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Typically, problems in Applied Mathematics are modelled using a set of equations that can be written

down but cannot be solved analytically. In this module we examine numerical methods that can be

used to solve such problems on a desktop computer. Practical computer lab sessions will cover the

implementation of these methods using mathematical software (Matlab). No previous knowledge of

computing is assumed.

Topics and techniques discussed include but are not limited to the following list. Computer archi-

tecture: The Von Neumann model of a computer, memory hierarchies, the compiler. Floating-

point representation: Binary and decimal notation, floating-point arithmetic, the IEEE double

precision standard, rounding error. Elementary programming constructions: Loops, logical

statements, precedence, array operations, vectorization. Root-finding for single-variable func-

tions: Bracketing and Bisection, Newton–Raphson method. Error and reliability analyses for the

Newton–Raphson method. Numerical integration: Midpoint, Trapezoidal and Simpson methods.

Error analysis. Solving ordinary differential equations (ODEs): Euler Method, Runge–Kutta

method. Stability and accuracy for the Euler method. Linear systems of equations: Gaussian

elimination, partial pivoting. The condition number of a matrix: quantifying the idea that a

matrix can be ‘almost’ singular, investigating the consequences of this idea for the robustness of

numerical solutions of linear systems. Fitting data to polynomials using the method of least

squares. Random-number generation using the linear congruential method.
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What will I learn?

On completion of this module students should be able to

1. Describe the architecture of a modern computer using the Von Neumann model.

2. Describe how numbers are represented on a computer.

3. Use floating-point arithmetic, having due regard for rouding error.

4. Do elementary operations in Matlab, such ‘for’ and ‘while’ loops, logical statements, precdence.

5. Do array operations using loops; and equivalently, using vectorization.

6. Describe elementary root-finding procedures, analyse their robustness, and implement them

in Matlab.

7. Describe elementary numerical integration integration schemes, analyse their accuracy, and

implement them in Matlab.

8. Solve ODEs numerically uzing standard algorithms, analyse their accuracy and stability, and

implement them numerically.

9. Solve systems of linear equations using Gaussian elimination.

10. Analyse ill-conditioned systems of equations.

11. Fit data to polynomials.
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Chapter 1

Introduction

1.1 Module summary

Here is the executive summary of the module:

You will learn enough numerical analysis to enable you to solve ODEs, integrate functions, find

roots, and fit curves to data. At the same time, you will learn the basics of Matlab. You will

also learn about Matlab’s powerful built-in functions that make numerical calculations effortless.

In more detail, we will follow the following programme of work:

1. The architecture of a modern computer: Von Neumann model, memory hierarchies.

2. Represetation of numbers on a computer: binary versus decimal. Floating-point arithmetic.

Rounding error.

3. Elementary operations in Matlab: ‘for’ and ‘while’ loops, logical statements, precdence.

4. Array operations using loops; the superseding of these loop calculations by vectorization.

5. Root-finding: the Intermediate Value Theorem, Bracketing and Bisection, Newton–Raphson

method.

6. Failure analysis for the Newton–Raphson method, including analysis of iterative maps.

7. Numerical integration (quadrature) using the Midpoint, Trapezoidal, and Simpson’s rules.

Error analysis for the same.

8. Solving ODEs numerically: Euler and Runge–Kutta methods. Error analysis for the Euler

method. Stability analysis for the same.
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2 Chapter 1. Introduction

9. Solving systems of linear equations using Gaussian elimination.

10. Analysis of ill-conditioned systems (i.e. systems of linear equations that are ‘barely solvable’).

The condition number.

1.2 Learning and Assessment

Learning

• 36 contact hours, 3 per week, with the following possibilities:

– Three hours of lecturers (theory), no computer-aided labs;

– Two hours of lectures, one hour of labs;

– One hour of lectures, two hours of labs.

The split will happen on an ad-hoc basis as the module progresses.

Note finally, there will be precisely three contact hours per week, in spite of appearances to

the contrary on the official timetable.

• The lab sessions will involve using the mathematical software Matlab. No prior knowledge of

Matlab or programming is assumed. The students will be taught how to use Matlab in these

lab sessions.

• Supplementary reading and Matlab coding practice.

Assessment

• Three homework assignments, 62
3
% each, for a total of 20%

• One midterm exam, for a total of 20%

• One end-of-semester exam, 60%

Note that percentage-to-grade conversion table is the one used by the School of Mathematical

Sciences, see

http://mathsci.ucd.ie/tl/grading/en06
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Resitting the module

Assessment of resit students will be by one end-of-semester exam only, which will be assessed in the

usual way on a pass/fail basis.

Textbooks

• Lecture notes will be put on the web. These are self-contained. They will be available before

class. It is anticipated that you will print them and bring them with you to class. You can

then annotate them and follow the proofs and calculations done on the board in class.

• The lecture notes will also be used as a practical Matlab guide in the lab-based sessions.

• You are still expected to attend all classes and lab sessions, and I will occasionally deviate

from the content of the notes, and give revision tips for the final exam.

• Here is a list of the resources on which the notes are based:

– Afternotes on Numerical Analysis, G. W. Steward, (SIAM, 1996).

– For issues concerning numerical linear algebra: Dr Sinéad Ryan’s website:

http://www.maths.tcd.ie/~ryan/TeachingArchive/161/teaching.html

– For issues concerning computer architecture and memory, the course Introduction to

high-performance scientific computing on the website

www.tacc.utexas.edu/~eijkhout/Articles/EijkhoutIntroToHPC.pdf

• Other, more advanced works are referred to very occasionally:

– Chebyshev and Fourier Spectral Methods, J. P. Boyd (Dover, 2001), and the website

http://www-personal.umich.edu/~jpboyd/BOOK_Spectral2000.html

– The art of Computer Programming, Volume 2, D. Knuth (Addison-Wesley, 3rd Edition,

1997)

– Numerical Recipes in C, W. H. Press et al. (CUP, 1992):

http://apps.nrbook.com/c/index.html

Module dependencies

Some knowledge of Linear Algebra and Calculus is assumed. Important theorems in analysis are

referred to. For a reference, see the book Analysis: An Introduction, R. Beals (CUP, 2004).
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Office hours

I do not keep specific office hours. If you have a question, you can visit me whenever you like – from

09:00-18:00 I am usually in my office if not lecturing. It is a bit hard to get to. The office number,

building name, and location are indicated on a map at the back of this introductory chapter.

Otherwise, email me:

onaraigh@maths.ucd.ie



1.2. Learning and Assessment 5



Chapter 2

Floating-Point Arithmetic

Overview

Binary and decimal arithmetic, floating-point representation, truncation, truncation errors, IEEE

double precision standard

2.1 Introduction

Being electrical devices, ‘on’ and ‘off’ are things that all computers understand. Imagine a computer

made up of lots of tiny switches that can either be on or off. We can represent any number (and

hence, any information) in terms of a sequence of switches, each of which is in an ‘on’ or ‘off’ state.

We do this through binary arithmetic. An ‘on’ or an ‘off’ switch is therefore a fundamental unit

of information in a computer. This unit is called a bit.

2.2 Positional notation and base 2

One of the crowing achievements of human civilization is the ability to represent arbitrarily large

and small real numbers in a compact way using only ten digits. For example, the integer 570, 123

really means

570, 123 = (5× 105) + (7× 104) + (0× 103) + (1× 102) + (2× 101) + (3× 100)

Here,

• The leftmost digit (5) has five digits to its right and therefore comes with a power 105,

6



2.2. Positional notation and base 2 7

• The digit second from the left (7) has four digits to its right and therefore comes with power

of 104,

• And so on, down to the rightmost digit, which, by definition, has no other digits to its right,

and therefore comes with a power of 100.

In contrast, the Romans would have struggled to represent this number:

570, 123 = DLXXCXX I I I,

where the overline means multiplication by 1, 000.

Rational numbers with absolute value less than unity can be expressed in the same way, e.g.

0.217863:

0.217863 = (2× 10−1) + (1× 10−2) + (7× 10−3) + (8× 10−4) + (6× 10−5) + (3× 10−6).

Other rational numbers have a decimal expansion that is infinite but consists of a periodic repeating

pattern of digits:

1
7
= 0.142857142857 · · · = (1×10−1)+(4×10−2)+(2×10−3)+(8×10−4)+(5×10−5)+(7×10−6)

+ (1× 10−7) + (4× 10−8) + (2× 10−9) + (8× 10−10) + (5× 10−11) + (7× 10−12) + · · ·

Using geometric progressions, it can be checked that 1/7 does indeed equal 0.142857142857 · · · ,
since

0.142857142857 · · · = 1

(
1

10
+

1

107
+

1

1013
+ · · ·

)
+ 4

(
1

102
+

1

108
+ · · ·

)
+

+ 2

(
1

103
+

1

109
+ · · ·

)
+ 8

(
1

104
+

1

1010
+ · · ·

)
+

+ 5

(
1

105
+

1

1011
+ · · ·

)
+ 7

(
1

106
+

1

1012
+ · · ·

)
+ · · ·

=
1

10

(
1 +

1

106
+

1

1012
+ · · ·

)
+

4

102

(
1 +

1

106
+

1

1012

)
+ · · ·

=

(
1 +

1

106
+

1

1012
+ · · ·

)[
1

10
+

4

102
+

2

103
+

8

104
+

5

105
+

7

106

]
=

1

1− 1
106

(
105 + 4× 104 + 2× 103 + 8× 102 + 5× 10 + 7

106

)
,
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Hence,

0.142857142857 · · · =
106

106 − 1

(
105 + 5× 104 + 2× 103 + 8× 102 + 5× 10 + 7

106

)
,

=
105 + 4× 104 + 2× 103 + 8× 102 + 5× 10 + 7

106 − 1
,

=
142857

999999
,

=
142857

7× 142857
,

= 1
7
.

In a similar way, all real numbers can be represented as a decimal string. The decimal string may

terminate or be periodic (rational numbers), or may be infinite with no repeating pattern (irrational

numbers). For example, a real number y ∈ [0, 1), with

y =
∞∑
n=1

xn

10n
= 0.x1x2 · · ·

where xi ∈ {0, 1, · · · , 9}. This number does not as yet have a meaning. However, consider the

sequence {yN} of rational numbers, where

yN =
N∑

n=1

xn

10n
. (2.1)

This is a sequence that is bounded above and monotone increasing. By the completeness axiom,

the sequence has a limit, hence

y = lim
N→∞

yN .

The completeness axiom is therefore equivalent to the construction of the real numbers: any real

number can be obtained as the limit of a rational sequence such as Equation (2.1).

Now that we understand how numbers are represented in base 10 using positional notation, we now

examine other bases. Consider for example the string

x = 1010110,

in base 2. Using positional notation and base 2, we understand x to be the number

x = (1× 26) + (0× 25) + (1× 24) + (0× 23) + (1× 22) + (1× 2) + (0× 20),

= 64 + 16 + 4 + 2,

= 86, base 10.
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Numbers with absolute value less than unity can be represented in a similar way. For example, let

x = 0.01101 base 2.

Using positional notation, this is understood as

x =
0

2
+

1

22
+

1

23
+

0

24
+

1

25
,

= 1
4
+ 1

8
+ 1

32
,

= 8
32

+ 4
32

+ 1
32
,

= 13
32
,

= 0.40625 base 10.

Two binary strings can be added by ‘carrying twos’. For example,

+
0.0 1 1 0 1
1.1 1 1 0 0
10.0 1 0 0 1

Let’s check our calculation using base 10:

x1 = 0.01101 =
0

2
+

1

4
+

1

8
+

0

16
+

1

32
=

13

32
,

x2 = 1.111 = 1 +
1

2
+

1

4
+

1

8
=

15

8
=

60

32
.

Hence,

x1+x2 =
73

32
= 2+

9

32
= 2+

1

32
+

8

32
= 2+

1

32
+
1

4
= (1×21)+(0×2)+

1

22
+

1

25
= 10.01001 base 2.

Because computers (at least notionally) consist of lots of switches that can be on or off, it makes

sense to store numbers in binary, as a collection of switches in ‘on’ or ‘off’ states can be put into a

one-to-one correspondence with a set of binary numbers. Of course, a computer will always contain

only a finite number of switches, and can therefore only store the following kinds of numbers:

1. Numbers with absolute value less than unity that can be represented as a binary expansion

with a finite number of non-zero digits;

2. Integers less than some certain maximum value;

3. Combinations of the above.



10 Chapter 2. Floating-Point Arithmetic

An irrational real number (e.g.
√
2) will be represented on a computer by a truncation of the true

value. This introduces a potential source of error into numerical calculations – so-called rounding

error.

2.3 Floating-point representation

Rounding error is the original sin of computational mathematics. A partial atonement for this sin is

the idea of floating-point arithmetic. A base-10 floating-point number x consists of a fraction F

containing the significant figures of the number, and an exponent E:

x = F × 10E,

where
1
10

≤ F < 1.

Representing floating-point numbers on a computer comes with two kinds of limitations:

1. The range of the exponent is limited, Emin ≤ E ≤ Emax, where Emin is negative and Emax

is positive; both have large absolute values. Calculations leading to exponents E > Emax

are said to lead to overflow; calculations leading to exponents E < Emin are said to have

underflowed.

2. The number of digits of the fraction F that can be represented by on and off switches on a

computer is finite. This results in rounding error.

The idea of working with rounded floating-point numbers is that the number of significant figures

(‘precision’) with which an arbitrary real number is represented is independent of the magnitude of

the number. For example,

x1 = 0.0000001234 = 0.1234× 10−6, x2 = 0.5323× 106

are both represented to a precision of four significant figures. However, let us add these numbers,

keeping only four significant figures:

x1 + x2 = 0.0000001234 + 532, 300,

= 532, 300.0000001234,

= 0.5323000000001234× 106,

= 0.5323× 106 four sig. figs.,

= x1.
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Rounding has completely negated the effect of adding x1 and x2.

When starting with a real number x with a possibly indefinite decimal expansion, and representing it

floating-point form with a finite number of digits in the fraction F , the rounding can be implemented

in two ways:

1. Rounding up, e.g.

0.12345 = 0.1235, four sig. figs.,

and 0.12344 = 0.1234 and 0.12346 = 0.1235, again to four significant figures;

2. ‘Chopping’, e.g.

0.12345 = 0.12344 = 0.12346 = 0.1234, truncated to four sig. figs.

The choice between these two procedures appears arbitrary. However, consider

x = a.aaaaB,

which is rounded up to

x̃ = a.aaaC,

If B < 5, then C = a, hence

x− x̃ = 0.0000B = B × 10−5 < 5× 10−5.

On the other hand, if B ≥ 5, then C = a + 1 (the digit is incremented by one). In a worst-case

scenario, B = 5, and

x̃− x = a.aaaC − a.aaaaaB = (C − a)× 10−4 −B × 10−5 = 10−4 − 5× 10−5 = 5× 10−5.

In either case therefore,

|x̃− x| ≤ 5× 10−5.

Assuming a ̸= 0, we have |x| > 1, hence 1/|x| < 1, and

|x̃− x|
|x|

≤ 5× 10−5 = 1
2
× 10−4.
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More generally, rounding x to N decimal digits gives a relative error

|x̃− x|
|x|

≤ 1
2
× 10−N+1.

See if you can show by similar arguments that for chopping, the relative error is twice as large than

that for rounding: ∣∣˜̃x− x
∣∣

|x|
≤ 10−N+1.

A more convenient way of summarizing these results is as follows: Let

x̃ = fl(x)

be the result of rounding the real number x using either rounding up or chopping. Define the signed

relative error

ϵ =
fl(x)− x

x
. (2.2)

We know,

|ϵ| ≤ ϵN =

1
2
10−N+1, rounding up,

10−N+1, chopping.
(2.3)

Thus, by definition,

|ϵ| ≤ ϵN

Re-arranging Equation (2.2), we have

fl(x) = x(1 + ϵ), |ϵ| ≤ ϵN .

The value ϵN is calledmachine epsilon and depends on the floating-point arithmetic of the machine

in question. We can also think of machine epsilon as the largest number x for which the computed

value of 1 + x is 1. It can be computed as follows in Matlab:

x=1;

while( 1+x~=1)

x=x/2;

end

x=2*x;

display(x)

However, Matlab will display machine epsilon if you simply enter ‘eps’ at the command prompt.
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Common Programming Error:

Thinking that machine epsilon is ‘the smallest number (in absolute value) the computer’.

This is wrong. Machine epsilon refers to the maximum relative error between a number

and its representation on the computer. Equivalently, you can think of it as follows:

let x be the smallest number strictly greater 1 representable by the computer. Then

ϵN = x− 1. If you are still not convinced, we shall see soon when we study the double-

precision format that the smallest and largest numbers in absolute value terms are quite

distinct from machine epsilon.

2.4 Error accumulation

Most computing standards will have the following property:

fl(a ◦ b) = (a ◦ b)(1 + ϵ), |ϵ| ≤ ϵN , (2.4)

where ϵN is the machine epsilon and ◦ represents an arithmetic operation such as ×, +, −, or ÷.

This is a good property to have: if the error in representing the numbers a and b is small, then the

error in representing their sum is also small. Because machine epsilon is very small, the compound

error obtained in a long sequence of arithmetic operations (where each component operation has the

property (2.4)) is very small. Errors induced by compounding individual errors such as Equation (2.4)

are therefore almost always negligible. However, error accumulation can still occur in two other ways:

1. The numbers entered into the computer code lack the precision required for a long calculation,

and ‘cancellation errors’ occur;

2. Certain iterative algorithms contain stable and unstable solutions. The unstable solution is

not accessed if the ‘initial condition’ is zero. However, if the initial condition is ϵN , then the

unstable solution can grow over time until it swamps the other, desired solution.

These sources of error will become more apparent in the examples in the homework.
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2.5 Double precision and other formats

The gold standard for approximating an arbitrary real number in rounded floating-point form

x = F × 2E (2.5)

is the so-called IEEE double precision. A double-precision number on a computer can be thought

of as a 64 contiguous pieces of memory (64 bits). One bit is reserved for the sign of the number,

eleven bits are reserved for the exponent (naturally stored in base 2), and the remaining fifty-two

bits are reserved for the significand. Thus, in IEEE double precision, a real number is approximated

Figure 2.1: 64 contiguous bits in memory make up an IEEE floating-point number, with bits re-
served for the sign, the exponent, and the fraction. From http://en.wikipedia.org/wiki/Double-
precision floating-point format (20/11/2012).

and then stored as follows:

x ≈ fl(x) = (−1)sign

(
1 +

52∑
i=1

b−i

2i

)
× 2Es−1023.

Here, the exponent Es is stored using a contiguous eleven-bit binary string, meaing that Es can in

principle range from Es = 0 to Es = 2047. However, Es = 0 is reserved for underflow to zero, and

Es = 2047 is reserved for overflow to infinity, meaning that the maximum possible finite exponent

is Es = 2046. Accounting for offset, the maximum true exponent is

E = Es,max − 1023 = 2046− 1023 = 1023.

Hence, xmax ≈ 21023. Similarly,

xmin = 21−1023 = 2−1022.

Now, recall the formula

|x− fl(x)|
|x|

:= ϵ ≤ ϵN =

1
2
10−N+1, rounding up,

10−N+1, chopping,

which gave the truncation error in base 10 for truncation after N figures of significance. Going over
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to base two and chopping, we have

|x− fl(x)|
|x|

:= ϵ ≤ ϵN = 2−N+1.

In IEEE double precision, the precision is N = 52 + 1 (the extra 1 comes from the digit stored

implicitly), hence

ϵN = 2−53+1 = 2−52.

Equivalently, the smallest positive number strictly greather than 1 detectable in this standard is

1 +
0

2
+

0

22
+ · · ·+ 1

252
,

and again,

ϵN = 2−52 ≈ 2.220456× 10−16

gives machine precision.

The IEEE standard also supports extensions to the real numbers, including the symbols Inf (which

will appear when a code has overflowed), and NaN. The symbol NaN will appear as a code’s output

if you do something stupid. Examples in Matlab sytanx include the following particularly egregious

one:

x=0/0;

display(x)

Another datatype is the integer, which is stored in a contiguous chunk of memory like a double,

typically of length 8, 16, 32, or 64 bits. Typically, the integers are defined with respect to an offset

(two’s complement), so that no explicit storage of the sign is required.
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Common Programming Error:

Mixing up integers and doubles. For example, suppose in a computer-programming lan-

guage such as C, that x has been declared to be a double-precision number. Then,

assigning x the value 1, i.e.

x=1;

confuses the compiler, as it now thinks that x is an integer! In order not to confuse the

compiler, one would have to write

x=1.0;

Happily, the distinction between integers and doubles is not enforced in Matlab, and

ambiguity about variable types is allowed. However, you should remember this lesson if

you do more advanced programming in high-level languages such as C or Fortran.

As hinted at previously, Matlab implements the IEEE double precision standard, albeit implicitly.

For example, if you type

display(pi)

at the command line, you will only see the answer

3.1416

However, you can rest assured that the built-in working precision of the machine is 53 bits. For

example, typing

display(eps)

yields

2.2204e-016

Also, typing

x=2;

while(x~=Inf)

x_old=x;

x=2*x;

end

display(x_old)
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yields

8.9885e+307,

the same as 21023 = 8.9885e+ 307.



Chapter 3

Computer architecture and Compilers

Overview

Computer architecture means the relationship between the different components of hardware in a

computer. In this chapter, this idea is discussed under the following headings: the memory/processor

model, memory organization, processor organization, simple assembly language.

3.1 The memory/processor or von Neumann model

Computer architecture means the relationship between the different components of hardware

in a computer. On a very high level of abstraction, many architectures can be described as von

Neumann architectures. This is a basic design for a computer with two components:

1. An undivided memory that stores both program and data;

2. A processing unit that executes the instructions of the program and operates on the data

(CPU).

This design is different from the earliest computers in which the program was hard-wired. It is

also very clever, as the line between ‘data’ and ‘program’ can become blurred – to our advantage.

When we write a program in a given language, we work with a computer that has other, more

basic programs installed – including a text editor and a compiler. The von Neumann architecture

enables the computer to treat the code we write in the text editor as data, and the compiler is in

this context a ‘super-program’ that operates on these data and converts our high-level code into

instructions that can be read by the machine. Having said this, in this module, we understand ‘data’

to be the collection of numbers to be operated on, and the code is the set of instructions detailing

the operations to be performed.

18
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In conventional computers, the machine instructions generated by the compiled version of our code

do not communicate directly with the memory. Instead, information about the location of data

in the computer memory, and information about where in memory the results of data processing

should go, are stored directly in a part of the CPU called the register. Rather counter-intuitively,

the existence of this ‘middle-man’ register speeds up execution times for the code. Many computer

programs possess locality of reference: the same data are often accessed repeatedly. Rather than

moving these frequently-used data to and from memory, it is best to store them locally on the CPU,

where they can be manipulated at will.

