and right-hand limits. By assumption these are bounded, and so

the function g(y) is bounded on [−π, π]. The function g(y) therefore lives in the set L2([−π, π])
and thus, by the Riemann–Lebesgue Lemma,

lim
M→∞

∫ π

−π
g(y) sin

[
(M + 1

2
)y
]
dy = 0.

Thus, we have shown that if f(x) is continuous at x0, then the partial sum SN(x0) converges to

f(x0) as N → ∞.

On the other hand, if x0is a point of discontinuity, we consider x0 − ϵ and x0 + ϵ, where ϵ > 0.

Then,

SN(x0 − ϵ) → f(x0 − ϵ),

and

SN(x0 + ϵ) → f(x0 + ϵ).

Since the partial sums are continuous (they are sines and cosines0, we have:

SN(x0) → 1
2
lim
ϵ↓0

[f(x0 − ϵ) + f(x0 + ϵ)] .

13.5 Uniform Convergence and the Fejér Kernel

To broaden the class of functions for which we can obtain pointwise convergence we introduce the

concept of arithmetic mean and Cesàro summability.

13.5.1 Cesàro summability

Let a0, a1, . . . be a series, and let

sn =
n∑
k=0

ak.

be its nth partial sum (so if the series is summable in the usual sense if the limit lim
n→∞

sn exists).

Next construct the arithmetic mean of the first N partial sums by

σN =
1

N + 1

N∑
n=0

sn.

Then the sequence is called ‘Cesàro summable’, with Cesàro sum σ, if σN converges in the standard

sense to σ.
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13.5.2 Properties

If the series is a1, a2, . . . convergent in the standard sense, then it is also Cesàro summable and its

Cesàro sum is the usual sum (as sn is essentially s for all sufficiently large n).

To see that the converse is not true consider the alternating sequence ak = (−1)k then sn =

(1+ (−1)n)/2, i.e. the repeating sequence of 1, 0, 1, 0, . . . which clearly does not converge. On the

other hand

σN =
1

N + 1

N∑
n=0

,

=
1

N + 1

[
1
2
(N + 1) + 1

2

N∑
n=0

(−1)n

]
,

=
1

N + 1

[
1
2
(N + 1) + sn

]
.

Thus, σN → 1/2 as N → ∞, so ak = (−1)k (k = 0, 1, . . . ) is Cesàro summable with Cesàro sum
1
2
.

In this sense Cesàro summablility is a non-trivial extension of the standard concept of convergence.

13.5.3 Arithmetic Means for Fourier Series

Applying this concept to partial sums of Fourier Series we arrive at the sequence of arithmetic means

σN(x) =
1

N + 1

N∑
n=0

sn(x)

=
1

2π

π∫
−π

1

N + 1

N∑
n=0

Dn(u)f(x+ u) du.
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Correspondingly, we define the Fejér kernel KN(u) by

KN(u) =
1

N + 1

N∑
n=0

Dn(u)

=
1

N + 1

N∑
n=0

sin(n+ 1
2
)u

sin 1
2
u

(u ̸= 0)

=
1

N + 1

N∑
n=0

sin(n+ 1
2
)u sin 1

2
u

sin2 1
2
u

=
1

N + 1

1

2 sin2 1
2
u
[(1− cosu) + (cosu− cos 2u) + · · · (cosNu− cos(N + 1)u)] ,

=
1

N + 1

N∑
n=0

cosnu− cos(n+ 1)u

2 sin2 1
2
u

=
1

N + 1

1− cos(N + 1)u

2 sin2 1
2
u

=
1

N + 1

sin2 N+1
2
u

sin2 1
2
u

The value KN(0) = N + 1 follows from direct computation:

1

N + 1

N∑
n=0

Dn(0) =
1

N + 1

N∑
n=0

(2n+ 1),

=
1

N + 1

[
1
2
× 2×N(N + 1) + (N + 1)

]
,

= N + 1.

Remark: From the explicit expression here it is clear that the Fejér kernel is positive definite; this

property means it has much nicer properties than the Dirichlet kernel.

The kernel is plotted in Figure 13.5.3.

-π -
π

2

π

2 π

1

2

3

4

5

6

7

Figure 13.3: Illustration of the Fejér kernel for N = 6.
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Notice that, for the Fejer kernel,

π∫
−π

KN(u)du =
1

N + 1

N∑
n=0

π∫
−π

Dn(u)du,

=
1

N + 1

N∑
n=0

2π

= 2π.