The main statistic that is quoted about CPUs is their Gigahertz rating, implying that the speed of

the processor is the main determining factor of a computer’s performance. While speed certainly

influences performance, memory-related factors are important too. To understand these factors, we

need to describe how computer memory is organized.

3.2 Memory organization

Practically, a pure von Neumann architecture is unrealistic because of the so-called memory wall.

In a modern computer, the CPU performs operations on data on timescales much shorter than the

time required to move data from memory to the CPU. To understand why this is the case, we need

to study how the CPU and the computer memory communicate.

In essence, the CPU and the computer memory communicate via a load of wires called the bus. The

front-side bus (FSB) or ‘North bridge’ connects the computer main memory (or ‘RAM’) directly to

the CPU. The bus is typically much slower than the processor, and operates with clock frequencies

of ∼ 1GHz, a fraction of the CPU clock frequency. A processor can therefore consume many items

of data fed from the bus in one clock tick – this is the reason for the memory wall.

The memory wall can be broken up further in two parts. Associated with the movement of data are

two limitations: the bandwidth and the latency. During the execution of a process, the CPU will

request data from memory. Stripping out the time required for the actual data to be transferred,

the time required to process this request is called latency. Bandwidth refers to the amount of data

that can be transferred per unit time. Bandwidth is measured in bytes/second, where a byte (to

be discussed below) is a unit of data. In this way, the total time required to for the CPU to request

and receive n bytes from memory is

T (n) = α+ βn,

where α is the latency and β is the inverse of the bandwidth (second/byte). Thus, even with infinite

bandwidth (β = 0), the time required for this process to be fulfilled is non-zero.

Typically, if the chunk of memory of interest physically lies far away from the CPU, then the latency
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is high and the bandwidth is low. It is for this reason that a computer architecture tries to maximize

the amount of memory near the CPU as possible. For that reason, a second chunk of memory close

the CPU is introduced, called the cache. This is shown schematically in Figure 3.1. Data needed in

Figure 3.1: The different levels of memory shown in a hierarchy

some operation gets copied into the cache on its way to the processor. If, some instructions later,

a data item is needed again, it is searched for in the cache. If it is not found there, it is loaded

from the main memory. Finding data in cache is called a cache hit, and not finding it is called a

cache miss. Again, the cache is a part of the computer’s memory that is located on the die, that

is, on the processor chip. Because this part of the memory is close the CPU, it is relatively quick

to transfer data to and from the CPU and the cache. For the same reason, the cache is limited

in size. Typically, during the execution of a programme, data will be brought from slower parts

of the computer’s memory to the cache, where it is moved on and off the register, where in turn,

operations are performed on the data. There is a sharp distinction between the register and the

cache. The instructions in machine language that have been generated by our compiled code are

instructions to the CPU and hence, to the register. It is therefore possible in some circumstances

to control movement of data on and off the register. On the other hand, the move from the main

memory to the cache is done purely by the hardware, and is outside of direct programmer control.
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3.3 The rest of the memory

The rest of the memory is referred to as ‘RAM’, and is neither built into the CPU (like the registers),

nor collocated with the CPU (like the cache). It is therefore relatively slow but has the redeeming

feature that it is large. The most-commonly known feature of RAM is that the data it contains are

removed when the computer powers off. This is why you must save your work to the hard drive!

RAM itself is broken up into two parts – the stack and the heap.

Stacks are regions of memory where data is added or removed on a last-in-first-out basis. The stack

really does resemble a stack of plates. You can only take a plate on or off the top of a stack – this

is also true of data stored in the stack. Another silly analogy is to imagine a series of postboxes

attached one on top of the other to a vertical pole. Initially, all the postboxes are empty. Then,

the bottommost postbox is filled and a postit note is placed on it, indicating that the location of

the next available postbox. As letters are put into and removed from postboxes, the postit note

moves up and down the stack of postboxes accordingly. It is therefore very simple to know how

many postboxes are full and how many are empty – a single label suffices. The system for addressing

memory slots in the stack is equally simple and for that reason, accessing the stack is faster than

accessing other kinds of memory.

On the other hand, there is the heap, which is a region of memory where data can be added or

removed at will. The system for addressing memory slots in the heap is therefore much more detailed,

and accessing the heap is therefore much slower than accessing the stack. However, the size of the

stack is fixed at runtime and is usually quite small. Many codes require lots of memory. Trying

to fit lots of data into the relatively small amount of stack that exists can lead to stack overflow

and segmentation faults. Stack overflow is a specific error where the exectuting program requests

more stack resources than those that exist; segmentation faults are generic errors that occur when

a code tries to access addresses in memory that either do not exist, or are not available to the code.

So ubiquitous and terrifying are these errors to computer codes a popular web forum for coders and

computer scientists is called http://stackoverflow.com/.

If you ever do beginner’s coding in C or Fortran remember the following lesson:

Common Programming Error:

Never allocate arrays on the stack (Possibly Fatal)!

In this module, these issues will never arise; however, this is a salutary lesson, and one not often

referred to in beginner’s courses on real coding!

All of the different levels of memory and their dependencies are summarized in the diagram at the



22 Chapter 3. Computer architecture and Compilers

end of this chapter (Figure 3.2).

3.4 Multicore architectures

If you open the task manager on a modern machine running Windows, the chances are you will see

two panels by first going to ‘performance’ and then ‘CPU Usage History’ . It would appear that

the machine has two CPUs. In fact, modern computers contain multiple cores. We still consider

the machine to have a single CPU, but two smaller processing units (or cores) are placed on the

same chip. The two cores share some cache (‘L2 cache’), while some other cache is private to each

core (‘L1 cache’). This enables computer to break up a computational task into two parts, work on

each task separately, via the private cache, and communicate necessary shared data via the shared

cache. This architecture therefore facilitates parallel computing, thereby speeding up computation

times. High-level programs such as MATLAB take advantage of multiple-core computing without

any direction from the user. On the other hand, lower-level programming standards (e.g. C, Fortran)

require explicit direction from the user in order to implement multiple-core processing. This is done

using the OpenMP standard.

Unfortunately, the idea of having several cores on a single chip makes the description of this archi-

tecture ambiguous. We reserve the word processor for the entire chip, which will consist of multiple

sub-units called cores. Sometimes the cores are referred to as threads and this kind of computing

is called multi-threaded.

3.5 Compilers

As mentioned in Section 3.1, a standard procedure for writing code is the following:

1. Write the code in a high-level computer language such as C or Fortran. You will do this in a

text editor. Computer code on this level has a definite syntax that is very similar to ordinary

English.

2. Convert this high-level code to machine-readable code using a compiler. You can think of

this as a translator that takes the high-level code (readable to us, and similar in its syntax to

English) into lots of gobbledegook that only the computer can understand.

3. Compilation takes in a text file and outputs a machine-readable executable file. The exe-

cutable can then be run from the command line.

MATLAB sits one level higher than a high-level computer language, with a friendly syntax and all

sorts of clever procedures for allocating memory so that we don’t need to worry about technical
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issues. It also has a user-friendly interface so that our high-level Matlab files can be run and the

output interpreted and plotted in a user-friendly fashion. Incidently, Matlab is written in C, so it as

though two translations happen before the computer executes our code: Matlab→ C → (Machine-

readable code).

In this course, issues of precision, truncation error, and computer architecture are moot. Now that

we have tentatively (and metaphorically) opened the lid of our computer and seen its architecture,

we will close it firmly, learn Matlab, and compute things. That said, these questions are important

a number of reasons:

1. Learning stuff is always good!

2. We should never treat something as a ‘black box’ to be intereacted with only by mindlessly

pressing a few buttons. Knowledge is good (point 1 again).

3. Sometimes, things go wrong with our codes (e.g. truncation error). Then, we need to

understand properly how numbers are represented on a computer.

4. Suppose that our calculations become large (requiring long runtimes and large amounts of

memory). Then, knowledge of the computer’s architecture helps us to understand the limi-

tations of the calculations, and extend those limits (e.g. virtual memory, multi-threading /

shared memory, distributed memory). These last topics would be studied typically in an MSc

in High-Performace Computing.
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Figure 3.2: (From Wikipedia) Computer architecture showing the interaction between the different
levels of memory.
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Our very first Matlab function

Open the Matlab text editor and type the following:

function x=addnumbers(a,b)

x=a+b;

end

Save this as a file called “addnumbers.m” We have thus created a Matlab function “addnumbers”

with filename “addnumbers.m”. We call a, b, and x variables. These are placeholders for a real

number. There are rich analogies between computer syntax and mathematical syntax. Given a

function like f(x) = 2x2+x+1, f(x) and x are placeholders for real numbers, and the real number

f(x) is got by setting x equal to a definite value and then evaluating the function. Again, just like

in mathematical functions, we have the notion of inputs and outputs:

1. The inputs to the Matlab function are a and b, which can be any real numbers.

2. The output is x = a+ b.

Common Matlab Programming Error:

• Not giving the Matlab function and its filename the same name.

• Matlab is CaSE SensItiVE: a and A are not the same variable. [‘Little-a’ and ‘big-a’

are not the same variable.]

Now, at the command line, type

x=addnumbers(1,2);

display(x)

25



26 Chapter 4. Our very first Matlab function

The result should be x = 3. You could get the same result by typing

x=addnumbers(1,2)

Common Matlab Programming Error:

Not using the semicolon to suppress output. This is not fatal, but can lead to lots of

unnecessary numbers being displayed on the GUI.

Matlab functions can have more than one output. For example, consider the following:

function [x,y]=add_and_multiply(a,b)

x=a+b;

y=a*b;

end

After saving this function, one would type at the command line:

[x,y]=add_and_multiply(1,2)
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Vectors, Arrays, and Loops in Matlab

Overview

At its heart Matlab is nothing more than a glorified Linear Algebra package. It is a giant calculator

for doing linear-algebra calculations very efficiently. A main aim of this module is therefore to

understand Matlab’s syntax for handling vectors and matrices (and more generally, arrays).

5.1 Vectors and For Loops

Supposing we have an ordinary three-dimensional vector

v = (1, 2, 4)

This can be stored in Matlab (for example, in RAM, on the command line) by typing

v=[1,2,3];

We can check that the individual components of the vector have been stored properly by typing

display(v(1))

display(v(2))

display(v(3))

Thus, v(i) is the ith component of the vector, in the Matlab syntax. We call i the index. Here,

obviously, i = 1, 2, 3.

27
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The for loop

Accessing the different components of a vector is straightforward for a three-dimensional vector.

However, supposing we had the following vector:

v=rand(100,1);

which is a 100-wide row vector with entries that are random numbers between 0 and 11. We might

like to print all of the elements to the screen. Typing

display(v(1))

display(v(2))

display(v(3))

&c &c all the way down to the 100th index would be tiresome and very silly. Happily, we can tell

Matlab to cycle through each of the elements in the vector in a sequential manner, and print the

elements to the screen as Matlab cycles through the vector. This is done with a for loop:

for i=1:100

display(v(i))

end

Granted, the same result could be accomplished by typing

v

but that would be less instructive.

1The notion of random numbers on a computer are treated in Chapter 25.
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The mean of the components

Suppose now that we want to compute the mean of the components of the vector. Mathematically,

we have

v = (v1, · · · , v100), v :=
1

100

100∑
i=1

vi.

This can be accomplished with a for loop as follows:

sum_val=0;

for i=1:100

sum_val=sum_val+v(i);

end

sum_val=sum_val/100;

display(sum_val)

I can’t really explain this to you; you will just have to go away and look at it, and play with the

associated Matlab function. After worrying about this for long enough, I promise it will make sense.

Common Matlab Programming Error:

Not initializing sum val to be zero (Fatal).

Moving on, a keynote of this module is the following principle:

Good Programming Practice:

Operations on vectors can be performed component-wise or equivalently, using inbuilt

vector functions.

In other words, for every for loop that we construct, there is a specialized Matlab command that

does the same thing. For example, typing

sum_val=sum(v)/100

will also give the mean of the random vector; here ‘sum’ is the built-in Matlab function.
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Exercise 5.1 Let

v=rand(1,200), w=rand(1,200)

be two distinct random vectors. Compute the dot product of v and w,

v ·w =
200∑
i=1

viwi

(i) using a for loop; (ii) using a built-in function to be found by looking at the Matlab Help

pages.

The dot-star operation

Following on from this exercise, we introduce a very useful operation in matlab called dot-star.

This is pointwise multiplication. Given vectors

v = (v1, · · · , vn), w = (w1, · · · , wn),

a new vector v · ∗w is defined such that

v · ∗w = (v1w1, · · · , vnwn).

Thus, an alternative way of doing Exercise 5.1 is to type

newvec=v.*w;

dotprod=sum(newvec);

Common Matlab Programming Error:

Typing v ∗ w when v · ∗w is meant. The ordinary ∗ operation in Matlab means the

multiplication of two scalars, or two matrices (see below).
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5.2 Nested for-loops and matrices

Let A ∈ Rm×n and B ∈ Rn×p be matrices. We can take the product of these matrices: the matrix

AB has ijth component

(AB)ij =
n∑

k=1

AikBkj.

Thus, the ijth component is obtained by taking the ith row of A and dotting it with the jth column

of B. For that reason, to do matrix multiplication, the number of elements in a column of A should

be the same as the number of elements in a row of B. This can be remembered in a mnemonic:

(Matrix product) (m× n)(n× p) = (new matrix) (m× p).

It is as if we do a ‘cross multiplication’ whereby ‘the n in the middle cancels’. Using dot products,

we can now multiply two matrices, as in the following example:

A=[3,2,1;1,-1,2];

B=[7,-1,2,6;4,-3,2,5;3,4,-7,-1];

It might be nice to visualize these matrices before we go any further:

The matrix A is a 2 × 3 matrix; B is 3 × 4. Their matrix product AB will be 2 × 4. We now

allocate a matrix to hold the result of our calculation:
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ABprod=zeros(2,4);

Good Programming Practice:

Always initialize or ‘allocate’ any arrays which are to be accessed using ‘for’ loops. In

some cases, this can speed up the code’s execution times by factors of 10 or 100.

Now, we take the ith row of A and we dot it with the jth row of B. But we have now hit a problem!

There are two labels (or ‘indices’) to ‘loop’ over – and we are only familiar with ‘for loops’ over one

index. The answer is a nested for loop:

for i=1:2

for j=1:4

tempa=A(i,:);

tempb=B(:,j);

ABprod(i,j)=dot(tempa,tempb);

end

end

Now, by now, you should be starting to realise that a main goal of this course is to open up the

‘black box’ made up by Matlab’s built-in functions. For that reason, we can check the results of our

calculation with Matlab’s own built-in method for multiplying matrices:

display(ABprod)

display(A*B)
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Operations using for-loops and their

built-in Matlab analogues

Exercise 6.1 Write a Matlab function to do the following tasks. If possible, verify your answer

using the appropriate built-in functions which can be found in the Matlab ‘help’ documents.

1. Compute the factorial of a non-negative integer.

2. Compute the cross product of two three-dimensional vectors.

3. Compute the square of a n×n matrix. The input must be a square matrix – A, say. The size

of A can be obtained from the command

[nx,ny]=size(A);

Because the matrix is square, nx and ny should be the same. Later on we will write code to

check if conditions like this one are true.

4. Using the formula

1
90
π4 =

∞∑
n=1

1

n4
, (6.1)

compute π valid to 10 significant figures.

Hints:

• The apparent (i.e. displayed) precision of Matlab can be lengthened by first of all typing

format long

33
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at the Matlab command line, before the function is executed.

• In this exercise, you should write a function that takes in Napprox – a finite truncation

order of the sum (6.1). It should return a value πapprox. You should experiment by

executing the function for different (increasing) values of Napprox until there is no change

in the first 10 digits of πapprox.

• You should write two versions of the function. The first version will use a four loop; the

second will use only built-in Matlab functions .∗, ./, and sum(). A vector (1, 2, · · · , N)

can be defined in Matlab with the command

vecN=1:1:N;

Here, 1 is the starting value of the vector, N is the final value, and the 1 sandwiched

between the colons is the increment.
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While loops, logical operations,

precedence, subfunctions

Overview

We introduce some additional operations in Matlab that will be indispensable throughout this mod-

ule.

7.1 The ‘while’ loop

We have seen how the ‘for’ loop provides a means of accessing the elements of a vector or an array

in a sequential fashion, e.g.

v=1:1:10;

for i=1:length(v)

temp_val=v(i);

display(temp_val)

end

The ‘for’ loop passes the counter i through the loop. During each pass through the loop, the

counter is incremented by one. The passes continue through the loop provided the statement

i ≤ 10

is true. When this statement becomes false, the passes through the loop stop. Thus, a sequence of

logical operations (true/false) is carred out automatically, until certains statements become false.

Another way of doing this is with a while loop, as follows:

35
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v=1:1:10;

i=1;

while(i<=10)

temp_val=v(i);

display(temp_val)

i=i+1;

end

Indeed, this is completely equivalent to the for loop. The counter starts at i = 1. The counter

enters into a loop, an operation is performed, and the counter is incremented by one. The passes

through the loop continue until a condition becomes false.

Since these methods are completely equivalent, one might ask why we bother with the ‘while’ loop.

The answer is that the logical condition can be much more general than

imax=...

while(i<=imax)

For example, suppose that in Chapter 6 we called our function to approximate π ‘sum nfour.m’.

This code would contain the following elements:

1 f u n c t i o n [ p i a pp r o x ]= sum nfour (N)

2

3 p i a pp r o x = . . .

4

5 end

sample matlab codes/sum nfour missing info.m

We might like to continue implementing this code, continuously increasing the truncation order N

until a decent approximation of π is obtained. We would do the following at the command line:

format long

tol=1e-6;

N=10;

pi_approx=sum_nfour(N);

while(abs(pi-pi_approx)>tol)

N=N+10;

pi_approx=sum_nfour(N);

end

display(pi_approx);

display(N)
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The ‘while’ loop is therefore more general than a ‘for’ loop. With this extra freedom comes a

requirement for extra caution:

Common Programming Error:

• Forgetting to initialize the counter in the ‘while loop’

• Forgetting to increment the counter in the ‘while loop’

• Performing an operation on the incremented counter (i+ 1) instead of using i.

7.2 Logical operations

We have already mentioned that the counter in ‘for’ and ‘while loops’ are incremented until some

logical condition becomes false. This suggests that Matlab has a way of checking for the truth or

falseness. This is indeed correct. Such checks are often encountered in ‘if’ statements.

‘If’ statements

Suppose that in Chapter 6 had a Matlab code to compute A2, where A is a square matrix. This

code would contain the following elements:

1 f u n c t i o n Asq=square A (A)

2

3 [ nx , ny ]= s i z e (A) ;

4

5 . . .

6

7 end

sample matlab codes/square A missing info.m

If nx ̸= ny there is not really much point in going any further with this calculation, as it will return

nonsense. It might be good to have in the code a check to see if nx = ny, and to know what to do

in case nx ̸= ny. The following flowchart indicates what we need:

• If nx = ny we need to get on with the calculation!

• If nx ̸= ny we should exit the code.
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This can be implemented in Matlab with an ‘if-else statement’:

1 f u n c t i o n Asq=s q u a r e A m i s s i n g i n f o 1 (A)

2

3 [ nx , ny ]= s i z e (A) ;

4

5 i f ( nx==ny )

6 % The code to squa r e A goes he r e .

7 . . .

8 e l s e

9 % We shou ld e x i t the code and r e t u r n a v a l u e .

10 Asq=0∗A;

11 d i s p l a y ( ’ E r r o r : A i s not a squa r e mat r i x ’ )

12 d i s p l a y ( ’ Re tu rn i ng Aˆ2=0 and e x i t i n g code ’ )

13 r e t u r n

14 end

15

16 end

sample matlab codes/square A missing info1.m

Some notes:

• The condtion nx = ny is checked in Line 5, with the piece of code if(nx==ny). The double

equals sign is not a typo: this is a logical equals sign, which is an operation to check the

truth of the statement nx = ny.

On the other hand, the piece of code nx=ny is called an assignment equals sign: it is an

operation whereby the variable nx is assigned the value ny.

Common Matlab Programming Error:

Using an assignment equals sign in a logical check.

• On line 8, Matlab is instructed what to do if A is not a square matrix. Because we have

written a function, we have in a sense painted ourselves into a corner: we must return some

output to the command line, even if a correct calculation is impossible. We elect to return a

zero matrix of size nx × ny, and alert the user using the warnings on lines 11 and 12 that a

mistake has been made.

As a further example of an ‘if-else statement’, consider a homemade Matlab function to compute

the absolute value of a number:

|x| =

+x, if x ≥ 0,

−x, if x ≤ 0.
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This is implemented as follows:

1 f u n c t i o n [ ab s x ]=abs x homemade ( x )

2

3 i f ( x>=0)

4 ab s x=x ;

5 e l s e

6 ab s x=−x ;

7 end

8

9 end

sample matlab codes/abs x homemade.m

Of course, as with many other things in Matlab, there is a built-in function for computing absolute

values:

abs_x=abs(x);

If built-in functions exist, they should always be preferred over their home-made alternatives: armies

of Ph.D. computational scientists are paid lots of money by Matlab to devise clever algorithms;

unfortunately, we are rarely likely to beat them at their own game.

Common Matlab Programming Error:

• Using a homemade Matlab function instead of the built-in alternative.

• Calling a homemade function by a name reserved for a built-in function.

Other logical operations are possible. For example, it is possible to check a condition without having

an alternative (‘if without the else’). Further possibilities:

• A series of independent ‘if’ statements, e.g.

if(i<2)

...

end

if(i<10)

...

end
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• A series of dependent ‘if’ statements, e.g.

if(i<2)

...

elseif(i<10)

...

elseif(i<20)

...

else

...

end

Sequences of independent ‘if’ statements can lead to errors. For example, consider the following

piece of code:

1 f u n c t i o n x=s amp l e i f s t a t emen t s 1 ( i )

2

3 i f ( i <10)

4 x=5;

5 end

6

7 i f ( i <2)

8 x=2;

9 end

10

11 end

sample matlab codes/sample if statements1.m

This is an attempt at writing a code to implement the function

f(i) =

2, if i < 2,

5, if 2 < i < 10.

Here, the list of alternatives for the input variable i is not exhaustive (e.g. what about i ≥ 10).

An input value i ≥ 10 gives rise to a situation where none of the ‘if’ statements are true, and the

output variable x is therefore not assigned a value. This causes the code to crash.

Common Matlab Programming Error:

Writing a list of ‘if’ statements that is not exhaustive, causing an output variable to be

unassigned.
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A better idea is the following:

1 f u n c t i o n x=s amp l e i f s t a t emen t s 2 ( i )

2

3 i f ( i <2)

4 x=2;

5 e l s e i f ( i <10)

6 x=5;

7 e l s e

8 d i s p l a y ( ’ i n pu t v a r i a b l e out o f range ’ )

9 d i s p l a y ( ’ r e t u r n i n g x=−1 ’ )
10 x=−1;

11 end

12

13 end

sample matlab codes/sample if statements2.m

Now, the list is exhaustive! If a value i ≥ 10 is entered (out of range of the funcion f(i)), an error

message is printed and the value x = −1 is returned, thereby avoiding errors where output variables

are unassigned.