Notice also that KN(0) = N + 1. Thus, the height of the central lobe increases (without limit) as

N → ∞ while its width, 2π/(N + 1), decreases but overall in such a way that the integral stays

constant.

We are now in a position to prove the main result of this section:

Theorem 13.7 (Pointwise convergence (without derivatives)) Let f(x) be an absolutely in-

tegrable function of period 2π. Then at every point where f(x) has a right-hand and left-hand limit,

the Fourier series of f(x) converges in the Cesàro sense with

lim
N→∞

σN(x) =
1
2
[f(x+) + f(x−)] .

Remark: The assumptions of the theorem immediately apply to a function that is piecewise con-

tinuous on [−π, π].

Proof: We split the integrand into the two regions (−π, 0) and (0, π). As such, we aim to show:

lim
N→∞

1

2π

π∫
0

KN(u) (f(x+ u)− f(x+)) du = 0.

A similar result for x− will establish the result. Here, we are using the notation x+ and x− to

denote points just to the right of x and just to the left of x, respectively.

We focus on the interval (0, π). We split the integrand into a region around 0 and the remainder

away from 0. First given any ϵ > 0 as the limit f(x+) exists we can find a δ > 0 such that∣∣f(x+ u)− f(x+)
∣∣ < ϵ whenever x ∈ (0, δ).

Correspondingly ∣∣∣∣∣∣
δ∫

0

KN(u) (f(x+ u)− f(x+)) du

∣∣∣∣∣∣ ≤ ϵ

δ∫
0

KN(u)du

≤ ϵ 2π
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where we have used the positivity of KN(u) (twice). Then on [δ, π]:

KN(u) =
1

N + 1

sin2 N+1
2
u

sin2 1
2
u

≤ 1

N + 1

1

sin2 1
2
u
≤ 1

N + 1

1

sin2 1
2
δ

and so ∣∣∣∣∣∣
π∫
δ

KN(u) (f(x+ u)− f(x+)) du

∣∣∣∣∣∣ ≤ 1

N + 1

1

sin2 1
2
δ

π∫
δ

|f(x+ u)− f(x+)| du

which clearly tends to 0 as N → ∞ as, by assumption, the integral exists. Putting both parts of

the integral together (i.e. [0, δ] and [δ, π], ew have

π∫
0

KN(u) (f(x+ u)− f(x+)) du→ 0.

A similar result applies for x−:

0∫
−π

KN(u) (f(x+ u)− f(x−)) du→ 0.

and so:
π∫

−π

KN(u)f(x+ u)du→ 1
2
[f(x−) + f(x+)] ,

and the result is shown.

Remark: If we tried the same argument with the Dirichlet kernel we would need to consider
δ∫
0

∣∣DN(u)
∣∣du but this tends to ∞ as N → ∞.

Remark: Furthermore, if f ∈ C0[−π, π] we may choose a δ that works for all x
(
minx∈[−π,π] δ(x)

)
and bound our integrals above by a suitable multiple of supx∈[−π,π]

∣∣f(x)∣∣, to deduce that σN(x)

converges uniformly to f(x) on [−π, π].
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Chapter 14

Application of Fredholm Integral

Equations

Overview

In this chapter we look at an application of Fredholm Integral Equations in Quantum Mechanics –

in particular, in solving the Schródinger equation in case of a time-independent Hamiltonian. It is

not necessary to understand very much about Quantum Mechanics to follow the derivations.

14.1 The Schrödinger Equation

In this chapter we are concerned with the Schrödinger equation in one spatial dimension:

i
∂ψ

∂t
= Ĥψ, ψ(x, t = 0) = ψ0(x), x ∈ (−∞,∞), (14.1a)

We focus on systems with time-translation symmetry, such that the Hamiltonian operator Ĥ can

be written as:

Ĥ = − ∂2

∂x2
+ U(x). (14.1b)

The potential U(x) is assumed to have the following properties:

� The analytical continuation of U(x) to the complex plane produces a holomorphic function;

� We have

U(x) ∼

Cx2p, |x| → ∞, case 1,

C, |x| → ∞, case 2,
(14.1c)

where p is a positive integer and C is a positive real number. In the second case, it is also

assumed that U ′(x) → 0 as |x| → 0.