Logical ‘And’ and ‘Or’ operations

Suppose a complex piece of code we are writing relies on a function f(x) being positive at two

values. How could we check that? The answer is using a logical ‘and’ operation. For example,

consider

1 f u n c t i o n check=c h e c k s i g n f 1 ( )

2

3 % We are go ing to check the s i g n o f f ( a ) and f ( b ) , f o r

4 %

5 % f ( x ) = s i n ( x )+x∗ cos ( x )+exp ( x ) /(1+x ˆ2) .

6

7 a=1;

8 b=2;

9

10 f a=s i n ( a )+a∗ cos ( a )+exp ( a ) /(1+a ˆ2) ;

11 f b=s i n ( b )+b∗ cos ( b )+exp ( b ) /(1+bˆ2) ;

12

13 i f ( ( fa >0) && ( fb>0) )

14 check=1;

15 d i s p l a y ( ’ both f u n c t i o n e v a l u a t i o n s have p o s i t i v e s i g n ’ )

16 e l s e

17 check=0;
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18 end

19

20 end

sample matlab codes/check sign f1.m

On the other hand, suppose that our code relies on f(x) being positive at x = a OR x = b (or

both). We check this using a logical ‘or’ operation:

1 f u n c t i o n check=c h e c k s i g n f 2 ( )

2

3 % We are go ing to check the s i g n o f f ( a ) and f ( b ) , f o r

4 %

5 % f ( x ) = s i n ( x )+x∗ cos ( x )+exp ( x ) /(1+x ˆ2) .

6

7 a=1;

8 b=2;

9

10 f a=s i n ( a )+a∗ cos ( a )+exp ( a ) /(1+a ˆ2) ;

11 f b=s i n ( b )+b∗ cos ( b )+exp ( b ) /(1+bˆ2) ;

12

13 i f ( ( fa >0) | | ( fb>0) )

14 check=1;

15 d i s p l a y ( ’ a t l e a s t one o f the f u n c t i o n e v a l u a t i o n s has p o s i t i v e s i g n ’ )

16 e l s e

17 check=0;

18 end

19

20 end

sample matlab codes/check sign f2.m

Logical negation

Often it is useful to check if a variable x is NOT equal to some singular value. For example, suppose

we want to compute f(x) = sin(x)/x. Obviously, sin(0)/0 is not defined, but by l’Hôpital’s rule,

we know that it is sensible to define f(0) = 1. We would write the following piece of code:

if(x==0)

fx=1;

else

fx=sin(x)/x;

end
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However, the same operation can be achieved using a logical negation:

• If x ̸= 0, then f(x) = sin(x)/x;

• Otherwise, we have x = 0 and we set f(x) = 1.

This is implemented in Matlab as follows:

if(x~=0)

fx=sin(x)/x;

else

fx=1;

end

‘Isnan’ and ‘Isinf’ statements

Finally, there are other checks that one can perform. We might like to see if a varible has overflowed

to become ‘numerical infinity’:

x=1/0;

isinf(x)

Typing isinf(x) in this instance returns the value 1. In logical operations, ‘1’ corresponds to ‘true;

and ‘0’ to ‘false’. Thus, when isinf(x)= 1, we know that x has overflowed to become numerical

infinity.

Similarly, we can check to see if a number has been badly defined to become ‘Not a number’:

x=0/0;

isnan(x)

Typing isnan(x) returns the value 1, meaning that it is true that x is not a (double precision)

number. On the other hand, typing

y=1;

isnan(y)

returns 0, meaning that y is well-defined as a double-precision number.
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7.3 Precedence

As in ordinary arithmetic, the precedence of operations (i.e. which comes first in a composition of

operations) is BOMDAS. Sensibly, compositions of operations that ordinarily have the same level

or precedence are performed starting with the leftmost operation and then reading to the right.

However, Matlab admits more operations than primary-school arithmetic, so the list is longer. The

following list is not exhaustive, but includes all of the operations you will encounter in this module:

1. Brackets ()

2. Matrix transpose (.’), pointwise power (.∧), Matrix complex-conjugate-transpose (’) and scalar

complex conjugate (’), matrix power (∧)

3. Unary plus (+), unary minus (−), logical negation (∼)

Unary operators (operators involving only one argument) do not really have an independent

existence in Matlab; here +A just means A, and −A means (−1)× A, where A is an array.

4. Pointwise operations: multiplication (.∗), right division (./), left division (.\); Matrix opera-

tions: matrix multiplication (∗), matrix right division (/ ), matrix left division (\)

5. Addition (+), subtraction (−)

6. Logical operators: less than (<), less than or equal to (<=), greater than (>), greater than

or equal to (>=), equal to (==), not equal to ( =)

7. Short-circuit AND (&&)

8. Short-circuit OR (||)

Short-circuit AND and OR means that the second argument of the operation is not evaluated

unless it is needed.

7.4 Subfunctions

It is quite common in Matlab to write a function in Matlab (a ‘.m’ file) and to find that within

that file, you need to call other functions. This idea of a ‘function within a function’ can be easily

accommodated in Matlab and is called ‘nesting’.

We re-visit the example in Section 7.2 (check sign f1.m), with a small twist: we check the sign of

the (mathematical) function

f(x) = sin x+ x cos x+
ex

k2
0 + x2

,
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at locations x = a and x = b. Here k0 is a user-defined constant that entered at the command line

when the (Matlab) function is called. Instead of having two near-identical function evaluations at

x = a and x = b, we make a one-off definition of f(x) and reuse it as follows:

1 f u n c t i o n check=c h e c k s i g n f 3 ( k0 )

2

3 % We are go ing to check the s i g n o f f ( a ) and f ( b ) , f o r

4 %

5 % f ( x ) = s i n ( x )+x∗ cos ( x )+exp ( x ) /( k0ˆ2+x ˆ2) .

6

7 a=1;

8 b=2;

9

10 f a=e v a l f ( a ) ;

11 f b=e v a l f ( b ) ;

12

13 i f ( ( fa >0) && ( fb>0) )

14 check=1;

15 d i s p l a y ( ’ both f u n c t i o n e v a l u a t i o n s have p o s i t i v e s i g n ’ )

16 e l s e

17 check=0;

18 end

19

20 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
21 % De f i n i t i o n o f f ( x ) he r e .

22

23 f u n c t i o n y=e v a l f ( x )

24 y=s i n ( x )+x∗ cos ( x )+exp ( x ) /( k0ˆ2+x ˆ2) ;

25 end

26

27 end

sample matlab codes/check sign f3.m

The advantage of this is approach is economy. While this economy is not very clear here, one can

imagine that such ‘recycling’ is extremely important when (say) 100 sequential function evaluations

are required.
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Writing subfunctions has its pitfalls. In the example above (check sign f3.m) the subfunction where

f(x) is defined is nested – it appears between the beginning and the end of the main function. It

is also possible to have a completely independent subfunction:

1 f u n c t i o n check=c h e c k s i g n f 4 ( k0 )

2

3 % We are go ing to check the s i g n o f f ( a ) and f ( b ) , f o r

4 %

5 % f ( x ) = s i n ( x )+x∗ cos ( x )+exp ( x ) /( k0ˆ2+x ˆ2) .

6

7 a=1;

8 b=2;

9

10 f a=e v a l f ( a , k0 ) ;

11 f b=e v a l f ( b , k0 ) ;

12

13 i f ( ( fa >0) && ( fb>0) )

14 check=1;

15 d i s p l a y ( ’ both f u n c t i o n e v a l u a t i o n s have p o s i t i v e s i g n ’ )

16 e l s e

17 check=0;

18 end

19

20 end

21

22 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
23

24 f u n c t i o n y=e v a l f ( x , k 0 l o c )

25 y=s i n ( x )+x∗ cos ( x )+exp ( x ) /( k 0 l o c ˆ2+x ˆ2) ;

26 end

sample matlab codes/check sign f4.m

However, in this case, none of the variables defined in the main part of the code is defined in the

subfunction. A real programmer would say that the variables in the main function are limited in

scope, or are only locally defined. For that reason, we pass two values to the subfunction f(x) –

the value of the variable x, and the value of the parameter k. For the avoidance of ambiguity, we

give the parameter k a new variable name in the subfunction, calling it k loc (for ‘local’, as it is

locally defined in the subfunction).

Common Matlab Programming Error:

Hoping that local variables will be defined in an indpendent (non-nested) subfunction.
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There is another way around the issue of passing variables limited in scope to independent (non-

nested) subfunctions. One can declare a variable to be globally defined. However, to the uniniti-

ated, these can be very dangerous, and are not discussed further in this module.
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Plotting in Matlab

Overview

We learn how to make simple one-dimensional curve plots in Matlab. We also learn how to prettify

these plots in order to create production-level graphics.

8.1 The idea

As we have mentioned before, at its heart, Matlab is a tool for maniuplating vectors and matrices.

For that reason, the way in which we plot functions is based on the maniuplation of vectors.

For example, suppose we wish to plot the function

f(x) = sin x+ x cos x+
ex

1 + x2

in the range [0, 6].

We would create a vector of x-locations, spaced apart by a small distance:

x=0:0.01:6;

We would then create a second vector of points, corresponding to f(x):

fx=sin(x)+x.*cos(x)+exp(x)./(1+x.^2)

(note the ‘.*’ operation here). We would then plot the result as follows:

plot(x,fx)

48
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The result looks like the following figure:
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Of course, we have not plotted a continuous curve, rather we have plotted the value of f(x) at the

discrete x-locations x = 0, 0.01, 0.02, · · · . One way to see this explicitly is to put a big ‘X’ at each

of these discrete locations:

plot(x,fx,’-x’)

Clearly, there are lots of these dots, and our grid x=0:0.01:6 is fine enough to give a good

description of the continuous curve (x, f(x)).
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To see the effects of having too coarse a grid, we de-refine the x-grid as follows:

x=0:0.1:6;

plot(x,fx,’-x’)

The result is terrible!
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Clearly, the grid chosen must match the amount of variation in the function. This choice can be

refined by trial-and-error.

8.2 Embellishments

Any Physics student who has survived the gruelling ordeal of lab sessions will know the importance

of labelling graphs clearly. Matlab provides this facility:

(a) (b)

However, I prefer to do this kind of thing on the command line (it gets quicker with practice, and

it can be automated for batches of plots):

• To create production-quality axis labels:
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set(gca,’fontsize’,18,’fontname’,’times new roman’)

Here, ‘gca’ is a handle to the current axes (‘get current axes’).

• To label the graph:

xlabel(’x’)

ylabel(’y=f(x)’)

The order is important here – you must change the font before drawing the labels; otherwise

the labels will be in the default font (small and plain).

• For production-quality graphics, the thickness of the curve (‘linewidth’) should be set to

three. This can be done via the editor, or immediately on creation of the plot, using instead

the modifed plot command

plot(x,fx,’linewidth’,3)

• Sometimes, the line y = 0 can be helpful in a plot to guide the eye. This can be included as

follows:

hold on

plot(x,0*x,’linewidth’,1,’color’,’black’)

hold off

Here, the ‘hold on’ command holds the current figure in place so that another plot layer can

be included. Without this ‘hold on’ command, the additional plot command would overwrite

the first plot.

The instruction ...,’color’,’black’ tells Matlab to plot the horizontal line in black. Mat-

lab only takes American spellings!

• To pick out a particular point on the curve (e.g. a point where y = f(x) hits zero, one can

use the data cursor.
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I think the final, embellished result is much nicer than our original attempts (Fig. 8.1)!
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Figure 8.1: Final, embellished plot of f(x) = sinx+ x cos x+ ex/(1 + x2) on the range x ∈ [0, 6].
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Root-finding

Overview

In this chapter we study an elementary numerical method to compute roots of the problem

f(x) = 0,

where f(x) is a continuous function.

9.1 Roots

Definition: Let f : R → R be a continuous function The value x∗ is said to be a a root of f if

f(x∗) = 0.

Example: x = 1 is a root of f(x) = x2− 3x+2 because f(1) = 1− 3+2 = 0. There is no limit to

the number or roots that a function may have. For example, the quadratic function just described

has two roots, x∗ = 1, 2. On the other hand, the function f(x) = sin x has infinitely many roots,

x∗ = nπ, where n ∈ Z. We do have some theorems however that tell us when at least one root

should exist:

Theorem 9.1 (Intermediate Value Theorem) Let f : [a, b] → R be a continuous real-valued

function, with f(a) < f(b). Then for each real number u with f(a) < u < f(b), there exists at

least one value c ∈ (a, b) such that f(c) = u.

No proof is given here but see for example Beales (p. 105); see also Figure 9.1.

53
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Corollary 9.1 If f : [a, b] → R is a continuous real-valued function with f(a) < 0 and f(b) > 0,

then there exists at least one value x∗ ∈ (a, b) such that f(x∗) = 0, that is, f has a root strictly

between a and b.

(a)

(b)

Figure 9.1: Sketch for the Intermediate Value Theorem and its corollary.
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9.2 Bracketing and Bisection

Let f : [a, b] → R be a continuous function with f(a) < 0 and f(b) > 0. By the Intermediate

Value Theorem, f has at least one root on (a, b). Bracketing and Bisection (B&B) is an algorithm

for finding one of these roots:

1. Compute the midpoint c1 = (a+ b)/2.

2. Compute f(c1). If f(c1) < 0 then focus on a new interval [c1, b]. If f(c1) > 0 then focus on

a new interval [a, c1].

3. Compute the midpoint of the new interval, then repeat step 2.

4. Repeat indefinitely until convergence down to the required precision is obtained.

Steps (1)–(2) are shown schematically in Figure 9.2, and a sample MATLAB code is given here in

what follows.

1 f u n c t i o n x s t a r=d o b r a c k e t i n g b i s e c t i o n ( a , b )

2

3 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4 % I t e r a t e u n t i l s o l u t i o n i s r oo t i s conve rged to w i t h i n the f o l l o w i n g

5 % to l e r a n c e .

6

7 t o l=1e−16;

8

9 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
10 % I n i t i a l gue s s f o r the i n t e r v a l and f o r the r oo t .

11

12 c1=a ;

13 c2=b ;

14

15 x s t a r o l d =(c1+c2 ) /2 ;

16

17 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
18 % Er r o r check i ng : See i f B r a ck e t i ng and B i s e c t i o n i s p o s s i b l e .

19

20 i f ( ( f ( a ) ∗( f ( b ) )>=0))

21 d i s p l a y ( ’ b r a c k e t i n g and b i s e c t i o n not p o s s i b l e ; e x i t i n g ’ )

22 x s t a r=’ r u bb i s h ’ ;

23 r e t u r n

24 end

25

26 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
27 % Er r o r check i ng : See i f i n i t i a l gue s s i s a c t u a l l y the r oo t ; i f so ,
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28 % te rm i na t e program .

29

30 i f ( abs ( f ( x s t a r o l d ) )< t o l )

31 d i s p l a y ( ’ i n i t i a l gue s s h i t s r oo t ’ )

32 x s t a r=x s t a r o l d ;

33 r e t u r n

34 end

35

36 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
37 % F i r s t pas s th rough the a l g o r i t hm to f i n d new va l u e o f x s t a r .

38 % There a r e two sub−a l g o r i t hm s :

39 % 1. One sub−a l g o r i t hm i f f ( a )<0 and f ( b )>0 −− the one d e s c r i b e d i n the

40 % te x t

41 % 2. Another sub−a l g o r i t hm i f f ( a )>0 and f ( b )<0.

42

43 cm=(c1+c2 ) /2 ;

44

45 i f ( f ( a )<0)

46

47 i f ( f (cm)<0)

48 c1=cm ;

49 x s t a r=(c1+c2 ) /2 ;

50 e l s e i f ( f (cm)>0)

51 c2=cm ;

52 x s t a r=(c1+c2 ) /2 ;

53 e l s e

54 x s t a r= ( c1+c2 ) /2 ;

55 end

56

57 e l s e

58

59 i f ( f (cm)<0)

60 c2=cm ;

61 x s t a r=(c1+c2 ) /2 ;

62 e l s e i f ( f (cm)>0)

63 c1=cm ;

64 x s t a r=(c1+c2 ) /2 ;

65 e l s e

66 x s t a r= ( c1+c2 ) /2 ;

67 end

68

69 end

70

71 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
72 % Fur th e r p a s s e s th rough the a l g o r i t hm us i n g a WHILE loop .
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73

74 % St r u c t u r e f o r sub−a l g o r i t hm 1 :

75 %

76 % 1. I f f (cm)<0 then the new i n t e r v a l shou ld be [ cm , c2 ] ;

77 % 2. I f f (cm)>0 then the new i n t e r v a l shou ld be [ c1 , cm ] ;

78 % 3. I f f (cm)=0 then we have h i t the r oo t e x a c t l y and shou ld e x i t the

79 % loop .

80

81 i f ( f ( a )<0)

82

83 wh i l e ( abs ( x s t a r−x s t a r o l d )> t o l )

84 cm=(c1+c2 ) /2 ;

85 i f ( f (cm)<0)

86 c1=cm ;

87 x s t a r o l d=x s t a r ;

88 x s t a r=(c1+c2 ) /2 ;

89 e l s e i f ( f (cm)>0)

90 c2=cm ;

91 x s t a r o l d=x s t a r ;

92 x s t a r=(c1+c2 ) /2 ;

93 e l s e

94 x s t a r o l d =(c1+c2 ) /2 ;

95 x s t a r= ( c1+c2 ) /2 ;

96 end

97 end

98

99 e l s e

100 wh i l e ( abs ( x s t a r−x s t a r o l d )> t o l )

101 cm=(c1+c2 ) /2 ;

102 i f ( f (cm)<0)

103 c2=cm ;

104 x s t a r o l d=x s t a r ;

105 x s t a r=(c1+c2 ) /2 ;

106 e l s e i f ( f (cm)>0)

107 c1=cm ;

108 x s t a r o l d=x s t a r ;

109 x s t a r=(c1+c2 ) /2 ;

110 e l s e

111 x s t a r o l d =(c1+c2 ) /2 ;

112 x s t a r= ( c1+c2 ) /2 ;

113 end

114 end

115

116 end

117
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118

119

120 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
121 % End o f main program .

122

123

124 end

125

126 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
127 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
128 % Sub func t i on to e v a l u a t e y=f ( x ) .

129

130 f u n c t i o n y=f ( x )

131 % y=x .ˆ2−2;

132 % y=x .ˆ3−2∗x .ˆ2+x−1;

133 % y=x .ˆ3+10∗ x .ˆ2+x−1;

134 y=s i n ( x ) ;

135 end

sample matlab codes/do bracketing bisection.m

There is a lot to discuss in this code! Let’s go through it line-by-line:

• Lines 12-15. Here I find the initial values for the interval, with c1 = a and c2 = b. I make an

initial guess for the root, namely f [(c1 + c2)/2].

Note that I am leaving the definition of f(·) in a subfunction. This is handy: the code can be

easily recycled to compute the roots of many different continuous functions.

• Lines 20-24. Here I check to see if there really is a sign change, i.e. if f(a)f(b) < 0. If there

is not a sign change, then bracketing and bisection will not work, and the code should be

halted. Because the function must return a value, I set the variable xstar to equal a string

called rubbish. A string is an array of characters.

• Lines 30-34. These lines are included in case we get very lucky. If we are very lucky, the

starting-guess for the root will in fact be the root, to within machine precision. Then we

should set x∗ = (c1 + c2)/2 = (a+ b)/2 and exit the code.

• Lines 43-69. A first pass through the algorithm (i.e. Steps 1 and 2). I have to split up the

algorithm into two sub-algorithms:

1. When f(a) < 0 and f(b) > 0;

2. When f(a) > 0 and f(b) < 0,
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since conceptually, there is no reason why B&B should not work in the second case. Let’s

focus on the first sub-algorithm. I compute the midpoint cm = (c1 + c2)/2 and evaluate

f(cm). Since c1 = a and c2 = b, there are two possibilities:

Case 1 Case 2

f(c1) < 0 f(c1) < 0
f(cm) > 0

f(cm) < 0
f(c2) > 0 f(c2) > 0

In Case 1 I take my new interval to be [cm, c2] and in Case 2 I take my new interval to be [c1, cm].

I compute my new estimate of the root using the new interval endpoints: x∗new = (c1+c2)/2.

• Lines 81-116. I check the difference between the initial guess and the new guess |x∗ − x∗new|.
If this is too large, I repeat steps (1)–(2) of the algorithm. Again, two sub-algorithms are

considered.

• Lines 85–96. The first sub-algorithm again with f(a) < 0. I repeat steps (1)–(2), very similar

to Lines 43–69. An extra step is included in here, namely the possibility to break out of the

while loop if the estimated value of the root is in fact the true root, i.e. if f(cm) = 0. Note

the application of the very useful elseif statement here.

Figure 9.2: Sketch for Bracketing and Bisection



60 Chapter 9. Root-finding

Convergence analysis

At each level n of iteration, the estimate of the root is

x∗n =
c1n + c2n

2
,

and the maximum possible distance between the estimated value of the root and the true value is

given by

Error(n) = max (|c2n − x∗n|, |x∗n − c1n|) .

We have

Error(n) = max (|c2n − x∗n|, |x∗n − c1n|) ≤
|c2n − c1n|

2
:= δn.

Thus, at the zeroth level of iteration, we have

δ0 = |b− a|.

At the first level, we have (case 1) c1 = a and c2 = (a+ b)/2 or (case 2) c1 = (a+ b)/2 and c2 = b.

In either case,

δ1 =
|b− a|

2
.

Guessing the pattern, or doing a proper proof by induction, we have

Error(n) ≤ δn =
|b− a|
2n

.

Also,
δn+1

δn
= 1

2

is a constant, so the maximum possible error δn converges linearly as n → ∞. As we shall see

later, linear convergence is rather slow, and B&B is not normally used as the sole method by which

a root is found.

Failure analysis

When applied to a continuous function on an interval where a sign change occurs, Bracketing

and Bisection will never fail. It will converge (slowly) to a root. Ambiguity can occur however

when the continuous function possesses multiple roots on the interval (e.g. f(x) = sin(x) on

x ∈ (−π/2, 5π/2), with roots at 0, π, 2π, and sin(−π/2) = −1 and sin(5π/2) = +1. In this case,

B&B will converge to one of the roots; however, it is not obvious in advance which root will be

selected.
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Brackecketing and Bisection is therefore robust but slow. In the next chapter we examine a method

with the opposite properties. The goal is to combine these two methods to produce a hybrid scheme

that is robust and fast.



Chapter 10

The Newton–Raphson method

Overview

In this chapter we study the Newton–Raphson method for solving

f(x) = 0,

where f(x) is a differentiable function.