� Without loss of generality, it is further assumed that U(x) is even in x.
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Chapter 14. Application of Fredholm Integral Equations

No conditions are as yet placed on the initial data ψ0(x), except that it should be a continuous

function. It is not necessarily square integrable. Solving Equation (14.1a) forward in time can be

regarded as a signalling problem. Such problems are often encountered in Engineering and Physics.

A first step in solving a signalling problem is often to carry out a Laplace Transform.

14.1.1 The Laplace Transform

We multiply both sides of Equation (14.1a) by e−λt, where t > 0 and λ is an arbitrary (possibly

complex-valued) parameter:

e−λt
(
i
∂ψ

∂t

)
= [−∂xx + U(x)]ψ(x, t)e−λt.

We then integrate with respect to t from t = 0 to t = ∞, applying the boundary conditions at

t = 0:

−iψ(x, 0) + λ

∫ ∞

0

ψ(x, t)e−λtdt = [−∂xx + U(x)]
∫ ∞

0

ψ(x, t)e−λtdt. (14.2)

We identify the Laplace transform of ψ(x, t):

ψλ(x) =

∫ ∞

0

ψ(x, t)e−λtdt. (14.3)

We assume that ψ(x, t) is at worst exponentially divergent in t:

|ψ(x, t)| ≤Meλ0t, M, λ0 ∈ R+.

Hence, in order for Equation (14.3) to make sense, require:

ℜ(λ) > λ0.

Thus, Equation (14.2) can be written as:

−iψ0(x) + iλψλ(x) = Ĥψλ(x), (14.4)

Notice that this equation is of Sturm–Liouville type, albeit that now the interval on which the

problem is posed is infinite.

From now on, we write

λ = −iω, (14.5)

and we consider the equation

−iψ0(x) + ωψω(x) = Ĥψω(x), (14.6)
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14.2. Green’s functions

Remark: Properly, we have ψλ(x) = ψ−iω(x). Thus, we should have:

ψλ(x) = ψ−iω(x) = Ψω(x),

where Ψ and ψ are different functions. However, we use an abuse of notation here and write ψω(x)

for Ψω(x), it being understood that this really means the Laplace-transform of ψ(x, t), evaluated at

λ = −iω.

It now remains to find the response ψω(x) to the initial configuration ψ0(x). Formally, we have

ψω(x) =
(
Ĥ − ωI

)−1

[−iψ0(x)] . (14.7)

The aim of this chapter is to give meaning to the expression (14.7).

14.2 Green’s functions

For definiteness, we consider Case 1 in the classification of the potential function. We investigate

the inhomogeneous equation

[−∂xx + U(x)]ψω(x) = ωψω(x)− iψ0(x)︸ ︷︷ ︸
=s(x)

, (14.8a)

as well as its homogeneous counterpart,

[−∂xx + U(x)]ψω(x) = 0. (14.8b)

Notation alert: We now drop the subscript ω from ψω(x), it being understood that we are working

with the Laplace transform of ψ(x, t).

As |x| → ∞, the homogeneous equation (14.8b) becomes

∂xxψ(x) ∼ Cx2pψ(x),

and is is straightforward to show that the asymptotic solution contains two linearly independent

solutions, one exponentially growing as |x| → ∞, and the other exponentially decaying. These

asymptotic solutions must connect continuously to the solution at finite x, leading to the conclusion

that the solution of the homogeneous equation (14.8b) comes in two linearly independent parts,

ψ(x) = Aψ1(x) +Bψ2(x), (14.9a)

where

lim
|x|→∞

ψ1(x) = 0, lim
|x|→∞

ψ2(x) = ∞. (14.9b)
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Chapter 14. Application of Fredholm Integral Equations

On the other hand, given the symmetry of the potential, U(x) = U(−x), we must take ψ(x) to be

odd or even. Using the method of Frobenius to generate power-series solutions of Equation (14.8b)

near x = 0, it is possible to construct two linearly independent solutions, ψ(x) = Cϕ1(x)+Dϕ2(x),

where

ϕ1(x) = 0, ϕ′
1(x) = 1,

ϕ2(x) = 1, ϕ′
2(x) = 0,

corresponding to odd and even solutions respectively. In this way, continuous, square-integrable