10.1 The idea

Figure 10.1: Sketch for the Newton–Raphson method

Let f : [a, b] → R be a differentiable function on (a, b), with at least one root in the interval
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(a, b). Start with a guess for the root xn. We refine the guess as follows. Referring to Figure 10.1,

construct the tangent line to f(xn), called Ln. The slope is f ′(xn) and a point on the line is

(xn, f(xn)). We have

Ln : y − f(xn) = f ′(xn)[x− xn]. (10.1)

Our next level of refinement for the root – xn+1 is got by moving along the tangent line Ln until

the x-axis is crossed. Using Equation (10.1), this is

0− f(xn) = f ′(xn)[xn+1 − xn].

Re-arranging, this is

xn+1 = xn −
f(xn)

f ′(xn)
, (10.2)

provided of course the tangent line has finite slope. The method (10.2), supplemented with a

starting value, is called the Newton–Raphson method for root-finding:

xn+1 = xn −
f(xn)

f ′(xn)
, x0 given. (10.3)

Error analysis

In this section, we require that f be C2 on any interval of interest, and that f ′(x) ̸= 0 on the same

interval. We let ϵn = x∗−xn be the difference between the root and the nth level of approximation.

Then,

ϵn+1 = x∗ − xn+1,

= x∗ −
(
xn −

f(xn)

f ′(xn)

)
,

= (x∗ − xn)︸ ︷︷ ︸
=ϵn

+
f(xn)

f ′(xn)
. (10.4)

Also, by definition

f(x∗) = f(ϵn + xn) = 0.

Hence, by Taylor’s remainder theorem, we have the exact expression

f(xn) + f ′(xn)ϵn +
1
2
f ′′(η)ϵ2n = 0, η ∈ [xn, xn + ϵn].

Re-arrange:
f(xn)

f ′(xn)
= −ϵn

[
1 + 1

2

f ′′(η)

f ′(xn)
ϵn

]
. (10.5)
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Combine Equations (10.4) and (10.5):

ϵn+1 = ϵn − ϵn

[
1 + 1

2

f ′′(η)

f ′(xn)
ϵn

]
,

= −
[
1
2

f ′′(η)

f ′(xn)
ϵ2n

]
Thus,

ϵn+1 =
1
2

f ′′(η)

f ′(xn)
ϵ2n.

Taking absolute values with δn := |ϵn| &c., this becomes

δn+1 =

∣∣∣∣12 f ′′(η)

f ′(xn)

∣∣∣∣ δ2n.
An upper limit on the error is

δn+1 = Mδ2n, (10.6)

where

M = sup
x∈(a,b)
y∈(a,b)

∣∣∣∣12 f ′′(x)

f ′(y)

∣∣∣∣ .
The convergence in the Newton–Raphson method is called quadratic because, by Equation (10.6),

δn+1 ∝ δ2n.

It would now seem that we have a rather awesome numerical method for root finding, with excellent

convergence properties. However, the result (10.6) should be regarded only as ‘local’: it guarantees

fast convergence only if δ0 is small. In other words, if an initial guess is a small distance away from

a root, then the guess will converge quadratically fast to the true root. However, the method is

very sensitive, and in the next chapters we investigate what happens if the initial guess is not close

to the root.
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Interlude: One-dimensional maps

Overview

The failure analysis for the Newton–Raphson method is linked intimately to the study of one-

dimensional maps. For that reason, we make a brief interlude and study such maps: their definition,

the notion of fixed points, stability, and periodic orbits.

11.1 Definitions

Definition 11.1 A sequence x is a map from non-negative integers to the real numbers:

x : {0} ∪ N → R,

n 7→ xn.

Example:

{0} ∪ N →
{
0, 1,

1

22
,
1

32
,
1

42
, · · ·

}
is a sequence.

Definition 11.2 An autonomous discrete map F is a sequence where the (n+1)th element depends

on the nth element through a definite functional form:

xn+1 = F (xn),

and where starting value x0 is also specified.
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Example:

xn+1 = λxn + sin(2πxn), λ ∈ R

is a discrete autonomous map.

Another example is the root-finding procedure in the Newton–Raphson method:

xn+1 = F (xn), F (x) = x− f(x)

f ′(x)
.

There are more general discrete maps, such as

xn+1 = F (xn, xn−1).

Such maps, involving more than two levels, are often called difference equations. We do not

discuss these any further.

11.2 Fixed points and stability

Definition 11.3 Let

xn+1 = F (xn)

be a discrete autonomous map. The fixed points of the map are those values x∗ for which

F (x∗) = x∗.

Theorem 11.1 (Fixed points of the Newton–Raphson map) Let

xn+1 = F (xn), F (x) = x− f(x)

f ′(x)

be the Newton–Raphson dynamical system. Then the fixed points of the dynamical system are the

roots of f(x).

Proof: Set x∗ = F (x∗), i.e.

x∗ = F (x∗) = x∗ −
f(x∗)

f ′(x∗)

Cancellation yields
f(x∗)

f ′(x∗)
= 0,

hence f(x∗)=0.
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Definition 11.4 Let

xn+1 = F (xn)

be a discrete autonomous map with a fixed point at x∗.

• The fixed point is called stable if |F ′(x∗)| < 1;

• The fixed point is called unstable if |F ′(x∗)| > 1.

The reason for this definition is the following. Suppose the initial condition for the map xn+1 =

F (xn) is near the fixed point:

xn=0 = x∗ + δ0, δ0 ≪ 1.

We want to know what the next value of x will be:

xn=1 = F (xn=0) = F (x∗ + δ0).

Now δ0 is small, so we can do a Taylor expansion:

F (x∗ + δ0) = F (x∗) + F ′(x∗)δ0 +
1
2
F ′′(x∗)δ

2
0 + · · · .

However, δ0 is so small that we are going to ignore the quadratic terms:

F (x∗ + δ0) ≈ F (x∗) + F ′(x∗)δ0 = x∗ + F ′(x∗)δ0

since F (x∗) = x∗. Hence,

xn=1 = x∗ + F ′(x∗)δ0.

Let us introduce δ1 such that xn=1 = x∗ + δ1. Thus,

δ1 = F ′(x∗)δ0.

Imagine repeating the map n times, such that

δn+1 = F ′(x∗)δn.

This equation is linear and has solution

δn = δ0 [F
′(x∗)]

n
.

• If |F ′(x∗)| < 0, then limn→∞ δn = 0, or limn→∞ xn = x∗;
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• If |F ′(x∗)| > 0, then limn→∞ δn = ∞, and limn→∞ xn is undetermined from the linearized

analysis.

• In the first case, if the system (the map and the x-values) starts near the fixed point, it stays

near the fixed point – the fixed point is stable;

• In the second case, if the system starts near the fixed point, it moves away from the fixed

point exponentially fast – the fixed point is unstable.

Exercise 11.1 Let x∗ be a fixed point of the Newton–Raphson map. Analyse the behaviour

of the map near a fixed point by showing that F ′(x∗) = 0. Such a fixed point is called

superstable.



Chapter 12

Newton–Raphson method: Failure analysis

Overview

We classify the different ways in which the Newton–Raphson method can fail. We apply the theory

of one-dimensional maps to analysing these failures. Finally, we examine Matlab’s own built-in

method for root finding.

12.1 One-dimensional maps and failure analysis for the Newton–

Raphson method

Let f(x) be a differentiable function with at least one real root. Consider the associated Newton–

Raphson root-finding method:

xn+1 = xn −
f(xn)

f ′(xn)
, (12.1)

for a given starting-point x0. Calling

F (x) := x− f(x)

f ′(x)
,

and

xk = F (F (· · · (x0)))︸ ︷︷ ︸
ktimes

there are at least five ways in which a poor choice for the starting value can lead to a catastrophic

failure of the Newton–Raphson algorithm:

1. x0 such that F (x0) is undefined.
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2. Predecessors of type-1 points: x0 with F (xn) undefined for some positive-integer value of n.

3. Periodic orbits: x0 such that x0 = F (x0+n) for some positive-integer value of n.

4. Predecessors of periodic orbits: points x0 such that limk→∞ xk is a periodic orbit.

5. Divergence to infinity: Points x0 such that limk→∞ |xk| = ∞.

As an example of failure analysis using this list, we examine the Newton–Raphson method applied

to the problem of finding the roots of f(x) = x3 − x. The analysis is simplified in this instance

because the roots are obvious: x = ±1 and x = 0. Of course, the Newton–Raphson method can

also be used to find these roots:

xn+1 = F (xn), F (x) = x− x3 − x

3x2 − 1
, (12.2)

with some starting value x0. We shall examine how the choice of starting value x0 affects the

performance of the algorithm (12.2).

Type 1 points

With the starting value

x0 = ± 1√
3
,

we obtain x1 = ∞, since the derivative of f(x) vanishes at x = ±1/
√
3. These are then type 1

points

It is of interest to know if there are any predecessors of type-1 points. For that reason, we construct

cobweb diagrams for the map xn+1 = F (xn). Given a generic map of this form, it is possible to

determine graphically where a given starting condition x0 will end up, that is, there is a graphical

way of determining

lim
n→∞

xn, xn+1 = F (xn), x(n = 0) = x0.

This is called a cobweb, and is computed according to the following recipe:

• Plot y = F (x) on the allowed range. For the NR map, x ∈ R, with singular points at

x = ±1/
√
3.

• Plot y = x.

• Take the starting point x0 and match it up with a point on y = f(x), giving x1.

• Draw a horizontal line from x1 until it hits the line y = x.
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Figure 12.1: Cobweb diagram for the map xn+1 = 2xn(1− xn), with x0 ≥ 0.

• From this point, draw a vertical line until such that the curve y = f(x) is intersected again.

This is x2.

• Repeat the procedure.

Simple example: Use a cobweb diagram to find the fixed points of the map xn+1 = 2xn(1− xn),

with x0 ≥ 0.

First, the fixed points are found using analytic methods by setting x∗ = 2x∗(1− x∗), hence x∗ = 0

or x∗ = 1/2. The corresponding cobweb diagram is shown in Figure 12.1.
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Next, cobweb diagrams for the more involved Newton–Raphson map (12.2) are shown here:

(a)

(b)

Figure 12.2: Cobweb procedure for the Newton–Raphson map xn+1 = xn − [(x3
n − x)/(3x2

n − 1)]

In the figure, we have implemented the cobweb procedure for starting values x0 = ±1/
√
3 ± δ,

with δ small and positive. For |δ| small, after a few iterations, we arrive at one of the fixed points

x∗ = ±1.
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Period-2 orbits

Definition 12.1 Let xp = F (xn) be a discrete map. A period-two orbit is a point xp such that

xp = F (F (xp)).

We apply this definition to Equation (12.2) by supposing a starting-value x0 can be found such that

x0 = F (F (x0)). Then, the iterative method (12.2) will not converge on the root, instead, it will

cycle through the sequence {x0, F (x0), x0, F (x0), · · · } indefinitely. Indeed, such starting values do

in fact exist for the particular map (12.2); we find them now by solving

xp = F (F (xp)).

To simplify, we rewrite

F (x) = x− x3 − x

3x2 − 1
=

x(3x2 − 1)− x3 + x

3x2 − 1
=

2x3

3x2 − 1
.

We are to solve

xp = F (yp), yp = F (xp).

We have,

xp =
2y3p

3y2p − 1
,

=
2
(

2x3
p

3x2
p−1

)3
3
(

2x3
p

3x2
p−1

)2
− 1

,

=
16x9

p

(3x2
p − 1)

[
12x6

p − (3x2
p − 1)2

] .
Hence, the periodic orbits are obtained as roots of the equation

16x9
p − xp(3x

2
p − 1)

[
12x6

p − (3x2
p − 1)2

]
= 0. (12.3)

The leading-order term here is −20x9
p – this is a ninth-order polynomial. In fact, the roots x = 0,

x = ±1 are (trivially) period-two orbits, so x(x − 1)(x + 1) are factors of Equation (12.3). By

dividing out by these factors, we would be left with a sixth-order polynomial whose real roots would

give possible period-two orbits. However, this division, and the resulting sixth-order polynomial root-

finding problem would be very difficult to solve – especially in this case where a precise analytical

answer is necessary. We therefore resort to a different (analytic) method to extract the roots – the

symbolic software tool Maple. This is done in Figure 12.3. The real roots are xp = ±1/
√
5. These



74 Chapter 12. Newton–Raphson method: Failure analysis

Figure 12.3: Maple procedure for finding the periodic orbits of the Newton–Raphson map xn+1 =
xn − [(x3

n − x)/(3x2
n − 1)]

are therefore the periodic orbits. Thus, starting at an initial guess x0 = 1/
√
5, the Newton–Raphson

method would give a sequence {1/
√
5,−1/

√
5, 1/

√
5,−1/

√
5, · · · }, never converging on any of the

roots x = 0,±1. This is a disaster!

The good news is that these periodic orbits are unstable: starting-values x0 near ±1/
√
5 rapidly

move away from ±1/
√
5. This is readily shown because the because the stability parameter for a

period-2 orbit is

λ2 =

∣∣∣∣ ddxF (F (x))
∣∣
xp

∣∣∣∣ .
We compute:

λ2 = |F ′(F (xp))F
′(xp)| ,

= |F ′(xp1)F
′(xp2)| ,

=

∣∣∣∣[6x2
p1(x

2
p1 − 1)

(3x2
p1 − 1)2

] [
6x2

p2(x
2
p2 − 1)

(3x2
p2 − 1)2

]∣∣∣∣ ,
= 36

Hence, λ2 > 1 and the periodic orbits are unstable. Thus, although disastrous, the starting-value

x0 = ±1/
√
5 is not ‘too disastrous’, as any starting-value x0 = ±1/

√
5 ± δ with δ > 0 small will

lead to a non-periodic orbit and (perhaps) convergence to the roots.

The following list is a summary of our findings:

1. For x0 = ±1/
√
3 a type-1 singularity is obtained;
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2. For x0 in the neighbourhood of ±1/
√
3 the Newton–Raphson iterates tend to ±1.

3. For x0 = ±1/
√
5 a periodic orbit is obtained;

4. For x0 in the neighbourhood of 1/
√
5 the Newton–Raphson iterates tend either to ±1 or 0.

In short, the eventual outcome depends sensitively on the choice of starting-value x0 – the Newton–

Raphson map is chaotic.

Other possible failures

For a continuous function, a sign change in an interval indicates the existence of a root in that

interval. However, naively applying this result to functions with a singular point can lead to a

completely erroneous answer. For example, the function

f(x) =
1

1− x
(12.4)

has a singularity at x = 1 and asymptotes to x = −∞ as x ↓ 1 and asymptotes to x = +∞ as

x ↑ 1. In this case, it is easy to derive the following asymptotic behaviours of the Newton–Raphson

map associated with Equation (12.4)

x0 = 1 : xn = 1, n = 1, 2, · · · , (12.5a)

x0 > 1 : lim
n→∞

xn = +∞, (12.5b)

x0 < 1 : lim
n→∞

xn = −∞. (12.5c)

Thus, x0 = 1 is an unstable fixed point and all other starting values are type-5 divergences.

Exercise 12.1 Prove the result (12.5).

12.2 Conclusions from failure analysis

We have seen that the Newton–Raphson method has rather odd (almost contradictory) properties:

1. Quadratic convergence: For x0 sufficiently close to a root, the deviation of the estimated root

from the true root decreases as the square of the deviation itself (i.e. ‘very fast’).
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2. Sensitive dependence on initial conditions (’chaos’): For x0 not sufficiently close to a root, the

Newton–Raphson method can exhibit wild behaviour, including periodic orbits, singularities,

and asymptotic divergences.

Clearly then, in order for the Newton–Raphson method to succeed, the initial guess must be a

judicious one. In practice, Bracketing and Bisection is used to ‘zoom in’ on a region of interest

containing a root and the Newton–Raphson method (or some variant thereof) is used to compute

the numerical root with more precision.

12.3 Matlab’s built-in root-finding function

Matlab has its own built-in root-finding function. It starts by doing Bracketing and Bisection until

it is fairly confident that it has found a small region where the desired root exists. It then homes

in on the root by using the secant method – which is a variant on the NR method. This switch in

methods gives the best of both worlds – at the beginning of the calculation, the method is robust and

does not do anything crazy (such as entering into a periodic orbit). At the end of the calculation,

the method is fast and accurate, because it takes advantage of the quadratic convergence of the

NR-type method. However, one must still provide a starting-guess for the calculation.

Suppose we are interested in the roots of the function

f(x) = sinx+ x cosx+
ex

1 + x2
.

A sensible thing is first of all to plot this function and to get an idea of where the roots lie (in

practice this is not always possible):

0 1 2 3 4 5 6
−5

0

5

10

15

20

X: 2.56
Y: 0

x

y=
f(

x)

Figure 12.4: Plot of f(x) = sinx+ x cosx+ ex/(1 + x2) on the range x ∈ [0, 6].



12.3. Matlab’s built-in root-finding function 77

We see that a the point x = 2.6 is very close to a root. This is therefore a good starting-value for

our root-finding calculation. We would proceed as follows and write a small Matlab function:

1 f u n c t i o n x s t a r=g e t r o o t s ( )

2

3 % Matlab f u n c t i o n to f i n d r o o t s o f f ( x )=0.

4 % The s t a r t i n g −v a l u e must be p r o v i d ed by the u s e r .

5

6 % S t a r t i n g v a l u e :

7 x0 =2.6 ;

8 x s t a r = f z e r o (@myfun , x0 ) ;

9

10

11 f u n c t i o n f x=myfun ( x )

12 % User−d e f i n e d f u n c t i o n − put whateve r you l i k e here , but watch

13 % out f o r . / and .∗
14 f x=s i n ( x )+x .∗ cos ( x )+exp ( x ) ./(1+ x . ˆ 2 ) ;

15 end

16

17 end

sample matlab codes/get roots.m
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Exercise 12.2 Write a code that starts with a continuous function f : [a, b] → R such that

f(a) < 0 and f(b) > 0. Use Bracketing and Bisection to compute an estimate of the root, down

to a tolerance of 10−3. Then, use this value as a starting-point for a Newton–Raphson iteration

and iterate to find the root down to machine precision. Execute your built-in function 10,000

times inside a loop and do the same thing for the Matlab version. Find the average execution

time in each case.



Chapter 13

Numerical Quadrature – Introduction

Overview

In this chapter we study numerical methods to compute the definite integral

I =

∫ b

a

f(x)dx,

where f(x) is a continuous function.

13.1 Riemann Sums

We first of all recall the definition of the Riemann integral. We consider a generic continuous

function

f : [a, b] → R,

x 7→ f(x),

with the positivity property

f(x) > 0 on [a, b].

We consider the problem of finding the area under the curve y = f(x).

We form a uniform partition of [a, b],

[a, b] = [x0, x1] ∪ [x1, x2] ∪ · · · ∪ [xN−1, xN ], a = x0, b = xN ,

xi = a+ i

(
b− a

N

)
, i = 0, 1, · · · , N.
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We form the following upper and lower sums:

Upper : UN :=
N−1∑
i=0

[
sup

x∈[xi,xi+1]

f(x)

]
(xi+1 − xi) ,

Lower : LN :=
N−1∑
i=0

[
inf

x∈[xi,xi+1]
f(x)

]
(xi+1 − xi) .

The function f is called Riemann-integrable with Riemann integral I if

lim
N→∞

UN = lim
N→∞

LN := I. (13.1)

See Figure 13.1 for the accompanying sketch.

Figure 13.1: Upper and lower sums for Riemann integration

We have the following important result:

Theorem 13.1 (Riemann integrability for continuous functions) Let f : [a, b] → R be con-

tinuous on [a, b] with the positivity property f(x) > 0. Then f is Riemann integrable.

No proof is provided here – this is not an analysis class, but see Beals (p. 107) A further result

enables an obvious generalization of Riemann integration to non-positive functions:

Theorem 13.2 Let f : [a, b] → R be continuous on [a, b] with the positivity property f(x) > 0,

and let c ∈ (a, b). Then ∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.
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Hence, we have the following definition:

Definition 13.1 Let f : [a, b] → R be continuous on [a, b] with c ∈ (a, b) such that f(x) ≤ 0 on

[a, c] and f(x) ≥ 0 on [c, b]. Then∫ b

a

f(x) dx := −
∫ c

a

[−f(x)] dx+

∫ b

c

f(x) dx. (13.2)

Definition (13.1) is extended in an obvious way to continuous functions with many zeros on a given

interval of integration. Moreover, the Riemann-sum definition (13.1) can be applied to non-positive

functions immediately without the intermediate step in Equation (13.1). These concepts will now

be helpful in developing a theory of numerical quadratures.

13.2 Approximation by Riemann sums – Midpoint Rule

For the duration of this chapter, we regard f : [a, b] → R to be a continuous function with arbitrarily

many roots on [a, b]. We are interested as before in numerical approximations to I =
∫ b

a
f(x) dx.

Consider therefore the following sum:

SN =
N=1∑
i=0

f

(
xi + xi+1

2

)
(xi+1 − xi) .

By definition,

LN ≤ SN ≤ UN ,

hence, by the sandwich theorem,

lim
N→∞

SN = I.

A numerical approximation to the Riemann integral I is thus

I ≈
N=1∑
i=0

f

(
xi + xi+1

2

)
(xi+1 − xi) .

See Figure 13.2 for the accompanying sketch. We are interested in this section in the error involved
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Figure 13.2: The midpoint rule

in using this approximation instead of the limit. We compute:

δN :=

∣∣∣∣∫ b

a

f(x) dx− SN

∣∣∣∣ ,
=

∣∣∣∣∣
∫ b

a

f(x) dx−
N−1∑
i=0

f

(
xi + xi+1

2

)
(xi+1 − xi)

∣∣∣∣∣ ,
=

∣∣∣∣∣
∫ b

a

f(x) dx−∆x
N−1∑
i=0

f
(
xi +

1
2
∆x
)∣∣∣∣∣ , ∆x =

b− a

N
,

=

∣∣∣∣∣
N−1∑
i=0

∫ xi+∆x

xi

f(x) dx−∆x

N−1∑
i=0

f
(
xi +

1
2
∆x
)∣∣∣∣∣ ,

=

∣∣∣∣∣
N−1∑
i=0

∫ xi+∆x

xi

[
f(x)− f(xi +

1
2
∆x)

]
dx

∣∣∣∣∣ ,
=

∣∣∣∣∣∆x
N−1∑
i=0

∫ 1

0

[
f(xi + η∆x)− f

(
xi +

1
2
∆x
)]

dη

∣∣∣∣∣ .
We use Taylor’s remainder theorem to write

f(xi+η∆x) = f
(
xi +

1
2
∆x
)
+f ′(xi+

1
2
∆x)

(
η − 1

2

)
∆x+1

2
f ′′(cη)

(
η − 1

2

)2
∆x2, cη ∈ [xi, xi +∆x] .

Hence,

f(xi + η)− f
(
xi +

1
2
∆x
)
= f ′(xi +

1
2
∆x)

(
η − 1

2

)
∆x+ 1

2
f ′′(cη)

(
η − 1

2

)2
∆x2.
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But ∫ 1

0

(
η − 1

2

)
dη = 0,

hence

δN = ∆x3

∣∣∣∣∣
N−1∑
i=0

∫ 1

0

1
2
f ′′(cη)

(
η − 1

2

)2
dη

∣∣∣∣∣ ,
≤ ∆x3

N−1∑
i=0

∣∣∣∣∫ 1

0

1
2
f ′′(cη)

(
η − 1

2

)2
dη

∣∣∣∣ ,
≤ 1

2
∆x3

N−1∑
i=0

∫ 1

0

|f ′′(cη)|
(
η − 1

2

)2
dη,

≤ 1
2
∆x3N sup

x∈[a,b]
|f ′′(x)|

∫ 1

0

(
η − 1

2

)2
dη,

≤ 1
2

(b− a)3

N2

(
sup
x∈[a,b]

|f ′′(x)|

)(
1
12

)
,

Finally,

δN =
(b− a)3

24N2

(
sup

x∈[a,b]
|f ′′(x)|

)
. (13.3)

Of interest as well is the so-called asymptotic error, wheren the error is expressed in terms of a

leading-order term in a Taylor expansion. As before, we start with

δN :=

∣∣∣∣∫ b

a

f(x) dx− SN

∣∣∣∣ ,
=

∣∣∣∣∣∆x

N−1∑
i=0

∫ 1

0

[
f(xi + η)− f

(
xi +

1
2
∆x
)]

dη

∣∣∣∣∣ .
We use Taylor’s remainder theorem again to write

f(xi + η) = f
(
xi +

1
2
∆x
)
+ f ′(xi +

1
2
∆x)

(
η − 1

2

)
∆x+ 1

2
f ′′(xi +

1
2
∆x)

(
η − 1

2

)2
∆x2 +O(∆x3),

where the omitted term can be written exactly as

1
3!
f ′′′(dη)

(
η − 1

2

)3
∆x3, dη ∈ [xi, xi +∆x].

As before then,

δN = ∆x

∣∣∣∣∣
N−1∑
i=0

∫ 1

0

[
1
2
f ′′(xi +

1
2
∆x)

(
η − 1

2

)2
∆x2 +O(∆x3)

]
dη

∣∣∣∣∣ ,
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δN ≤ ∆x

[
N−1∑
i=0

∣∣∣∣∫ 1

0

1
2
f ′′(xi +

1
2
∆x)

(
η − 1

2

)2
∆x2dη

∣∣∣∣+O(∆x3)

]
,

≤

[
1
2
∆x3

N−1∑
i=0

∣∣f ′′(xi +
1
2
∆x)

∣∣ ∫ 1

0

(
η − 1

2

)2
dη

]
+N∆xO(∆x3),

≤ 1
2
∆x3N

(
sup
x∈[a,b]

|f ′′(x)|

)(
1
12

)
+N∆xO(∆x3),

≤ 1
24

(b− a)3

N2

(
sup
x∈[a,b]

|f ′′(x)|

)
+

(
b− a

∆x

)
∆xO(∆x3).

since N = (b− a)/∆x. Using this fact again, we get

δN = 1
24

(b− a)3

N2

(
sup
x∈[a,b]

|f ′′(x)|

)
+O

(
1

N3

)
. (13.4)

Technical notes

• The exact form of the error estimate (Equation (13.3)) holds whenever the function to be

integrated is C2 on (a, b). This is a rather weak condition.

• On the other hand, the asymptotic error estimate (13.4) requires that f(x) be at least C3 on

(a, b) – a slightly stronger condition.

• Both estimates will fail if the function is less smooth. However, the midpoint rule will still

work. This is because the midpoint rule is a simple implementation of the Riemann-sum

integration rule, whose success requires only that f(x) be continuous on [a, b].

• The basic theorems assumed here are listed for reference in Appendix A.

Exercise 13.1 Write a Matlab code to integrate a continuous function f : [a, b] → R using the

Midpoint rule.
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13.3 The trapezoidal rule

The idea of the trapezoidal rule is similar in spirit to the midpoint rule. As before, the interval [a, b]

of integration is broken up into subintervals (the uniform partition), as

[a, b] = [x0, x1] ∪ [x1, x2] ∪ · · · ∪ [xN−1, xN ], a = x0, b = xN ,

xi = a+ i

(
b− a

N

)
, i = 0, 1, · · · , N.

The area Ai under the curve in a typical subinterval (the ith) is examined, and is approximated using

a ‘trapezoid’, as in Figure 13.3 In other words, the curve is regarded as behaving ‘almost’ like a

Figure 13.3: Trapezoidal rule for a subinterval

linear function,

f(x) ≈ fL(x) = f(xi) +

[
f(xi+1)− f(xi)

xi+1 − xi

]
(x− xi) ,

hence

f(x) ≈ f(xi) +

[
f(xi+1)− f(xi)

∆x

]
(x− xi) on [xi, xi +∆x].

The approximate area can be computed exactly by integration:

Ai ≈
∫ xi+∆x

xi

fL(x)dx = 1
2
∆x [f(xi+1) + f(xi)] .

Summing over all such typical intervals, the approximate area under the curve is

I ≈ 1
2
∆x

N−1∑
i=0

[f(xi+1) + f(xi)] .
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Exercise 13.2 Repeat the asymptotic error analysis of Section 13.3 and show that the error

associated with the Trapezoidal Rule is

δN ≤ (b− a)3

12N2

(
sup
x∈[a,b]

|f ′′(x)|

)
+O

(
1

N3

)
.

The Trapezoidal rule is therefore twice as poor as the easier-to-develop midpoint rule. This is an

illustration of a general point:

Common Programming Error:

The addition of extra complexity does not necessarily improve an algorithm.

This loss-of-accuracy can be explained in loose terms as follows: the midpoint rule involves a function

evaluation at the midpoint of an interval. For a typical continuous function, this will lead, on average,

to an overestimate of the area half the time, and an underestimate for the other half of the time.

Many of these errors will therefore cancel out, by symmetry, leading to a relatively small error. On

the other hand, the trapezoidal rule does not possess this symmetry, leading to a larger error.

A further bizarre property of the midpoint rule is that the error is exactly zero for linear functions

(wheren f ′′(x) = 0). However, looking at the method, we would expect it to be exact only for

piecewise constant functions! The special symmetry inherent in the method gives us an extra layer

of accuracy that we have no right to expect, a priori.

One advantage of the trapezoidal rule is that it belongs to a general class of methods called the

Newton–Coates formulas, whose accuracy can be increased simply by increasing the so-called

order of the formula. The trapezoidal rule is the first-order Newton–Coates formula, because it fits

a line to a curve on each subinterval. At second order, a parabola is fitted to the curve on each

subinterval. There are higher-order methods too. Increasing the order increases the accuracy of the

approximation. We shall demonstrate this now with the second-order Newton–Coates method, also

called Simpson’s rule.



Chapter 14

Numerical Quadrature – Simpson’s rule

Overview

In this chapter we use a more advanced method (Simpson’s rule) to evaluate the definite integral

I =

∫ b

a

f(x)dx,

where f(x) is a continuous function.

14.1 Simpson’s rule

The idea of Simpson’s rule should by now be familiar. The interval [a, b] of integration is broken

up into subintervals (the uniform partition), and the area Ai under the curve in two neighbouring

subintervals is examined, and is approximated using a parabola, as in Figure 14.1 In other words,

the curve is regarded as behaving ‘almost’ like a quadratic function (parabola) which intersects the

true curve at xi, xi+1, and xi+2 . We therefore write

f(x) ≈ fP (x) = A+Bx+ Cx2,

where the unknowns A, B, and C are determined via

fP (xi) = f(xi), fP (xi+1) = f(xi+1), fP (xi+2) = f(xi+2).

87
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Figure 14.1: Simpson’s rule for two neighbouring subintervals

In other words,

A+Bxi + Cx2
i = f(xi), (14.1)

A+Bxi+1 + Cx2
i+1 = f(xi+1), (14.2)

A+Bxi+2 + Cx2
i+2 = f(xi+2). (14.3)

These are three linearly-independent equations in three unknowns, A, B, and C. We take (14.2)−(14.1)

and (14.3)−(14.2) to obtain

B(xi+1 − xi) + C(x2
i+1 − x2

i ) = f(xi+1)− f(xi),

B(xi+2 − xi+1) + C(x2
i+2 − x2

i+1) = f(xi+2)− f(xi+1).

In other words,

B∆x+ C
(
2xi∆x+∆x2

)
= f(xi+1)− f(xi), (14.4)

B∆x+ C
(
2xi∆x+ 3∆x2

)
= f(xi+2)− f(xi+1). (14.5)

We subtract these equations ((14.5)−(14.4)) to obtain

C
(
2∆x2

)
= f(xi+2)− 2f(xi+1) + f(xi),

hence

C =
1

2∆x2
[f(xi+2)− 2f(xi+1) + f(xi)] . (14.6)
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Back-substitution into Equation (14.4) yields

B∆x = [f(xi+1)− f(xi)]−∆x (2xi +∆x)C.

Final substitution into Equation (14.1) yields

A = f(xi)−Bxi − Cx2
i .

The approximate area can be computed exactly by integration:

Ai ≈
∫ xi+2∆x

xi

fP (x) dx = 2A∆x+ 1
2
B
[
(xi + 2∆x)2 − x2

i

]
+ 1

3
C
[
(xi + 2∆x)3 − x3

i

]
,

= 2A∆x+ 2B∆x (xi +∆x) + 2
3
C∆x

(
3x2

i + 3xi2∆x+ 4∆x2
)

= 2A∆x+ 2B∆x (xi +∆x) + 2C∆x
(
x2
i + xi2∆x+ 4

3
∆x2

)
,

= 2∆x
[
f(xi)−Bxi − Cx2

i

]
+ 2B∆x (xi +∆x) + 2C∆x

(
x2
i + 2xi∆x+ 4

3
∆x2

)
.

Some cancellation occurs, giving

Ai ≈ 2∆xf(xi) + 2B∆x2 + 2C∆x
(
2xi∆x+ 4

3
∆x2

)
.

Use ∆xB = [f(xi+1)− f(xi)]−∆x (2xi +∆x)C again to obtain

Ai ≈ 2∆xf(xi) + 2∆x

{
[f(xi+1)− f(xi)]−∆x (2xi +∆x)C

}
+ 2C∆x

(
2xi∆x+ 4

3
∆x2

)
,

= 2∆xf(xi) + 2∆x [f(xi+1)− f(xi)]− 4∆x2xiC − 2∆x3C + 4∆x2xiC + 8
3
∆x3C,

= 2∆xf(xi+1) +
2
3
∆x3C.

Using the definition of C in Equation (14.6), this is

Ai ≈ 2∆xf(xi+1) +
2
3
∆x3

{
1

2∆x2
[f(xi+2)− 2f(xi+1) + f(xi)]

}
,

= 1
3
∆x [f(xi+2) + f(xi) + 4f(xi+1)] .

We sum over all such pairs of intervals, such that

I ≈ 1
3
∆x [f(x2) + f(x0) + 4f(x1)] +

1
3
∆x [f(x4) + f(x2) + 4f(x3)] +

1
3
∆x [f(x6) + f(x4) + 4f(x5)] + + · · · 1

3
∆x [f(xN) + f(xN−2) + 4f(xN−1)] .
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This can be re-arranged so the pattern becomes clearer:

I ≈ 1
3
∆x [f(x0) + f(xN)] +

2
3
∆x [f(x2) + f(x4) + f(x6) + · · ·+ f(xN−2)] +

4
3
∆x [f(x1) + f(x3) + f(x5) + · · ·+ f(xN−1)] .

Because we consider the partition to be made up of pairs of subintervals, N must be even.

Common Programming Error:

Not taking N to be even in an implementation of Simpson’s rule.

We may therefore re-write the approximate formula as follows:

I ≈ 1
3
∆x

f(x0) + f(xN) + 2
∑

1≤j<N
j even

f(xj) + 4
∑

1≤j<N
j odd

f(xj)

 . (14.7)

Exercise 14.1 Write a Matlab code to integrate a continuous function f : [a, b] → R using

Simpson’s rule.

Common Programming Error:

The x-index in the Simpson formula (14.7) starts with j = 0. Array indices in Matlab

start at 1. A code to implement Simpson’s rule has to recognize this shift.

14.2 Error analysis for Simpson’s rule

We perform an asymptotic error analysis. We start with the error associated with integration over

a typical subinterval pair:

δi =

∣∣∣∣∫ xi+2∆x

xi

f(x)dx− 1
3
∆x [f(xi+2) + f(xi) + 4f(xi+1)]

∣∣∣∣ .
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We Taylor-expand to fifth order, with Taylor series centred at xi. For simplicity, we call the signed

error ϵi, with δi = |ϵi|. We have,

ϵi =∫ xi+2∆x

xi

[
f(xi)+f ′(xi)(x−xi)+

1
2
f ′′(xi)(x−xi)

2+ 1
3!
f ′′′(xi)(x−xi)

3+ 1
4!
f (4)(x−xi)

4+ 1
5!
f (5)(cx)(x−xi)

5
]
dx

− 1
3
∆x
[
f(xi) + f ′(xi)2∆x+ 1

2
f ′′(xi)4∆x2 + 1

3!
f ′′′(xi)8∆x3 + 1

4!
f (4)16∆x4 + 1

5!
f (5)(c0)32∆x5

]
− 1

3
∆xf(xi)

− 4
3
∆x
[
f(xi) + f ′(xi)∆x+ 1

2
f ′′(xi)∆x2 + 1

3!
f ′′′(xi)∆x3 + 1

4!
f (4)∆x4 + 1

5!
f (5)(c1)∆x5

]
.

We compute the contributions, order-by-order in the Taylor series:

Zeroth order: We have∫ xi+2∆x

xi

f(xi)dx−∆x
(
1
3
+ 1

3
+ 4

3

)
f(xi) = 0.

First order: We have

f ′(xi)

∫ xi+2∆x

xi

(x− xi) dx−∆x2f ′(xi)
(
2
3
+ 4

3

)
= f ′(xi)

[
1
2
(x− xi)

2
∣∣xi+2∆x

xi
− 2∆x2

]
= 0.

Second order: We have

1
2
f ′′(xi)

∫ xi+2∆x

xi

(x− xi)
2 dx− 1

2
∆x3f ′′(xi)

(
4
3
+ 4

3

)
= 1

2
f ′′(xi)

[
1
3
(x− xi)

3
∣∣xi+2∆x

xi
− 8

3
∆x3

]
= 0.

Third order: We have

1
3!
f ′′′(xi)

∫ xi+2∆x

xi

(x− xi)
3 dx− 1

3!
∆x4f ′′′(xi)

(
8
3
+ 4

3

)
= 1

3!
f ′′′(xi)

[
1
4
(x− xi)

4
∣∣xi+2∆x

xi
− 12

3
∆x4

]
= 0.

Fourth order: We have

1
4!
f (4)(xi)

∫ xi+2∆x

xi

(x− xi)
4 dx− 1

4!
∆x5f (4)(xi)

(
16
3
+ 4

3

)
= 1

4!
f (4)(xi)

[
1
5
(x− xi)

5
∣∣xi+2∆x

xi
− 20

3
∆x4

]
= − 4

15·24∆x5f (4)(xi) = − 1
90
∆x5f (4)(xi).
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Remainder terms: We have

1
5!

∫ xi+2∆x

xi

f (5)(cx)(x− xi)
5dx− 1

5!
∆x6

[
64
3
f (5)(c0) +

4
3
f (5)(c0)

]
.

Let’s put it all together now:

ϵi = − 1
90
∆x5f (4)(xi) +

1
5!

∫ xi+2∆x

xi

f (5)(cx)(x− xi)
5dx− 1

5!
∆x6

[
64
3
f (5)(c0) +

4
3
f (5)(c0)

]
,

δi =

∣∣∣∣− 1
90
∆x5f (4)(xi) +

1
5!

∫ xi+2∆x

xi

f (5)(cx)(x− xi)
5dx− 1

5!
∆x6

[
64
3
f (5)(c0) +

4
3
f (5)(c0)

]∣∣∣∣ ,
δi ≤ 1

90
∆x5|f (4)(xi)|+

∣∣∣∣ 15! ∫ xi+2∆x

xi

f (5)(cx)(x− xi)
5dx− 1

5!
∆x6

[
64
3
f (5)(c0) +

4
3
f (5)(c0)

]∣∣∣∣ ,
≤ 1

90
∆x5|f (4)(xi)|+ 1

5!

(
sup

[xi,xi+2∆x]

|f (5)(x)|

)∫ xi+2∆x

xi

(x− xi)
5 dx

+∆x6

(
sup

[xi,xi+2∆x]

|f (5)(x)|

)(
64
3
+ 4

3

)
.

Hence,

δi ≤ 1
90
∆x5|f (4)(xi)|+O(∆x6). (14.8)

We sum over all interval pairs as follows:

δN =

∣∣∣∣∣∣∣∣
∑
j≥0

interval pairs

ϵj

∣∣∣∣∣∣∣∣ ≤
∑
j≥0

interval pairs

|ϵj| =
∑
j≥0

interval pairs

δj.

From Equation (14.8)

δN ≤
∑
j≥0

interval pairs

[
1
90
∆x5|f (4)(xi)|+O(∆x6)

]
,

≤ 1
2
N 1

90
∆x5

(
sup
[a,b]

|f (4)(x)|

)
+ 1

2
N O(∆x6),

Finally,

δN ≤ 1
180

(
(b− a)5

N4

)(
sup
[a,b]

|f (4)(x)|

)
+O

(
1

N5

)
.

Thus, the error in Simpson’s rule decreases as N−4. Contast this with the Trapezoidal and

midpoint rules, where the error decreased as N−2.
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14.3 Quadrature with Matlab’s built-in functions

Matlab has a built-in quadrature function that implements Simpson’s rule. Technically, it uses an

adaptive Simpson’s rule, which means that the partition is non-uniform: the partition is refined

locally so that the error never exceeds a prescribed tolerance. A first implementation is shown below,

where the default tolerance is assumed.

1 f u n c t i o n [Q]=do num quad ( a , b )

2

3 % Funct i on ”myfun” to be i n t e g r a t e d ; t h i s i s d e f i n e d i n a Matlab

4 % sub f u n c t i o n below .

5

6 Q = quad (@myfun , a , b ) ;

7

8 f u n c t i o n y = myfun ( x )

9 % User−d e f i n e d f u n c t i o n − put whateve r you l i k e here , but watch

10 % out f o r . / and .∗
11 y = 1./(1+ s i n ( x ) .∗ s i n ( x ) ) ;

12 end

13

14 end

sample matlab codes/do num quad.m

On the other hand, the following version shows a user-defined tolerance. This is a limit on the

absolute error of the total integral I.

1 f u n c t i o n [Q]= do num quad w i th to l ( a , b )

2

3 % Funct i on ”myfun” to be i n t e g r a t e d ; t h i s i s d e f i n e d i n a Matlab

4 % sub f u n c t i o n below .

5

6 % User−d e f i n e d t o l e r a n c e ( d e f a u l t i s 1e−6)

7 t o l=1e−8;

8

9 Q = quad (@myfun , a , b , t o l ) ;

10

11 f u n c t i o n y = myfun ( x )

12 % User−d e f i n e d f u n c t i o n − put whateve r you l i k e here , but watch

13 % out f o r . / and .∗
14 y = 1./(1+ s i n ( x ) .∗ s i n ( x ) ) ;

15 end

16

17 end

sample matlab codes/do num quad withtol.m
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Finally, from the Matlab help pages:

• The quadl function may be more efficient than quad at higher accuracies with smooth inte-

grands.

• The quad function may be most efficient for low accuracies with nonsmooth integrands.

Here ‘quadl’ is a built-in function that implements Gauss–Lobtatto quadrature. A discussion of

this method is beyond the scope of this module. However, it can easily be implemented in Matlab

simply by replacing the command ‘quad’ with ‘quadl’. Since we have already spent a great deal of

time in studying numerical quadrature, we should not feel too guilty in resorting to a black box in

this instance.



Chapter 15

Ordinary Differential Equations – Euler’s

method

Overview

We examine the model ordinary-differential equation (ODE)

dx

dt
= F (x, t), x(0) = x0.

We investigate the conditions that guarantee that the ODE has a solution (‘existence theorem’).

We examine a numerical method to approximate the solution (if it exists), reducing the problem to

the numerical calculation of a simple difference equtaion. This is the so-called Euler method.

15.1 The definition

An n-dimensional ordinary-differential equation (ODE) is a relation of the following form:

dx

dt
= F (x, t), (15.1a)

where x = (x1, ..., xn)
T are variables that depend on t and F is a function of the form

F (x, t) =


F1(x1, ..., xn, t)

F2(x1, ..., xn, t)
...

F1(x1, ..., xn, t)

 (15.1b)
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The equation can be solved either as a boundary-value problem or as an initial-value problem

(IVP). In this module, we are interested in IVPs. Equation (15.1a) is solved as an IVP if the following

extra condition is given:

x(t = 0) = x0, (15.1c)

where x0 is some constant vector called the initial condition. .

Furthermore, an IVP is called autonomous if the function F does not depend explicitly on t,

F = F (x) only.

15.2 Examples

The simplest possible ODE is a one-dimensional autonomouos ODE:

dx

dt
= f(x).

We solve this by separation of variables: ∫
dx

f(x)
= t+ C,

where C is a contant of integration. More concretely, consider the example

dx

dt
= ax,

where a is a constant real number. We separate the variables:

dx

x
= a dt.

Integrate: ∫
dx

x
= a

∫
dt+ C.

Hence,

log x = at+ C.

Exponentiate both sides (‘taking inverses’):

x = eCeat.

Let D = eC (a constant):

x = Deat.
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The constant D is fixed by initial conditions:

x(t = 0) = x0 =⇒ D = x0.

Finally, the solution to the IVP is

x = x0e
at.

So far our discussion of ODEs has not involved the notion of ‘order’. This is for a good reason.

The order of a differential equation refers to how many derivatives appear. For example, an ODE

involving d/dt only is called first order, while an ODE involving d2/dt2 and d/dt only is called second

order, and so on. However, a single second-order ODE can always be converted into a system of

first-order ODEs. For example, consider

m
d2x

dt2
= f(x, t),

where m is a constant. Calling v(t) = dx/dt, we can re-write this as

d

dt

(
x

v

)
=

(
v

1
m
f(x, t)

)
.

Thus, the notion of ‘order’ is really subsumed into the notion of a system of ODEs.

Concetely, consider the following physical example:

m
d2x

dt2
+ γm

dx

dt
+mω2

0x
2 = f0 cos(ωt), (15.2)

which is the equation of a damped, driven (linear) pendulum. Here, m, γ, ω0, f0, and ω are all

positive constants. The force on the pendlum is

f(x, t) = −γm
dx

dt
−mω2

0 + f0 cos(ωt),

and the equation of motion (15.2) can be re-written as

m
d2x

dt2
= f(x, t).