Green’s functions for Equation (14.8) can be constructed as follows:

Godd(x, y) =

−ϕ1(x)ψ1(y)/Wodd, 0 ≤ x < y,

−ϕ1(y)ψ1(x)/Wodd, y < x <∞,
(14.10a)

where

Wodd =

∣∣∣∣∣ ψ1(y) ϕ1(y)

ψ′
1(y) ϕ′

1(y)

∣∣∣∣∣ (14.10b)

is the Wronskian. For the Schrödinger equation in canonical form p2(x)ψ
′′(x) + p1(x)ψ

′(x) +

p0(x)ψ(x) = 0, we have p2(x) = −1 and p1(x) = 0. Thus, by Abel’s Theorem, the Wronskian is a

constant. Hence, in the odd case, Wodd = ψ1(0).

The even case is constructed in a similar manner. We obtain:

Geven(x, t) =

−ϕ2(x)ψ1(y)/Weven, 0 ≤ x < y,

−ϕ2(y)ψ1(x)/Weven, y < x <∞,
, (14.11a)

where now

Weven =

∣∣∣∣∣ ψ1(y) ϕ2(y)

ψ′
1(y) ϕ′

2(y)

∣∣∣∣∣ = −ψ′
1(0). (14.11b)

From now on, we let G(x, y) denote either one of the Green’s functions, Equation (14.10) or (14.11).

We have:

Theorem 14.1 The Green’s Function G(x, y) is symmetric.

Proof: Focus on the even case without loss of generality. Look first at x < y. Since the Wronskian

is constant and equal to C, say, we have:

G(x, y) = − 1

C
ϕ1(x)ψ1(y), x < y.

Hence,

G(y, x) = − 1

C
ϕ1(y)ψ1(x).
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The case x > y is similar. This shows that G(x, y) = G(y, x).

Continuing thus, the solution to the inhomogeneous equation (14.8a) is now available as

ψ(x) =

∫ ∞

0

G(x, y)s(y)dy. (14.12)

Filling in for s(x) = ωψ(x)− iψ0(x), this is:

ψ(x) =

∫ ∞

0

G(x, y) [−iψ0(y)] dy︸ ︷︷ ︸
=ψ̂0(x)

+ω

∫ ∞

0

G(x, y)ψ(y)dy. (14.13)

This is exactly the Fredholm Integral Equation, so well studied in previous chapters. The corre-

sponding eigenvalue problem can be obtained by setting ψ0(x) = 0 in Equation (14.13):

ψ(x) = ω

∫ ∞

0

G(x, y)ψ(y) dy.

Going back to the original ordinary differential equations, the eigenfunction solves:

[−∂xx + U(x)]ψ(x) = ωψ(x)

for a particular value of ω (the eigenvalue).

14.3 The Integral Operator

We combine aspects of the eigenvalue problem with aspects of the inhomogeneous problem in order

to solve Equation (14.6), viz.

−iψ0(x) + ωψ(x) = Ĥψ(x).

We identify s(x) = ωψ(x)− iψ0(x). Again, we have Equation (14.13):

ψ(x) =

∫ ∞

0

G(x, y) [−iψ0(y)] dy︸ ︷︷ ︸
=ψ̂0(x)

+ω

∫ ∞

0

G(x, y)ψ(y)dy.

We re-write this equation as follows by defining a number of quantities:

Kψ(x) :=
∫ ∞

0

G(x, y)ψ(y)dy.

ψ̂0(x) :=

∫ ∞

0

G(x, y) [−iψ0(y)] dy = −iKψ0(x).

We also have the following key theorem:
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Chapter 14. Application of Fredholm Integral Equations

Theorem 14.2 The following identity holds, for all ψ ∈ C([0,∞))
⋂
L2([0,∞)):

ĤKψ(x) = ψ(x), x ∈ (0,∞).

Proof: We have:

ĤKψ(y) = Ĥ

∫ ∞

0

G(x, y)ψ(y)dy,

=

∫ ∞

0

ĤxG(x, y)ψ(y)dy,

Theorem 6.1,#2
=

∫ x+ϵ

x−ϵ
ψ(y)dy,

=

∫ x+ϵ

x−ϵ

∂

∂x

∂G(x, y)

∂x
ψ(y)dy,

=
∂G(x, y)

∂x

∣∣y=x+ϵ
y=x−ϵψ(x),

Theorem 6.1,#4
= ψ(x),

=

∫ ∞

0

δ(x− y)ψ(y)dy.

Remark: Formally, we may write

ĤK = δ, (14.14)

where δ is the Dirac delta function.

14.4 Hilbert–Schmidt Theory

Based on the definition of the integral operator K and its corresponding Green’s Function G(x, y),

we are led to consider the following integral equation:

ψ(x) = ψ̂0(x) + ωKψ(x) ⇐⇒ [I− ωK]ψ(x) = ψ̂0(x). (14.15)

We observe that, by construction

� G(x, y) is symmetric in x and y;

� G(x, y) is continuous in x and y;

� G(x, y) is square integrable in x and y,

and thus, the operator problem (14.15) satisfies the Fredholm alternative, which was developed

in Chapter 8:
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Either the FIE (14.15) has a unique solution for each ψ̂0(x), or the corresponding

homogeneous problem

[I− ωK]ψ(x) = 0

has a non-trivial solution.

To make progress in the solution of Equation (14.1a), we consider again the eigenvalue problem

[I− ωK]ψ(x) = 0. (14.16)

Since G(x, y) is a symmetric kernel, K is self-adjoint:

⟨f,Kg⟩ = ⟨Kf, g⟩,

where f and g are square-integrable complex-valued functions of a single real-variable, and where

⟨f, g⟩ =
∫ ∞

0

f ∗(x)g(x)dx. (14.17)

From Chapter 8, we have:

� The eigenvalues of Equation (14.16) are real;

� Eigenfunctions corresponding to distinct eigenvalues are orthogonal in the inner product (14.17).

We can further look back at the Functional Analysis of FIEs (Chapter 10). These results were for

FIEs in a finite interval [a, b]. However, after some more background reading, we find that some of

these results apply just as well to the interval [0,∞)1, in particular:

1. Let K ̸= 0 be self-adjoint. Then K has at least one eigenvalue.

2. Let K ̸= be self-adjoint. Then K has an eigenvalue of smallest modulus, say λ1, and

1

λ21
= sup

f ̸=0

⟨f,Kf⟩
⟨f, f, ⟩

= ∥K∥2.

In a similar manner, we may refer back to Chapter 10 on the Functional Analysis of FIEs and

Chapters 11–12 on Sturm–Liouville theory, and generalize from the interval [a, b] to [0,∞):

3. Let K ≠ 0 be the solution operator for the SL problem (14.4). Let U(x) be in Case 1:

U(x) ∼ Cx2p as x→ ∞. Then,

� K has countably infinitely many eigenvalue-eigenfunction pairs, {ωn, vn(x)}∞n=0;

1E.g. Chapter 7, Partial Differential Equations of Mathematical Physics and Integral Equations, R. B. Guenther
and J. W. Lee
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� For any f(x) square-integrable on [0,∞) and in range of the integral operator (i.e.

f = Kg, for some g ∈ L2([0,∞)), f(x) converges uniformly and absolutely to

f(x) =
∞∑
n=0

⟨f, vn⟩vn(x), (14.18)

almost everywhere on [0,∞).

Equation (14.18) is Hilbert–Schmidt theory, applied to the Schrödinger equation.

14.5 Solving the signalling problem using Hilbert–Schmidt

Theory

We now move forward in solving Equation (14.15), recalled here to be

[I− ωK]ψ(x) = ψ̂0(x). (14.19)

We now focus on source functions ψ0(x) that have the following decomposition:

ψ0(x) = ψ01(x) + ψ02(x),

where

ψ01(x) ∈ L2([0,∞)), |ψ02(x)| ≤M, x→ ∞,

where M is a positive constant. This gives rise to the following differential equation to be solved:

[I− ωK]ψ(x) = ψ̂0,1(x) + ψ̂0,2(x), (14.20a)

where

ψ̂0,1 = −iKψ01, ψ̂0,2 = −iKψ02.

We break up the solution as follows:

ψ(x) = χ1(x) + χ2(x), (14.20b)

where

[I− ωK]χ1(x) = ψ̂0,1(x), (14.20c)

and

[I− ωK]χ2(x) = ψ̂0,2(x). (14.20d)

We consider first of all Equation (14.20c), which is the part of the solution that is square-integrable.