Viewed as a system of first-order equations, this is

d

dt

(
x

v

)
=

(
v

−γv − ω2
0x+ (f0/m) cos(ωt)

)
.
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To solve these equations, the following initial data are needed:

x(t = 0) = x0, v(t = 0) = v0,

where x0 and v0 are constants corresponding to the initial position and velocity of the pendulum.

15.3 Existence of solutions

An IVP is not guaranteed to have a solution at all. Furthermore, a solution can exist for a finite

time and then become infinite (‘blow up’). We therefore need an existence theorem which tells

us when an ODE has a solution. For definiteness, we consider the one-dimensional case.

Theorem 15.1 Let F : [0, T ] × R → R be a real function of two variables. Assume that F is

continuous and that there exists a real number K with

|F (t, x2)− F (t, x1)| ≤ K|x2 − x1|, (15.3)

for all t ∈ [0, T ], and for all x1, x2 ∈ R. Then the ODE

dx

dt
= F (x, t) (15.4)

with initial condition

x(t = 0) = x0

has a unique solution in some finite interval [0, T0], with 0 < T0 ≤ T .

Notes:

• The proof of this theorem requires advanced topics and is not covered in this module.

• Even so, it is a relatively weak statement: it is guaranteed that a unique solution exists only

in some interval [0, T0] – the solution does not even necessarily exist out to t = T . For this

reason, the theorem is called a local-existence theorem.

• Also, the condition (15.3) is rather restrictive: this is a stronger condition than simple conti-

nuity.

• Finally, note the precise wording of the theorem: the K-number (‘Lipschitz constant’) has to

be independent of x!
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Examples

1. The equation dx/dt = ax has a unique (local) solution because

|f(x2)− f(x1)| = |ax2 − ax1| = a |x2 − x1| ,

hence a is the Lipschitz constant. Also, we know that the solution x(t) = x0e
at is smooth

and globally defined.

2. Consider
dx

dt
= x3, x(0) = x0 > 0

Solving this using separation of variables, we get

−1
2

1

x2

∣∣∣∣x
x0

= t,

hence

x = sign(x0)

(
1

1
x2
0
− 2t

)1/2

,

and the solution ceases to exist at t = 1/(2x2
0) (‘blow-up’).

Local existence theory fails here because

|F (x2)− F (x1)| =
∣∣x3

2 − x3
1

∣∣ ,
=

∣∣(x2 − x1)
(
x2
2 + x1x2 + x2

1

)∣∣ ,
=

∣∣x2
2 + x1x2 + x2

1

∣∣ |x2 − x1| ,

:= K(x1, x2)| |x2 − x1| .

It is as if the Lifshitz ‘constant’ depends on x1 and x2. Although Theorem (15.1) can be

modified to include such case, it is not surprising that blowup occurs here.

3. Consider
dx

dt
=
√

|x|, x(0) = 0.

Solving this using separation of variables, we get x(t) = (1/4)t2. However, x(t) = 0 is also a

good solution. In other words, the ODE fails to have a unique solution.

We can inspect what has gone wrong by consideration of the following. We take x2, x1 ≥ 0.
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Then, the difference |F (x2)− F (x1)| can be written as follows:

|F (x2)− F (x1)| = |x2 − x1|
∣∣∣∣ 1
√
x2

− 1
√
x2x1

x2 +
√
x2x1 + x1√

x2 +
√
x1

+
1

√
x1

∣∣∣∣ , (15.5)

:= K(x2, x1) |x2 − x1| .

However, K(x2 = 0, x1 = 0) = ∞, and the Lifshitz coefficient does not exist – even when

allowing for it to vary. For this reason, the local existence theory in Theorem (15.1) fails even

at t = 0, leading to two non-unique solutions emanating from t = 0.

Exercise 15.1 Prove Equation (15.5).

These examples serve up a very cautionary tale:

Common Programming Error:

Just because you know some fancy numerical method to solve dx/dt = F (x, t), it does

not mean that the method will work – you need to understand the properties of the

F -function.

15.4 Euler’s method for one-dimensional systems – the idea

Suppose now that our F -function is well-behaved, and possesses as many partial derivatives with

respect to x as we see fit. We are interested in solving

dx

dt
= F (x, t), x(0) = x0, t ∈ [0, T ]. (15.6)

We discretize the time variable, by taking

t ∈ {t0, t1, · · · tN},

where

ti = i

(
T

N

)
:= i∆t, i = 1, 2, · · · , N

(we call ∆t the timestep). We consider the variable x sampled at the discrete time points:

xi := x(ti).
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We integrate dx/dt = F (x, t) with respect to time over a single timestep. This yields the following

exact result:

xi+1 = xi +∆t

∫ ti+1

ti

F (x(t), t) dt. (15.7)

Now here is the magic: we approximate the integral in Equation (15.7) by the Riemann sum

∆tF (xn, tn). Hence, an approximation of Equation (15.7) is

xi+1 = xi +∆tF (xi, ti), xi=0 = x0. (15.8)

This is a simple iterative map that can be easily implemented on a computer. In the next chapter we

put this method through its paces by examining the truncation error associated with the step (15.8).



Chapter 16

Euler’s method – Accuracy and Stability

Overview

In the last chapter we approximated solutions of the ODE

dx

dt
= F (x, t), x(0) = x0, (16.1)

by the discrete-time iterative equation

xi+1 = xi +∆tF (xi, ti), xi=0 = x0,

where ∆t is the timestep. We now examine the error associated with this approach. More impor-

tantly, we investigate whether this method is stable.

16.1 Local truncation errors

Theorem 16.1 The true solution of Equation (16.1) can always be written formally (and implicitly)

as an anti-derivative:

X(t) = X0 +

∫ t

0

F (X(t′), t′)dt′, (16.2)

Proof:

d

dt
(R.H.S.) =

d

dt

∫ t

0

F (X(t′), t′)dt′,

= F (X(t), t),

ODE
=

dX

dt
,

=
d

dt
(L.H.S) .
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Now, the result (16.2) can also be written as

X(tn+1) = X(tn) +

∫ tn+1

tn

F (X(t), t)dt.

Compare this with the Euler method:

xn+1 = xn +∆tF (xn, tn).

It is as if we have approximated the integral∫ tn+1

tn

F (X(t), t)dt (16.3)

with the Riemann sum F (xn, tn)∆t! We now investigate the error incurred in this approximation –

the so-called local truncation error.

Let X(t) denote the true solution. We have

X(tn+1) = X(tn) +

∫ tn+1

tn

F (X(t), t)dt.

Evaluate the integral by doing a Taylor-series expansion of F (·, ·) around tn:

X(tn+1) = X(tn) +

∫ tn+∆t

tn

[
F (Xn, tn) +

(
∂F

∂x

dX

dt
+

∂F

∂t

)
(Xn,tn)

(t− tn) + · · ·

]
dt,

= X(tn) + F (Xn, tn)∆t+ 1
2

(
∂F

∂x

dX

dt
+

∂F

∂t

)
(Xn,tn)

∆t2 + · · · ,

= X(tn) + F (Xn, tn)∆t+ 1
2

(
∂F

∂x
F (x, t) +

∂F

∂t

)
(Xn,tn)

∆t2 + · · · ,

Compare the exact solution with the Euler-iterated solution:

xn+1 = xn +∆tF (xn, tn), (16.4a)

X(tn+1) = X(tn) + ∆tF (Xn, tn) +
1
2

(
∂F

∂x
F (x, t) +

∂F

∂t

)
(Xn,tn)

∆t2 +O(∆t3).(16.4b)

Again, we define the local truncation error as the error incurred in approximating the integral (16.3)

by a finite one-point sum. The local truncation error does not therefore depend on errors

incurred at previous timesteps. For that reason, we examine Equations (16.4) again and identify
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the local truncation error δLTE
n as

δLTE
n :=

∣∣∣∣∣12
(
∂F

∂x
F (x, t) +

∂F

∂t

)
(Xn,tn)

∆t2 +O(∆t3)

∣∣∣∣∣ ,
≤ 1

2

 sup
−∞<x<∞

t>0

∣∣∣∣∂F∂x F (x, t) +
∂F

∂t

∣∣∣∣
∆t2 +O(∆t3),

:= 1
2
M∆t2 +O(∆t3).

We sum up all the local truncation errors:

δLTE
N ≤

N∑
i=1

δLTE
i

(triangle inequality), hence

δLTE
N ≤ N

[
1
2
M∆t2 +O(∆t3)

]
=

(
T

∆t

)[
1
2
M∆t2 +O(∆t3)

]
,

or

δLTE
N ≤ 1

2
TM∆t+O(∆t2).

The truncation error is thus linear in the stepsize ∆t. This is a rather poor result. However,

by increasing the computational effort, this result does guarantee that the truncation error can be

reduced (Herculean though the task may be). For this reason, the Euler method is called first-order

accurate with respect to truncation errors.

More worrying is the following: analysis of the truncation error does not yield any insight into how

the error is compounded at each timestep. A truncation error refers to accuracy – how well does

the approximation

∆tF (xn, tn) ≈
∫ tn+1

tn

F (x(t), t) dt

represent the true integral in the formula

xn+1 = xn +

∫ tn+1

tn

F (x(t), t) dt.

On the other hand, studying how errors are compounded is a matter of stability – do the errors

accumulate to such an extent that the numerical method becomes unreliable? Accuracy and stability

are in fact two completely independent matters. We consider the latter in more detail now.
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16.2 Stability analysis

Theorem 16.2 The Euler method with stepsize ∆t applied to Equation (16.1) is numerically

stable if the following condition holds:

−2 ≤ ∆tFx(x, t) < 0, ∀x ∈ R, t > 0.

Proof: Let Xn = X(tn) denote the true analytic, solution of the equation (16.1), let xn denote the

Euler time-integrated solution, and let

ϵn = Xn − xn

be the difference between these two quantities. From Section 16.1 and Equations (16.4) we have

xn+1 = xn +∆tF (xn, tn),

X(tn+1) = X(tn) + ∆tF (Xn, tn) +

[
∂F

∂x
F (x, t) +

∂F

∂t

]
(Xn,tn)

∆t2 +O(∆t3).

In other words,

xn+1 = xn +∆tF (xn, tn),

X(tn+1) = X(tn) + ∆tF (xn + ϵn, tn) +
1
2

[
∂F

∂x
F (x, t) +

∂F

∂t

]
(xn+ϵn,tn)

∆t2 +O(∆t3).

We subtract to obtain

ϵn+1 = ϵn +∆t [F (xn + ϵn, tn)− F (xn, tn)] +
1
2

[
∂F

∂x
F (x, t) +

∂F

∂t

]
(xn+ϵn,tn)

∆t2 +O(∆t3),

= ϵn +∆t
∂F

∂x

∣∣∣∣
(xn,tn)

ϵn

+ 1
2
∆t2
{[

∂F

∂x
F (x, t) +

∂F

∂t

]
(xn,tn)

+

[
∂2F

∂x2
F (x, t) +

∂2F

∂x∂t

]
(xn,tn)

ϵn +O(ϵ2n)

}
+O(∆t3),

= ϵn

(
1 + ∆t

∂F

∂x

∣∣∣∣
(xn,tn)

)
+O(∆t2, ϵn∆t2),

:= ϵn [1 + ∆tFx(xn, tn)] +O(∆t2, ϵn∆t2).

From now on we omit the higher-order terms without loss of generality and write

ϵn+1 = ϵn [1 + ∆tFx(xn, tn)] .
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We telescope this result as follows:

ϵn+1 = [1 + ∆tFx(xn, tn)] ϵn,

= [1 + ∆tFx(xn, tn)] [1 + ∆tFx(xn−1, tn−1)] ϵn−1,

= [1 + ∆tFx(xn)] [1 + ∆tFx(xn−1, tn−1)] · · · [1 + ∆tFx(x1, t1)] ϵ1.

Take absolute values now and consider only unsigned errors:

δn+1 = |1 + ∆tFx(xn)| |1 + ∆tFx(xn−1, tn−1)| · · · |1 + ∆tFx(x1, t1)| δ1.

Let maxi|1 + ∆tFx(xi, ti)| = K Then,

δn+1 ≤ Kn−1δ1,

If K > 1, then ϵn+1 will diverge to infinity, implying runaway growth in the error. Thus, to keep δn

small for all steps n ∈ N, we need the exponent |1 + ∆tFx(xi, ti)| to have norm less than unity:

|1 + ∆tFx(xi, ti)| ≤ 1.

This is a quadratic inequality with solution

−2 ≤ ∆tFx(xi, ti) < 0.

In order to be a general result, we must take a the worst-case scenario over all possible trajectories:

−2 ≤ ∆tFx(x, t) < 0, ∀x ∈ R, t > 0.

Example

Consider the ODE dx/dt = ax, with x(0) = x0 and (i) a < 0, and (ii) a > 0.

Case 1, a negative: We have F (x, t) = ax, hence Fx(x, t) = a (Constant). We re-write this as

Fx(x, t) = −|a|. The stability criterion is thus

−2 ≤ −|a|∆t ≤ 0.

The rightmost part of this string is always satisfied, as −|a|∆t is definitely negative. The leftmost

part is equivalent to

∆t ≤ 2/|a|.
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So, provided ∆t is smaller than 2/a, the algorithm will not become unstable.

Case 2, a positive: We have F (x, t) = ax, hence Fx(x, t) = a (Constant). The stability criterion

is thus

−2 ≤ a∆t ≤ 0.

The rightmost branch of this inequality is a∆t ≤ 0 – this can never be satisfied for positive a and

the Euler method is unstable in this case – errors are compounded at each iteration.

We can put the two cases together and write down a general condition for stability for the equation

dx/dt = ax, viz.

−2 ≤ a∆t ≤ 0.

Indeed, the same analysis can be repeated with x, a, and x0 complex-valued; the condition for

stability is then |1 + a∆t| < 1. Calling z := a∆t, we have |z + 1| ≤ 1. This is a disc of radius

1 centred at (−1, 0) in the complex plane (Figure 16.1). All points strictly inside this disc yield a

stable Euler-integration of the ODE.

Figure 16.1: Stability region for dx/dt = ax (complex-valued) using the Euler method. The complex
variable z whose axes are shown here represents the quantity a∆t.

This mini-study of integrations of dx/dt = ax with the Euler method leads to the following important

conclusion:

Common Programming Error:

Using the Euler method to integrate an ODE – it is usually unstable and is therefore only

really a pedagogical tool.
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Chapter 17

Runge–Kutta methods

Overview

In the last chapter we approximated solutions of the ODE

dx

dt
= F (x, t), x(t = 0) = x0

using Euler’s method, and found that for certain (even very simple) ODEs, the approximation was

numerically unstable. In this chapter, we therefore develop other more robust methods for solving

ODEs, and discuss their practical implementation.

17.1 Second-order Runge–Kutta

Recall the Euler method one more time:

xn+1 = xn +∆tF (xn, tn), xn=0 = x0.

Compare this with the true solution over the same interval:

Xn+1 = Xn +

∫ tn+1

tn

F (X(t′), t′)dt′. (17.1)

Clearly, the true solution involves contriubtions from the integral of F not just from the point

t = tn, but from points in time all across the interval [tn, tn+1]. So a better way of approximating

the integral in Equation (17.1) would be using a midpoint-rule, e.g.

Xn+1 ≈ Xn +∆tF (Xn+1/2, tn+1/2).

109
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Or, using xn and xn+1 for the approximate solution,

xn+1 = xn +∆tF (xn+1/2, tn+1/2).

The only problem – we don’t know what xn+1/2 is. However, we can estimate it from doing an Euler

step over an interval [tn, tn + (1/2)∆t]:

xn+1/2 = xn +
1
2
∆tF (xn, tn).

Thus, we have the second-order Runge–Kutta scheme:

xn+1/2 = xn +
1
2
∆tF (xn, tn), (17.2a)

xn+1 = xn +∆tF (xn+1/2, tn+1/2), (17.2b)

subject to xn=0 = x0. This method is second-order accurate with respect to truncation errors.

17.2 Fourth-order Runge–Kutta

A more popular method which is thought to achieve the optimum balance between simplicity and

stability and accuracy is the fourth-order Runge–Kutta scheme (RK4):

k1 = ∆tF (xn, tn),

k2 = ∆tF
(
xn +

1
2
k1, tn +

1
2
∆t
)
,

k3 = ∆tF
(
xn +

1
2
k2, tn +

1
2
∆t
)
,

k4 = ∆tF (xn + k3, tn +∆t) ,

xn+1 = xn +
1
6
(k1 + 2k2 + 2k3 + k4) , (17.3)

subject to xn=0 = x0. This method is fourth-order accurate with respect to truncation errors.

It is much more stable than the Euler method. Although the discussion of the stability of RK4 is

beyond the scope of this module, it suffices to say that the stability region shown in Figure 16.1 is

substantially extended to the north, south, and west by the use of RK4 (it is not extended eastward,

and integrations of dx/dt = ax with RK4 remain numerically unstable for a ∈ R+). Anyway, here

is what Boyd [p. 174] has to say about RK4:

Runge-Kutta schemes have considerable virtues... First, RK4 is fourth order, that

is, has an error decreasing as O(∆t4)... Second, it is stable with a rather long time step

compared to other methods... Third, Runge–Kutta methods are“self-starting” and do
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not require a different time-marching scheme to compute the first couple of time steps,

as is true of [other methods].

17.3 ODEs with Matlab’s built-in functions

Matlab’s built-in workhouse ODE solver is called ODE45. This is an adaptive solver built around RK4

and RK5. The RK4 algorithm has a further nice property in addition to those listed in Section 17.2:

for very little extra computational expense, one may compute Runge-Kutta methods of adjacent

orders simultaneously. These computations can then be used to estimate the error associated with

an RK4 timestep. If the error is too large, the timestep can be reduced until the error is acceptably

small. Because RK4 is self-starting, this kind of adaptive timestepping is feasible. Thus, one does

not specify a timestep in calling ODE45: Matlab chooses it adaptively according to the method

just desscribed. However, Matlab checks the timestep not only for accuracy (via the RK4-RK5

comparison), but also for stability. A simple sample code is shown now:

1 f u n c t i o n [ t , x ]= r k f i r s t o r d e r ( x0 , t0 , t1 )

2

3 % ODE to s o l v e i s dx/ dt=Fxt , w i th i n i t i a l data x ( t0 )=x0 .

4 % Time i n t e r v a l on which s o l u t i o n i s found i s [ t0 , t1 ] .

5 % Outputs − ” t ” i s a v e c t o r o f t ime p o i n t s ;

6 % ”x” i s the c o r r e s p ond i n g v e c t o r o f x−p o i n t s .

7 % These a r e not s e t by the use r , r a t h e r they a r e de te rm ined by Matlab ’ s

8 % adap t i v e RK4−RK5 a l g o r i t hm .

9

10 % % % To app l y Matlab ’ s d e f a u l t t o l e r a n c e s , use t h i s l i n e :

11 [ t , x ] = ode45 (@Fxt , [ t0 t1 ] , x0 , o p t i o n s ) ;

12

13 % % % To s e t your own ab s o l u t e t o l e r a n c e , use t h e s e l i n e s :

14 % op t i o n s = ode s e t ( ’ AbsTol ’ , 1 e−10) ;

15 % [ t , x ] = ode45 (@Fxt , [ t0 t1 ] , x0 , o p t i o n s ) ;

16

17 f u n c t i o n dxdt = Fxt ( t , x )

18 % User−d e f i n e d f u n c t i o n − put whateve r you l i k e here , but watch

19 % out f o r . / and .∗
20 dxdt=x .∗(1− x ) ;

21 end

22

23 end

sample matlab codes/rk first order.m
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17.4 A sample project

As a more complicated exaple in Matlab, we numerically solve the equation for the damped, driven,

linear pendulum:

m
d2x

dt2
= f(x, t), f(x, t) = −γm

dx

dt
−mω2

0 + f0 cos(ωt).

We re-scale time, writing τ = ωt, such that the equation is re-written as

d2x

dτ 2
+ γ̂

dx

dτ
+ ω̂2

0x =
F0

mω2
cos τ.

We omit the (by now needless) carets over the symbols and re-write this as a system of first-order

equations:

d

dτ

(
x

v

)
=

(
v

−γv − ω2
0x+ α cos(τ)

)
,

where α = F0/(mω2).

1 f u n c t i o n [ t , x , v , E]= rk pendulum ( x0 , v0 , t0 , t1 , gamma val , omega0 , a l p h a v a l )

2

3 % ODE to s o l v e l i n e a r damped d r i v e n o s c i l l a t o r equa t i on :

4 % x0 − i n i t i a l c o n d i t i o n on p o s i t i o n x

5 % v0 − i n i t i a l c o n d i t i o n on v e l o c i t y v

6 % t0 − i n i t i a l t ime

7 % t1 − f i n a l t ime

8 % gamma val − v a l u e o f paramter a lpha

9 % omega0 − v a l u e o f paramete r omega 0

10 % a l p h a v a l − v a l u e o f paramete r a lpha

11 %

12 % The names ”gamma” and ” a lpha ” a r e r e s e r v e d f o r b u i l t −i n f u n c t i o n s i n

13 % Matlab ; t h e i r use as use r−d e f i n e d v a r i a b l e s can l e a d to e r r o r s .

14

15 op t i o n s = ode s e t ( ’ AbsTol ’ ,1 e−12) ;

16 [ t ,X ] = ode45 (@FXt , [ t0 t1 ] , [ x0 , v0 ] , o p t i o n s ) ;

17

18 % Reshape output a r r a y X : the f i r s t column shou ld be p o s i t i o n and the

19 % second column shou ld be v e l o c i t y .

20

21 x=X( : , 1 ) ;

22 v=X( : , 2 ) ;

23

24 % The f o l l o w i n g i s a t e s t : E shou l d be con s t an t f o r gamma val=a l p h a v a l =0:

25

26 E=(1/2) ∗( v . ˆ 2 ) +(1/2) ∗( omega0 ˆ2) ∗( x . ˆ 2 ) ;
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27

28 f u n c t i o n dXdt = FXt ( t ,X)

29 dXdt = z e r o s (2 , 1 ) ; % a column v e c t o r

30 dXdt (1 )=X(2) ;

31 dXdt (2 )=−gamma val∗X(2)−(omega0 ˆ2) ∗X(1)+a l p h a v a l ∗ cos ( t ) ;
32 end

33

34 end

sample matlab codes/rk pendulum.m

Exercise 17.1 Consider the following tasks concerning the code for solving for the motion of

the damped driven linear pendulum:

1. Implement the pendulum code yourself.

2. For γ = α = 0 show that energy is conserved – to within numerical error.

3. For γ = α = 0 show that the motion is periodic. This can be done by plotting an (x, v)

and verifying that this is a closed curve.

4. Show analytically (i.e. from the equation of motion) that this closed curve should be an

ellipse.

5. For γ > 0 and α = 0 show numerically that a plot in (x, v) space is a spiral starting

at (x0, v0) and spiralling in to the origin. Show also (numerically) that on average, the

energy decays as E ∼ e−γt.

6. For γ > 0 and α = 0 examine the three following cases:

• γ > 2ω0 – overdamped,

• γ < 2ω0 – underdamped,

• γ = 2ω0 – critically damped.

Explain these three regimes from a physical point of view.
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Exercise 17.2 Write a Matlab script to solve the following equations numerically:

d2x1

dt2
+ x1 − (x2 − x1) = 0,

d2x2

dt2
+ x2 + (x2 − x1) = 0,

subject to the following initial conditions:

Case 1: At t = 0,

x1(0) = A, ẋ1(0) = 0,

x2(0) = B, ẋ2(0) = 0,

where A and B are real parameters.

Hint: The system to be implemented in Matlab’s RK4-5 solver is a four-dimensional one.



Chapter 18

Gaussian Elimination

Overview

The aim of this chapter is to investigate a simple and relatively efficient method to solve

Ax = b,

where A is an n×n matrix, b is an n×1 column matrix, and x is an n×1 column matrix containing

unknown elements.

18.1 Linear algebra review

Let A be an n× n square matrix. We call A a linear operator because it is a map

A : Rn → Rn,

x 7→ Ax,

that satisfies the following linearity property:

A(λx+ µy) = λ(Ax) + µ(Ay),

for all λ and µ scalars in R and all x and y column vectors in Rn. The set

ker(A) = {x ∈ Rn
∣∣Ax = 0}
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is called the kernel of the linear operator A: it is the set of all elements x that gets sent to zero

under the operation of A. On the other hand, the set

im(A) = {y ∈ Rn|y = Ax, somex ∈ Rn}

is the set of all y in Rn that can be written as A times some vector x. The sets ker(A) and

im(A) are closed under addition and scalar multiplicaation: they are therefore vector subspaces of

Rn. They can therefore be assigned a dimension. A standard result of linear algebra is the following:

dim (ker(A)) + dim (im(A)) = n (18.1)

(the number dim (im(A)) is often called the rank of the matrix A). This leads to the following

result called the Fredholm alternative:

Theorem 18.1 (Fredholm alternative, Rn) Let

A : Rn → Rn,

x 7→ Ax,

be a linear operator on Rn. Fix b ̸= 0 ∈ Rn. Then, either

1. Ax = b has a unique solution for x;

2. Ax = 0 has a non-trivial solution for x.

If the first case holds, then the linear operator A is said to be invertible.

We can prove this theorem, but our proof does rely on Equation (18.1), whose proof you will have

to obtain elsewhere, such as a proper linear algebra class. Now, given Equation (18.1), either

dim (ker(A)) = 0,

or

dim (ker(A)) = p, 0 < p ≤ n,

and clearly, these two alternatives are mutually exclusive. In the first case, the image of A coincides

with the whole of Rn, hence every y in Rn can be written as y = Ax, for some x ∈ Rn. In

particular, given the fixed vector b, there exists another vector x ∈ Rn, such that b = Ax. For

uniqueness, take x1 and x2 such that Ax1 = Ax2 = b. Subtract and obtain A(x1 − x2) = 0.

Since the kernel is trivial, we obtain x1 = x2.

For the second case, by the definition of the kernel, there exists a nontrivial vector x such that

Ax = 0. Since the two cases are mutually exlusive, the theorem is shown.
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Of course, a further result also holds:

Theorem 18.2 Let

A : Rn → Rn,

x 7→ Ax,

be a linear operator on Rn. Then, A is invertible if and only if

det(A) ̸= 0,

where the determinant is computed according to the usual elementary linear-algebra prescription.

The second theorem also hints at an explicit construction for the inverse:

(A−1)ij =
1

det(A)
Cij, (18.2)

where Cij is the ij
th cofactor of the matrix A, computed using the usual linear-algebra prescription.

18.2 Counting the complexity of determinant calculations

Equation (18.2) is interesting from a theoretical point of view. However, it would be extremely foolish

to use it to compute the inverse of a matrix in a practical setting. To see why, we demonstrate that

the algorithm (18.2) requires O(n!) calculations for its implementation.

For, consider the 2× 2 case, with

A =

(
a12 a21

a12 a22

)
.

The determinant is det(A) = a12a22 − a21a12, requiring two multiplications for its calculation. On

the other hand, in the n× n case, we have

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...

an1 an2 · · · ann
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Evaluating along the first row, the determinant is

det(A) = (−1)1+1a11

∣∣∣∣∣∣∣∣
a22 · · · a2n
...

...

an2 · · · ann

∣∣∣∣∣∣∣∣+ (−1)1+2a12

∣∣∣∣∣∣∣∣
a21 a23 · · · a2n
...

...

an1 an3 · · · ann

∣∣∣∣∣∣∣∣+ · · ·

+ (−1)1+na1n

∣∣∣∣∣∣∣∣
a21 a22 · · · a2,n−1

...
...

an1 an2 · · · an,n−1

∣∣∣∣∣∣∣∣ , (18.3)

where there are n subdeterminants of size (n− 1)× (n− 1) to evaluate. Thus,

[# multiplications, determinant of size n× n] =

n [# multiplications, determinant of size (n− 1)× (n− 1)]

or more compactly

Nn = nNn−1.

We telescope this result:

Nn = nNn−1,

= n(n− 1)Nn−2,

= n(n− 1)(n− 2) · · · 3N2,

= n(n− 1)(n− 2) · · · 3 · 2,

= n!

The therefore say that the number of calculations required to compute a determinant is O(n!). For

large n, we may use Sterling’s approximation:

n! ∼
√
2πn

(n
e

)n
,

so that the number of calculations grows as n1/2(n/e)n. This is a disaster! We therefore need a

better way to find the inverse of a matrix.

Another reason to avoid this kind of approach is because the definition of the determinant in

Equation (18.3) is recursive. Suppose we have a Matlab function to compute a determinant of

size n × n. To do this, Matlab would have to compute determinants of size (n − 1) × (n − 1).

However, to do this subordinate calculation, Matlab would have to compute determinants of size

(n − 2) × (n − 2). The result would be a function that calls itself to call itself to call itself...

until determinants of size 2 × 2 are reached. A function or algorithm that calls itself reapeatedly,
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Russian-dolls fashion, is called recursive. Matlab hates recursive function calls and sets a very low

limit on the number of recursive calls that can be made to a user-defined function. For that reason,

the writing of such functions are to be avoided.

Common Matlab Programming Error:

Expecting large-scale user-defined recursive functions to run in Matlab.

Clearly, a better approach is needed.

18.3 Gaussian elimination

You are already familiar with Gaussian elimination! Recall the solution of three linear simultaneous

equations, e.g.

2x + y − z = 8 (L1)

−3x − y + 2z = −11 (L2)

−2x + y + 2z = −3 (L3)

We eliminate x from the last two equations as follows:

1. Take L2 + (3/2)L1:

−3x − y + 2z = − 11

3x + 3
2
y − 3

2
z = 12,

giving a new equation

y + z = 2.

2. Take L3 + L1:

−2x + y + 2z = − 3

2x + y − z = 8

giving a new equation

2y + z = 5.
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3. Gather up our new system of equations:

2x + y − z = 8 (L′
1)

y + z = 2 (L′
2)

2y + z = 5 (L′
3)

4. We repeat the Gaussian elimination on L′
2 and L′

3. We take L′
3−2L′

2 to obtain a new equation

z = −1.

5. We gather up our new equations again:

2x + y − z = 8 (L′′
1)

y + z = 2 (L′′
2)

+ z = −1 (L′′
3)

This is called a triangular system system because the equivalent matrix problem can be

written as 
2 1 −1

0 1 1

0 0 1


︸ ︷︷ ︸

=Ã


x

y

z

 =


8

2

−1

 ,

and the new matrix Ã has non-zero entries only along the diagonal and in the upper triangle.

6. This problem can now be solved by backsubstitution:

(a) L′′
3 implies that z = −1.

(b) Substitute into L′′
2 to obtain y + (−1) = 2, hence y = 3.

(c) Substitute into L′′
1 to obtain 2x+ (3)− (−1) = 8, hence x = 2.

We are now going to systematize this procedure by considering the abstract problem

a11x+ a12y + a13z = b1, (L1)

a21x+ a22y + a23z = b2, (L2)

a31x+ a32y + a33z = b3. (L3)

This is the subject of the next chapter.
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Gaussian Elimination – the algorithm

Overview

We systematize the procedure of Gaussian elimination by considering the abstract problem

a11x+ a12y + a13z = b1, (L1)

a21x+ a22y + a23z = b2, (L2)

a31x+ a32y + a33z = b3. (L3)

This enables us to write a Matlab code to automate Gaussian elimination, for square matrices of

any size.

19.1 The algorithm

1. First elimination operation, i=1.

Take L2 − (a21/a11)L1:

a21x+ a22y + a23z = b2,

−
(
a11

a21
a11

x+ a12
a21
a11

y + a13
a21
a11

z = b1
a21
a11

)
.

The result is a new equation

y

(
a22 −

a12a21
a11

)
+ z

(
a23 −

a13a21
a11

)
= b2 −

b1a21
a11

121
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Call

a′22 = a22 − a12

(
a21
a11

)
,

a′23 = a23 − a13

(
a21
a11

)
,

b′2 = b2 − b1

(
a21
a11

)
,

Hence, the new equation is

a′22y + a′23z = b′2.

First elimination operation, i=1, first new equation:

(i=1)

m=A(2,1)/A(1,1)

(j=i+1=2)

... [hence, m=A(j,i)/A(i,i)]

A(2,2 ... 3) --> A(2,2 ... 3)-m*A(1,2 ... 3)

... [hence, A(j,i+1:n)=A(j,i+1:n)-m*A(i,i+1:n)

b(2) --> b(2)-m*b(1)

... [hence, b(j) --> b(j)-m*b(i)]
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2. The same game for L3 − (a31/a11)L1:

y

(
a32 −

a12a31
a11

)
+ z

(
a33 −

a13a31
a11

)
= b3 −

b1a31
a11

Call

a′32 = a32 − a12

(
a31
a11

)
,

a′33 = a33 − a13

(
a31
a11

)
,

b′3 = b3 − b1

(
a31
a11

)
.

Hence, the new equation is

a′32y + a′33z = b′3.

First elimination operation, i=1, second new equation:

(i=1)

m=A(3,1)/A(1,1)

(j=i+1+1=3)

... [hence, m=A(j,i)/A(i,i)]

A(3,2 ... 3) --> A(3,2 ... 3)-m*A(1,2 ... 3)

... [hence, A(j,i+1:n)=A(j,i+1:n)-m*A(i,i+1:n)

b(3) --> b(3)-m*b(1)

... [hence, b(j) --> b(j)-m*b(i)

3. We write down the new system:

a11x+ a12y + a13z = b1, (L′
1)

a′22y + a′23z = b′2, (L′
2)

a′32y + a′33z = b′3, (L′
3)
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4. Do another round of eliminations by taking (L′
3)− (a′32/a

′
22)(L

′
2):

a′32y + a′33z = b′3,

−
(
a′32
a′22

a′22y +
a′32
a′22

a′23z =
a′32
a′22

b′2

)
In other words,

a′32y + a′33z = b′3,

−
(
a′32y +

a′32a
′
23

a′22
z =

a′32b
′
2

a′22

)
,

leading to a single new equation(
a′33 −

a′32a
′
23

a′22

)
z = b′3 −

a′32b
′
2

a′22
.

Calling

a′′33 = a′33 − a′23

(
a′32
a′22

)
, b′′3 = b′3 − b′2

(
a′32
a′22

)
,

this becomes

α′′
33z = b′′3.

Second elimination operation, i=2, first (and only) new equation:

(i=2)

m=A(3,2)/A(2,2)

(j=i+1=3)

... [hence, m=A(j,i)/A(i,i)]

A(3,3) --> A(3,3)-m*A(2,3)

... [hence, A(j,i+1:n)=A(j,i+1:n)-m*A(i,i+1:n)

b(3) --> b(3)-m*b(2)

... [hence, b(j) --> b(j)-m*b(i)]



19.1. The algorithm 125

5. Finally, we obtain an upper triangular system:

a11x+ a12y + a13z = b1, (L′′
1)

a′22y + a′23z = b′2, (L′′
2)

a′′33z = b′′3, (L′′
3)

which can be solved by backsubstitution.

We can now gather up the bits of pseudocode to make a set of nested loops:

% Loop over the number of eliminations to do, with i=1-->(n-1):

for i=1:n-1

for j=i+1:n

m=A(j,i)/A(i,i);

A(j,i+1:n)=A(j,i+1:n)-m*A(i,i+1:n);

b(j)=b(j)-m*b(i);

end

end

Common Programming Error:

The Gaussian elimination pseudocode does not overwrite elements in the lower triangle

(these are not accessed at all in the nested loops just given). Rather, these are not used

at all in the backsubstitution.
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19.2 The backsubstitution step

Consider now the modified set of equations

a11x+ a12y + a13z = b1, (L′′
1)

a′22y + a′23z = b′2, (L′′
2)

a′′33z = b′′3, (L′′
3)

Using Matlab-like notation for the arrays, we have

z =
b(3)

A(3, 3)
,

y =
b(2)− A(2, 3)z

A(2, 2)
,

x =
b(1)− [A(1, 3)z + A(1, 2)y]

A(1, 1)
.

Guess the pattern:

x(i) =
b(i)−

∑n
k=i+1A(i, k)x(k)

A(i, i)
,

with the important observation that a starting value is needed to get this algorithm going:

xn =
b(n)

A(n, n)
.

Implement the ‘for’ loops:

x(n)=b(n)/A(n,n);

x=0*(1:n);

for i=n-1:-1:1

x(i)=(b(i)-sum(A(i,i+1:n).*x(i+1:n)))/A(i,i);

end

19.3 Putting it all together

We assemble a ‘.m’ file to do Gaussian elimination:

1 f u n c t i o n [ x , d i f f , A0 , b0]= n a i v e g a u s s e l im ( )

2

3 % User−d e f i n e d a r r a y s he r e :

4
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5 A=[2 ,1 ,−1;−3 ,−1 ,2;−2 ,1 ,2] ;

6 b=[8 ,−11 ,−3] ’ ;

7

8 b0=b ;

9 A0=A;

10

11 n=l e ng t h ( b ) ;

12

13 % We wish to s o l v e Ax=b .

14

15 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
16 % F i r s t , we f i n d the upper−t r i a n g u l a r mat r i x and the a s s o c i a t e d b−v e c t o r :

17

18 f o r i =1:n−1

19 f o r j=i +1:n

20 m=A( j , i ) /A( i , i ) ;

21 A( j , i +1:n )=A( j , i +1:n )−m∗A( i , i +1:n ) ;

22 b ( j )=b ( j )−m∗b ( i ) ;
23 end

24 end

25

26 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
27 % Now, we do b a c k s u b s t i t u t i o n :

28

29 x=z e r o s (n , 1 ) ;

30 x ( n )=b (n ) /A(n , n ) ;

31

32 f o r i =(n−1) :−1:1

33 sum va l =0;

34 f o r k=i +1:n

35 sum va l=sum va l+A( i , k ) ∗x ( k ) ;
36 end

37 x ( i )=(b ( i )−sum va l ) /A( i , i ) ;

38 end

39

40 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
41 % F i n a l l y , we t e s t how f a r from the t r u e i n v e r s e we a r e :

42

43 d i f f=A0∗x−b0 ;
44 d i f f=s q r t ( sum( d i f f .∗ d i f f ) ) ;

45

46 end

sample matlab codes/naive gauss elim.m



Chapter 20

Gaussian Elimination – performance and

operation count

Overview

Gaussian elimination can fail – even for invertible matrices. We examine this issue, together with

a study of the complexity of the algorithm. We demonstrate that the number of calculations

is algebraically growing in n, the matrix size. This compares excellently with the nightmare of

determinant calculations, which were O(n!).

20.1 Pivoting

Even if we could ignore for a second the fact that the reduction of the matrix A to upper-triangular

form requires division by diagonal elements, we are still forced to consider the following backsubsti-

tution formula for the inversion of Ax = b:

xi =
bi −

∑n
k=i+1Aikxk

Aii

,

where A is assumed to be in upper-triangular form, and where we have the starting-value

xn =
bn
Ann

.

Thus, division by diagonal elements is undavoidable in Gaussian elimination and backsubstitution.

However, just because a matrix has a zero on the diagonal, it does not mean that it is non-invertible,

128
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e.g.

A =

(
0 1

−1 1

)
has det(A) = +1 and is therefore invertible. Moreover, some matrices have diagonal entries that

‘just barely zero’, e.g.

A =

(
ϵ 1

1 1

)
, |ϵ| ≪ 1

and numerical Gaussian elimination can introduce large errors if the difference between ϵ and 1 + ϵ

cannot be detected by the machine precision.

A very clever and easy way out of both problems is called pivoting: we swap rows in the problem

so that the troublesome diagonal elements are eliminated from the upper-triangular matrix in the

Gaussian-elimination process. This works because any two rows in the problem

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,
...

...

an1x1 + an2x2 + · · ·+ annxn = bn

can be interchanged without affecting the answer. The simplest possible pivoting method is called

partial pivoting:

• Consider the ith column of the matrix. Search the portion of the ith column including and

below the diagonal to find the element with the largest absolute value. Let p be the row index

of this element.

• Interchange rows i and p.

• Proceed with the elimination, doing this swap once per full elimination operation.

Let’s have a look at a very silly simple example by considering again the matrix

A =

(
ϵ 1

1 1

)

For ϵ ̸= 0 the matrix is invertible. For definieteness, suppose we wish to solve

Ax =

(
1

2

)
.



130 Chapter 20. Gaussian Elimination – performance and operation count

We already know the answer:

x1 =
1

1− ϵ
= 1 +O(ϵ), (20.1a)

x2 =
1− 2ϵ

1− ϵ
= 1 +O(ϵ), (20.1b)

Let’s try a Gaussian elimination, starting with the equations

ϵx1 + x2 = 1,

x1 + x2 = 2.

Although we would never do the following thing in practice, we must now take (Equation 2)-

(1/ϵ)(Equation 1), as this is what the algorithm tells us to do. In fact, our eye immediately

suggests that we take (Equation 1)-ϵ(Equation 2); however, we must adhere scrupulously to the

path mapped out by the algorithm, and investigate where it takes us. Consequently, we obtain a

new pair of equations

ϵx1 + x2 = 1,

x2

(
1− 1

ϵ

)
= 2− 1

ϵ
.

Suppose now that ϵ is less than machine epsilon, such that the computer can’t tell the difference

between 1 and 1 + (1/ϵ). Then, 1/|ϵ| is large, and the computer cannot tell the difference between

1 − (1/ϵ) and 2 − (1/ϵ) – it will calculate both numbers as −1/ϵ, to machine precision. Then, to

the computer, the second equation would look like

x2

(
−1

ϵ

)
= −1

ϵ

and numerical backsubstitution would yield

x2 = 1.

However, a further backsubstitution into the first equation would yield

x1 = 0.

This is completely incorrect (c.f. Equation (20.1b)). Large rounding errors have been intro-

duced by the division by ϵ.

Let us now implement the partial pivoting suggested at the start of the section. We swap the first
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and second rows to obtain an equivalent set of equations:

x1 + x2 = 2,

ϵx1 + x2 = 1,

Following the algorithm, we take (Equation 2)-ϵ(Equation 1) to obtain

x1 + x2 = 2,

x2(1− ϵ) = 1− 2ϵ.

Back-substitution gives

x2 =
1− 2ϵ

1− ϵ
M.P.
= 1,

and

x1 = 1,

which is the correct answer.

Typically, pivoting is implemented once per full elimination operation, as in the following sample

code:

1 f u n c t i o n [ x , d i f f , A0 , b0]= p i v o t g a u s s e l i m (n )

2

3 % A more r i g o r o u s t e s t than b e f o r e . −− A i s an nxn squa r e mat r i x w i th random

4 % e n t r i e s between 0 and 1 .

5 % See a l a t e r chap t e r f o r more i n f o rma t i o n about random ma t r i c e s .

6 %

7 % Here n i s s u p p l i e d by the u s e r at the command l i n e .

8 %

9 % Also , b i s a random nx1 column v e c t o r .

10

11 A=rand (n , n ) ;

12 b=rand (n , 1 ) ;

13

14 b0=b ;

15 A0=A;

16

17 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
18 % We wish to s o l v e Ax=b .

19 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
20 % F i r s t , we f i n d the upper−t r i a n g u l a r mat r i x and the a s s o c i a t e d b−v e c t o r :

21

22 f o r i =1:n−1
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23

24 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
25 % Pa r t i a l p i v o t i n g he r e :

26

27 temp1=A( i : n , i ) ;

28 [ ˜ , p]=max( abs ( temp1 ) ) ;

29 % The next l i n e needs a l o t o f c au t i o n ! ! ! !

30 p=p+i −1;

31

32 temp2=A( i , : ) ;

33 A( i , : )=A(p , : ) ;

34 A(p , : )=temp2 ;

35

36 temp3=b( i ) ;

37 b ( i )=b (p ) ;

38 b ( p )=temp3 ;

39

40 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
41 % Now back to old−f a h s i o n e d Gauss i an e l i m i n a t i o n .

42

43 f o r j=i +1:n

44 m=A( j , i ) /A( i , i ) ;

45 A( j , i +1:n )=A( j , i +1:n )−m∗A( i , i +1:n ) ;

46 b ( j )=b ( j )−m∗b ( i ) ;
47 end

48 end

49

50 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
51 % Now, we do b a c k s u b s t i t u t i o n :

52

53 x=z e r o s (n , 1 ) ;

54 x ( n )=b (n ) /A(n , n ) ;

55

56 f o r i =(n−1) :−1:1

57 sum va l =0;

58 f o r k=i +1:n

59 sum va l=sum va l+A( i , k ) ∗x ( k ) ;
60 end

61 x ( i )=(b ( i )−sum va l ) /A( i , i ) ;

62 end

63

64 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
65 % F i n a l l y , we t e s t how f a r from the t r u e i n v e r s e we a r e :

66

67 d i f f=A0∗x−b0 ;
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68 d i f f=s q r t ( sum( d i f f .∗ d i f f ) ) ;

69

70 end

sample matlab codes/pivot gauss elim.m

The failure of pivoting

Assuming infinite precision, the failure of partial pivoting means that the matrix is NON-invertible.

20.2 Operation counts

Recall, we showed that direct evaluation of the determinant of an n× n matrix is O(n!), and that

direct inversion of a matrix is computationally infeasible as a result. In this section we show that

Gaussian elimination requires far fewer operations to perform.