Since ψ̂0,1 = −iKψ01 is in the range of the operator, we can apply Hilbert–Schmidt theory. Therefore,
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we can write:

χ1(x) =
∞∑
n=0

anvn(x), ψ̂0,1(x) =
∞∑
n=0

⟨ψ̂0,1, vn⟩vn(x), (14.21)

and we determine the an’s. We have:

[I− ωK]χ1(x) = [I− ωK]
∞∑
n=0

anvn(x),

=
∞∑
n=0

an [I− ωK] vn(x),

=
∞∑
n=0

an

(
1− ω

ωn

)
vn(x),

=
∞∑
n=0

an

(
ωn − ω

ωn

)
vn(x),

Eq. (14.20c)
= ψ̂0,1(x),

Eq. (14.21)
=

∞∑
n=0

⟨ψ̂0,1, vn⟩vn(x).

Hence,

an =
ωn⟨ψ̂0,1, vn⟩
ωn − ω

,

and hence finally,

χ1(x) =
∞∑
n=0

ωn⟨ψ̂0,1, vn⟩
ωn − ω

vn(x), ω ̸= ωn.

We can develop this a bit further as follows (with ω ̸= ωn):

χ1(x) =
∞∑
n=0

ωn⟨ψ̂0,1, vn⟩
ωn − ω

vn(x),

=
∞∑
n=0

ωn⟨−iKψ01, vn⟩
ωn − ω

vn(x),

=
∞∑
n=0

ωn⟨−iψ01,Kvn⟩
ωn − ω

vn(x),

=
∞∑
n=0

ωn
1
ωn
⟨−iψ01, vn⟩
ωn − ω

vn(x),

=
∞∑
n=0

⟨−iψ01, vn⟩
ωn − ω

vn(x),

so our final answer here is:

χ1(x) =
∞∑
n=0

⟨−iψ01, vn⟩
ωn − ω

, ω ̸= ωn.
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We now focus on the solution component corresponding to non-square-integrable initial forcing.

This is Equation (14.20d), re-written here as(
Ĥ − ω

)
χ2(x) = −iψ02(x).

We identify two fundamental solutions of the homogeneous equation (Ĥ − ω)χ = 0 with which to

work, say ψ1(x;ω) and ψ2(x;ω). Using the method of variation of parameters, the solution to the

inhomogeneous problem reads

χ2(x;ω) =
1

W

[
−ψ1(x;ω)

∫ x

0

ψ2(x;ω) [−iψ02(x)] dx+ ψ2(x;ω)

∫ x

0

ψ1(x;ω) [−iψ02(x)] dx

]
,

=
F (x;ω)

W
.

where

W =

∣∣∣∣∣ ψ1 ψ2

ψ′
1 ψ′

2

∣∣∣∣∣
is the Wronskian. By linear independence, W (x) ̸= 0, and given the structure of the Schrödinger

equation, W = const. We set

W (x, ω) = const. = lim
x→∞

W (x, ω) := W (ω)

We therefore have a complete solution to the signalling problem (14.20a), recalled here to be

[I− ωK]ψ(x) = ψ̂0,1(x) + ψ̂0,2(x).

It is

ψ(x) = χ1(x) + χ2(x),

hence

ψ(x) =
∞∑
n=0

⟨−iψ01, vn⟩
ωn − ω

+
F (x;ω)

W (ω)
. (14.22)

14.6 The inversion

Given the functional form (14.22) for the solution to the signalling problem (14.20a), we perform

the ω-inversion. For definiteness, Equation (14.22) is here recalled to be

ψω(x) =
∞∑
n=0

⟨−iψ01, vn⟩
ωn − ω

vn(x) +
F (x;ω)

W (ω)
. (14.23)
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Note that we have restored the subscript ω to the ψω(x), which reminds us that all along we have

been solving for the Laplace-transformed version of ψ(x, t):

ψλ(x) =

∫ ∞

0

ψ(x, t)e−λtdt, λ = −iω.

As it turns out, there is a way to invert the Laplace transform, and hence, to reconstruct ψ(x, t)

from ψω(x). The following formula can be taken as given for the time being, but it is proved in

ACM 40690:

ψ(x, t) =
1

2πi

∫
B
ψλ(x)e

λtdλ.

where B is the Bromwich contour that lies to the right of all the λ-singularities in ψλ(x) (Figure 14.1,

left panel). However, we perform the rotation λ = −iω ⇐⇒ iλ = ω (Figure 14.1, right panel)

and get:

ψ(x, t) =
1

2π

∫
B
[−ψω(x)]e−iωtdω.

Thus, in the ω-space, the Bromwich contour lies above all the ω-singularities of ψω(x):

B = {(x, y) ∈ C| −∞ < x <∞, y = i∆}.

Think about this as being loosely equivalent to a Fourier transform and its inverse, except now the

integrals are done along a contour in the complex plane.

Figure 14.1: Left panel: The Bromwich contour B, expressed in the λ variables. Right panel: the

Bromwich contour, transformed into ω variables

It now remains to enumerate the ω-singularities in ψω(x):

1. The discrete spectrum, where ω = ωn. Since the eigenvalues ωn are real, the discrete spectrum

lies along the real axis.
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2. Zeros of W (ω).

3. Singularities in F (x;ω).

We now rule out the last two possibilities.

1. W (ω) ̸= 0. The Wronskian is a constant because it’s a self-adjoint problem with p2 = −1

(recall the notation of Chapter 4). In view of Theorem 3.5, it’s a non-zero constant.

2. A Frobenius-like series solution of the homogeneous problem (Ĥ − ω)χ yields coefficients of

χ1,2 that are analytic in ω. Hence, F (x;ω) is analytic and therefore has no singularities.

A further possibility is ruled out: contributions to the discrete spectrum contain do not involve

double roots, in view of the following theorem:

Theorem 14.3 The (normalizable) eigenfunctions of the Schrödinger equation in one dimension

form one-dimensional eigenspaces.

Proof: Essentially the same as Theorem 11.3.

It therefore follows that ∆ = ϵ in the Bromwich contour, where ϵ > 0 is any arbitrary constant.

Given that λ = −iω, the contour is closed in the lower-half-plane for t > 0, meaning that residues

of the (simple) poles give contributions2 Thus,

ψ(x, t) =
∞∑
n=0

⟨ψ01, vn⟩vn(x)e−iωnt, t > 0,

which is the solution that one would obtain using PDE theory and separation of variables! Except

that the time evolution ‘filters out’ the non-square-integrable part of the initial condition.

14.7 Continuous Spectra

We look at Case 2 of of the classification of the potential function, with U(x) → C as x→ ∞. For

large x, the Schrödinger equation becomes:

−∂xxψω + Cψω = ωψω.

The decaying solution is ψω(x) ∝ e−
√
C−ωx, valid as x → ∞. Hence, if ω is to be an eigenvalue

corresponding to a decaying solution, we require ω < C. Furthermore, by the results in Chapter 10

(in particular, Theorem 10.7) the kernel function for K is separable, and there are only finitely

many eigenvalues.

2The contour is closed in the lower half-plane for t > 0. The reason is that the integrand contains a contribution
such as eλt = e−iωrt+ωit In order for the integrand actually to be integrable, we require the eωit term to be
exponentially decaying. Hence, for t > 0, we take ωi < 0 and hence, the contour is closed in the lower half-plane.
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On the other hand, if ω > C, this corresponds to not-square-integrable component of the solution,

similar to χ2 in Section 14.6. Using a similar argument as before (and not filling in details at all),

we find that the Wronskian in Equation (14.22) now becomes:

W = 2
√
ω − C

This has a branch cut in the complex plane (Figure 14.2).

Going through all of the previous steps necessary for the inversion (Section 14.6), we obtain:

ψ(x, t) =
N∑
n=0

⟨ψ01, vn⟩vn(x)e−iωnt +
1

2π

∫ ∞

C

(−1)∆

(
F (x;ω)

2
√
ω − C

)
e−iωtdω (14.24)

The second contribution here corresponds to travelling waves and hence, unbound states where

the particle can no longer be localized by the potential function (Figure 14.3). Here, ∆ denotes

evaluation of the function F (x;ω)/2
√
ω − C on either side of the branch cut.

Figure 14.2: Contour of integration for Equation (14.24).
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Figure 14.3: The idea behind unbound states in Quantum Mechanics. Taken from phys.libretexts.org
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