The analysis is quite simple and begins with the nested loops for the elimination step:

% Loop over the number of eliminations to do, with i=1-->(n-1):

for i=1:n-1

for j=i+1:n

m=A(j,i)/A(i,i);

A(j,i+1:n)=A(j,i+1:n)-m*A(i,i+1:n);

b(j)=b(j)-m*b(i);

end

end

However, there is a third loop buried in here in the assignment

A(j,i+1 ... n) --> A(j,i+1 ... n)-m*A(i,i+1 ... n),

so the set of nested loops is really

% Loop over the number of eliminations to do, with i=1-->(n-1):

for i=1:n-1

for j=i+1:n

m=A(j,i)/A(i,i);

for k=i+1:n

A(j,k)=A(j,k)-m*A(i,k);
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end

b(j)=b(j)-m*b(i);

end

end

We count how many times the innermost piece of code is accessed, as this will be equal to the

number of calculations performed, up to a prefactor. This number is

Count =
n−1∑
i=1

[
n∑

j=i+1

(
n∑

k=i+1

1

)]
,

=
n−1∑
i=1

(
n∑

j=i+1

1

)(
n∑

k=i+1

1

)
,

=
n−1∑
i=1

(n− i)2 ,

=
n−1∑
i=1

(
n2 − 2ni+ i2

)
,

= n2(n− 1)− 2n
n−1∑
i=1

i+
n−1∑
i=1

i2.

Using standard formulae, this is

Count = n3 − n2 − 2n
(
1
2
n(n− 1)

)
+
(
1
6
n(n− 1)(2n− 1)

)
,

= 1
3
n3 +O(n2).

Backsubstitution

We consider the backsubstitution step:

x(n)=b(n)/A(n,n);

x=0*(1:n);

for i=n-1:-1:1

x(i)=(b(i)-sum(A(i,i+1:n).*x(i+1:n)))/A(i,i);

end

The ’for’ loop here is really two nested loops. We make this explicit by rewriting the ‘for’ loop as

follows:
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x=0*(1:n);

for i=n-1:-1:1

sum_val=0;

for k=i+1:n

sum_val=sum_val+A(i,k)*x(k);

end

x(i)=(b(i)-sum_val)/A(i,i);

end

We count the number of times the innermost piece of code is accessed:

1∑
i=n−1,...

(
n∑

k=i+1

1

)
=

1∑
n−1,...

(n− i),

=
n∑

m=1

m,

= 1
2
n(n− 1),

= 1
2
n2 +O(n).

The total count (elimination+backsubstitution) is thus

Total count = 1
3
n3 +O(n2) + 1

2
n2 +O(n),

= 1
3
n3 +O(n2).

In other words, the number of calculations required to do Gaussian elimination is proportional to n3

– a dramatic improvement over determinant calculations.

Other considerations

For massive calculations (e.g. n ∼ 106), even the relatively good performance of Gaussian elimina-

tion (O(n3)) is not satisfactory. For such large calculations, iterative methods are preferred, where

the count is O(ncn
2), and where nc is the number of iterations required for the method to converge

(typically nc ∼ 102).

20.3 The inverse of a matrix – explicitly

We are not interested in examining further methods for computing the inverse of a matrix explicitly.

However, we can get it for free from Gaussian elimination as follows.
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Let

e(i) =
(
0, 0, · · · , 0, 1︸︷︷︸

ith slot

, 0, · · · , 0
)T

,

be an n× 1 column vector and let B be an arbitrary n× n real matrix. We have,

(
Be(i)

)
α

=
∑
β

Bαβe
(i)
β ,

=
∑
β

Bαβδβi,

= Bαi.

Hence, the column vector Be(i) is the ith column of the matrix B. Hence,

Ax = e(i) =⇒ x = (A−1)e(i),

and x is the ith column of the matrix A−1. Thus, n successive Gaussian eliminations, with b = e(i)

and i = 1, · · · , n give the columns of A−1 explicitly; hence, A−1 itself is determined.

20.4 Matlab’s built-in functions

Matlab has a built-in method to do Gaussian elimination and invert matrices. It is not much different

from the .m codes we have developed in this chapter, although presumably they make more use of

vectorization that we have done. These operations are listed here, and assume that a square matrix

A and a column vector b of appropriate size are defined on the command line.

• To solve Ax = b for x, without necessarily finding A−1 (i.e. Gaussian elimination):

x=A\b

or, equivalently,

x=mldivide(A,b)

(matrix left-divide).

• To find the inverse of a matrix, type

A^(-1)

It could not be easier!
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Operator norm, condition number

21.1 Overview

In linear-algebra calculations, we are sometimes very unfortunate, and have to solve a problem like

Ax = b (give, fixed A), where small changes in b produce extremely large changes in x. Such

problems are said to be ill-conditioned. The aim of this chapter is to quantify this bad behaviour.

21.2 Motivation

Consider the problem

Ax = b,

where

A =

(
1.002 1

1 0.998

)
,

and where b = (2.002, 1.998)T . Solving in the usual fashion gives x = (1, 1)T . Now, consider the

effect of a small change in b; suppose we have instead

b′ =

(
2.0021

1.998

)
.

Solving again in the usual fashion gives

x′ =

(
−23.95

26.00

)
.

137
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A small change in b, with
∥b′ − b∥2
∥b∥2

= 0.0025%

has produced an enormous change in x, with

∥x′ − x∥2
∥x∥2

= 24%

(here ∥·∥2 means the usual L2 norm for vectors). The aim of the rest of the chapter is to investigate

this unusual amplification of small differences.

21.3 The operator norm

Definition 21.1 (The L2-norm of a matrix) Let A ∈ Rn×n be a real matrix. We define the

L2-norm of A as follows:

∥A∥2 = sup
x̸=0

∥Ax∥2
∥x∥2

.

Throughout the rest of this module, we refer to the L2 norm of a matrix as the operator norm.

Theorem 21.1 (Properties of the operator norm) Let A ∈ Rn×n be a real matrix. We have

the following set of properties of the operator norm:

1. Positive-definite: ∥A∥2 ≥ 0, ∥A∥2 = 0 =⇒ A = 0,

2. Linearity under scalar multiplication:

∥µA∥2 = |µ|∥A∥2,

3. The triangle inquality:

∥A+B∥2 ≤ ∥A∥2 + ∥B∥2,

4. Cauchy–Schwarz-type inequalities

∥AB∥2 ≤ ∥A∥2∥B∥2, ∥Ax∥2 ≤ ∥A∥2∥x∥2,

for all A,B ∈ Rn×n, x ∈ Rn, and all µ ∈ R.

Exercise 21.1 Prove Theorem 21.1.
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Lemma 21.1 Let A ∈ Rn×n be a real matrix. Then,

1. ATA is symmetric;

2. The eigenvalues of ATA are non-negative.

Proof:

1. We have

(ATA)T = AT (AT )T = ATA,

hence ATA is symmetric.

2. Let

(ATA)x = λx.

We dot both sides by x using the ordinary dot product. For brevity, we use the following

notation:

x · y ≡ xTy ≡ (x,y).

We have,

(
x,ATAx

)
= λ (x,x) ,

(Ax,Ax) = λ∥x∥22,

hence, ∥Ax∥22 = λ∥x∥22, and λ ≥ 0.

Theorem 21.2 (An explicit method to compute the operator norm) Let A ∈ Rn×n be a

real matrix. We have the following identity:

∥A∥2 =
√

λmax

where λmax denotes the largest eigenvalue of the matrix ATA.

Proof: We have,

∥Ax∥22 = (Ax,Ax) ,

=
(
ATAx,x

)
,

=
(
x,ATAx

)
.

Now ATA is a real, symmetric n× n matrix so by the spectral theorem, the eigenvectors of ATA
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span Rn and are orthonormal. Thus, we can write

x =
∑
i

αixi,
(
ATA

)
xi = λixi, (xi,xj) = δij.

Thus, we have

(
x,ATAx

)
=

(∑
i

αixi

)
·

(∑
j

λjαjxj

)
,

=
∑
ij

αiαjλjδij,

=
∑
i

α2
iλi.

Hence,

∥Ax∥22 =
(
x,ATAx

)
=
∑
i

α2
iλi. (21.1)

Let λmax = maxi λi, and let imax be the index of the maximal eigenvalue. The expression (21.1) is

maximized by taking αi = 0 unless i = imax, i.e. x ∝ ximax . Note that this argument is not affected

by the presence of eigenspaces of dimension higher than one, i.e. it is not affected by degenerate

eigenvalues. Thus,

∥Ax∥22 = α2
imax

λmax,

and
∥Ax∥22
∥x∥22

= λmax.

In other words,

sup
x̸=0

∥Ax∥2
∥x∥2

=
√
λmax,

as required.

21.4 The condition number

Let A be an invertible matrix, and let

Ax1 = b1,

Ax2 = b2.

We consider

x2 − x1 = A−1 (b2 − b1) .
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Using the operator norm, it follows that

∥x2 − x1∥2 ≤ ∥A−1∥2∥ (b2 − b1) ∥2.

Divide both sides by ∥x1∥2:

∥x2 − x1∥2
∥x1∥2

≤ ∥A−1∥2∥ (b2 − b1) ∥2
∥x1∥2

(21.2)

We want an estimate of bad behaviour – but this should be independent of the solution and depend

only on chosen input parameters. Consider

∥b1∥2 = ∥Ax1∥2,

∥b1∥2 ≤ ∥A∥2∥x1∥2,
∥b1∥2
∥A∥2

≤ ∥x1∥2,

∥A∥2
∥b1∥2

≥ 1

∥x1∥2
,

or
1

∥x1∥2
≤ ∥A∥2

∥b1∥2
.

Shove this into Equation (21.2)

∥x2 − x1∥2
∥x1∥2

≤ ∥A−1∥2∥ (b2 − b1) ∥2
(

1

∥x1∥2

)
≤ ∥A−1∥2∥ (b2 − b1) ∥2

(
∥A∥2
∥b1∥2

)
Tidy up:

∥x2 − x1∥2
∥x1∥2

≤ ∥A∥2∥A−1∥2
(
∥b2 − b1∥2

∥b1∥2

)
.

Definition 21.2 (Condition number) Let A ∈ Rn×n. We call

κ(A) := ∥A∥2∥A−1∥2

the condition number of A.
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Condition number, continued

Overview

Recall our results concerning the condition number: for the problem pair Ax1 = b1 and Ax2 = b2,

we have
∥x2 − x1∥2

∥x1∥2
≤ κ(A)

∥b2 − b1∥2
∥b1∥2

where κ(A) = ∥A∥2∥A−1∥2. In this section we examine further practical implications of this

definition.

22.1 Roundoff and ill-conditioned matrices form a toxic mix

Consider again the solution Ax = b for a nearly-singular matrix A. Suppose that b is determined

by some subordinate numerical procedure. Because of rounding error, there can be errors in the way

that b is computed, leading to a difference between the true value (call it b0), and the computed

value, referred to here as b0 + δb. Suppose now that the computed value b0 + δb is fed into the

matrix-inversion problem. This can lead to a dramatically poor estimate for x, as we now see. For

definiteness, we let Ax0 = b0 denote the true solution.

Theorem 22.1 Let A ∈ Rn×n be an invertible matrix and let b0 ∈ Rn. Define x0 as the solution

of the linear system

Ax0 = b0.

Let δb ∈ Rn be a small perturbation of b and define x0 + δx ∈ Rn as the solution of

A(x0 + δx) = b0 + δb.

142
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Then,
∥δx∥2
∥x0∥2

≤ κ(A)
∥δb∥2
∥b∥2

.

Proof: Form the difference

A(x0 + δx)−Ax0 = (b0 + δb)− b0,

i.e.

Aδx = δb.

Beause A is invertible, we have

δx = A−1δb.

We compute:

∥δx∥2 = ∥A−1δb∥2 ≤ ∥A−1∥2∥δb∥2.

Hence,
∥δx∥2
∥x0∥2

≤ ∥A−1δb∥2 ≤ ∥A−1∥2∥δb∥2
(

1

∥x0∥2

)
. (22.1)

But Ax0 = b0, hence ∥Ax0∥2 = ∥b0∥2, and

∥b0∥2 = ∥Ax0∥2 ≤ ∥A∥2∥x0∥2.

Hence,
∥b∥2
∥A∥2

≤ ∥x0∥2,

and
1

∥x0∥2
≤ ∥A∥2

∥b∥2
(22.2)

Combining Equations (22.1) and (22.2), we have

∥δx∥2
∥x0∥2

≤ ∥A−1∥2∥δb∥2
(
∥A∥2
∥b∥2

)
,

or
∥δx∥2
∥x0∥2

≤ ∥A−1∥2
(
∥δb∥2
∥b0∥2

)
,

hence
∥δx∥2
∥x0∥2

≤ κ(A)
∥δb∥2
∥b0∥2

,

as required.
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22.2 The condition number and singular matrices

Theorem 22.2 Let A ∈ Rn be ‘close to singular’, in the sense that

∥A−A0∥2 = ϵ,

where A0 is a singular matrix and ϵ is small and positive. Then the condition number of A is large

in the sense that

κ(A) ≥ ∥A∥2/ϵ.

Proof: By definition,

κ(A) = ∥A∥2∥A−1∥2,

= ∥A∥2
(
sup
x̸=0

∥A−1x∥2
∥x∥2

)
,

≥ ∥A∥2
(
∥A−1x∥2
∥x∥2

)
,

for any non-zero x ∈ Rn. Since A−1 is invertible, we call

A−1x = y,

and x = Ay. Hence,

κ(A) ≥ ∥A∥2
(

∥y∥2
∥Ay∥2

)
. (22.3)

Now here is the clever thing: A0 is not invertible, so

dim (im(A0)) < n,

hence

dim (ker(A0)) ≥ 1,

Hence, we can choose our y-vector to be in the kernel of A0:

A0y = 0.

Starting with Equation (22.3), we have the following string:

κ(A) ≥ ∥A∥2
(

∥y∥2
∥Ay∥2

)
,

= ∥A∥2
(

∥y∥2
∥Ay −A0y∥2

)
.
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Hence,

1

κ(A)
≤ 1

∥A∥2
∥Ay −A0y∥2

∥y∥2
≤ 1

∥A∥2

(
sup
y ̸=0

∥Ay −A0y∥2
∥y∥2

)
=

∥A−A0∥2
∥A∥2

.

In other words,
1

κ(A)
≤ ϵ

∥A∥2
,

or

κ(A) ≥ ∥A∥2
ϵ

,

as required.

Thus, a matrix that is close to singular has a large condition number. The converse is also true: if

a matrix is close to singular in a sense to be described below, then it must have a large condition

number. To see why this is the case, two lemmas are required.

Lemma 22.1 Let B ∈ Rn×n be an invertible matrix with spectrum

spec(B) = {λ1, · · · , λn}.

Then,

1. λi ̸= 0, for each i = 1, · · · , n.

2. spec(B−1) = {λ−1
1 , · · · , λ−1

n }.

Proof: For the first part, we have Bxi = λixi for each eivenvalue/eigenvector pair. Recall, xi ̸= 0,

by definition of an eigenvector. Hence, the only way for Bxi to be equal to zero is for λi to be zero.

But this is impossible, because the kernel of B is trivial, since B is invertible. Hence, λi ̸= 0.

For the second part, we have

Bxi = λixi,

for some eigenvector-eigenvalue pair (xi, λi). Multiply both sides of this equation on the left by

B−1:

xi = λiB
−1xi,

and re-arrange to obtain
1

λi

xi = B−1xi,

and the result is shown.
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Lemma 22.2 Let A ∈ Rn×n be a real invertible matrix. Then the condition number of A can be

written as

κ(A) =

√
λmax

λmin

,

where λmin denotes the smallest eigenvalue of ATA.

Proof: From the definition of the operator norm, we already have

κ(A) =
√
λmax

(
sup
i

|µi|
)1/2

,

where the µi’s are the eigenvalues of (ATA)−1. Hence, from Lemma (22.2), we have

{µ1, · · · , µn} =

{
1

λ1

, · · · , 1

λn

}
,

where we use λi to denote the (positive) eigenvalues of ATA. Thus, the maximum value of µi is

got from

[Maximum value of µi] = 1/[Minimum value of λi] = 1/λmin.

Putting this all together, we have

κ(A) =

√
λmax

λmin

,

and the result is shown.

From the eigenvalue relation Bx = λx for a generic square matrix B, we see that a matrix fails

to be invertible if it has a zero eigenvalue. For, then we would have Bx = 0 for a nonzero vector

x, such that dim(ker(B)) ≥ 1. Hence, we would have dim(im(B)) < n, implying a non-invertible

matrix. We therefore make the following definition:

Definition 22.1 We say that a matrix is ‘close to singular’ if the smallest eigenvalue of ATA is

small.

This makes sense: we would like to show that A itself has eigenvalues that are ‘close’ to zero. We

let Ax = µx and take operator norms on both sides, giving

|µ| = ∥Ax∥
∥x∥

=
(Ax,Ax)1/2

∥x∥2
=

(ATAx,x)1/2

∥x∥2
≥ ϵ1/2.

Thus, in a worst-case scenario, we would have |µ| = ϵ1/2, meaining that A itself would be close to

singuler (i.e. close to having a zero eigenvalue).

We now prove the following partial converse to Theorem 22.2:

Theorem 22.3 Let A ∈ Rn×n be close to singular in the sense described in Definition 22.1. Then
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A has a large condition number, in the sense that

κ(A) = ∥A∥2/ϵ1/2,

where ϵ is some small positve number.

Proof: From Lemma 22.2, we have

κ(A) =

√
λmax

λmin

,

where λmin denotes the smallest eigenvalue of ATA. By assumption, λmin = ϵ, where ϵ is a small

positive number. Hence,

κ(A) =
√

λmax/ϵ,

or

κ(A) = ∥A∥2/ϵ1/2,

as required.

Thus, a matrix is close to singular if and only if it has a large condition number. We also know that

large condition numbers amplify errors in matrix inversions. We must therefore be very careful when

dealing with numerical models with near-singular matrices.

22.3 Estimating the condition number numerically

From the definition of the condition number, we know that

κ(A) = ∥A∥2∥A−1∥2

for a square matrix A. It would appear that to calculate the condition number numerically, we need

to invert A. However, this would be a bad idea, as such inversions can only be done reliably when

the condition number is small. This leads to circular reasoning: to invert a matrix numerically we

need to know the condition number, for which we need to invert the matrix and so on. Clearly, we

need a shortcut to find κ(A). The answer lies in the alternative definition

κ(A) =

√
λmax

λmin

.

We shall use this shortly to estimate κ(A). Before doing so, we need to make a detour into the

world of numerical computation of eigenvalues.



Chapter 23

Eigenvalues – the power method

Overview

23.1 The idea

In this section we consider symmetric matrices B ∈ Rn×n. However, the method can be extended to

arbitrary square matrices (the proof for the latter relies on the Jordan decomposition). We choose

a random vector x0. By the spectral theorem, B has an eigenbasis {xi}ni=1, with

Bxi = λixi, (xi,xj) = δij.

We decompose x0 in terms of this basis:

x0 = α1x1 + · · ·+ αnxn.

For definiteness, we focus on the non-degenerate case, where λi = λj =⇒ i = j. We let i = 1

label the maximal eigenvalue. If x0 is selected using a random-number generator that is based on

a continuous distribution, then P(α1 = 0) = 0, and x0 almost surely contains a contribution from

the maximal eigenvector.

Exercise 23.1 Estimate the probability in a numerical calculation that α1 = 0, to machine

precision.

We operate repeatedly on x0 with the matrix B:

Bkx0 = α1λ
k
1x1 + · · ·+ αnλ

k
nxn.

148
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Since, by assumption, |λ1| > |λi| for all i ̸= 1, we have

|λ1|k ≫ |λi| ∀i ̸= 1, as k → ∞.

Hence,

Bkx0 ∼ α1λ
k
1x1, as k → ∞. (23.1)

We therefore have an iterative method to compute the maximal norm-one eigenvector:

b(k+1) =
Bb(k)

∥Bb(k)∥2
, k = 0, 1, · · · , b(0) = x0.

We have

lim
k→∞

b(k) = x1,

since

1. By Equation (23.1) the vector b(k) points in the direction x1, as k → ∞;

2. Each vector b(k) has norm one.

The maximal eigenvalue is then computed as

λ1 = lim
k→∞

(
b(k),Bb(k)

)
.

Below is a sample Matlab code that implements this power method.

1 f u n c t i o n [ lambda , x1 ,B]=power method ( n )

2

3 t o l=1e−8;

4

5 % Inpu t mat r i x whose l e a d i n g e i g e n v a l u e i s to be de te rm ined . Let ’ s keep i t

6 % gen e r a l and make i t a random mat r i x w i th e n t r i e s between 0 and 1 .

7 % Here n i s use r−s u p p l i e d at the command l i n e .

8 %

9 B=rand (n , n ) ;

10

11 % Focus on symmetr ic ma t r i c e s i f one w i sh e s :

12 B=(B+B’ ) /2 ;

13

14 % I n i t i a l gue s s :

15 x0=rand (n , 1 ) ;

16

17 bk=x0 ;

18 l ambda o ld=dot ( bk ,B∗bk ) ;
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19

20 % norm ( v ) r e t u r n s the L2 norm o f a v e c t o r v .

21 bk=B∗bk/norm (B∗bk ) ;
22 lambda=dot ( bk ,B∗bk ) ;
23

24 count=1;

25

26 wh i l e ( abs ( lambda o ld−lambda )> t o l )

27

28 l ambda o ld=lambda ;

29 bk=B∗bk/norm (B∗bk ) ;
30 lambda=dot ( bk ,B∗bk ) ;
31

32 count=count+1;

33

34 end

35

36 x1=bk ;

37

38 d i s p l a y ( [ ’ conve rged i n ’ , num2str ( count ) , ’ i t e r a t i o n s ’ ] )

39

40 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
41 % ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
42 % Compare wi th Matlab ’ s b u i l t −i n methods :

43

44 % Compute ALL e i g e n v a l u e s and e i g e n v e c t o r s .

45 % E i g e n v a l u e s −− a long the d i a g on a l o f the mat r i x D.

46 % E i g e n v e c t o r s −− the columns o f the mat r i x V a r e the e i g e n v e c t o r s .

47

48 [V ,D]= e i g (B) ;

49

50 % Conver t D i n t o an v e c t o r o f e i g e n v a l u e s .

51 dc=0∗(1: n ) ;
52

53 f o r i =1:n

54 dc ( i )=D( i , i ) ;

55 end

56

57 % Pick out the e i g e n v a l u e wi th the l a r g e s t a b s o l u t e v a l u e .

58

59 [ ˜ , i x ]=max( abs ( dc ) ) ;

60 l ambda t rue=dc ( i x ) ;

61

62 % Pick out the c o r r e s p ond i n g eigenVECTOR .

63 x 1 t r u e=V( : , i x ) ;
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64

65 d i s p l a y ( ’ t r u e e i g e n v a l u e : ’ )

66 d i s p l a y ( l ambda t rue )

67

68 d i s p l a y ( ’ t r u e e i g e n v e c t o r : ’ )

69 d i s p l a y ( x 1 t r u e )

70

71

72 end

sample matlab codes/power method.m

23.2 Matlab’s built-in functions

The sample code given above shows how to access Matlab’s built-in functions to do eigenvalue-

eigenvector calculations. As usual, these are much better than our own humble attempts. They

are based on the QR algorithm, and returns all the eigenvalues and eigenvectors of a matrix (not

just the leading eigenvalue-eigenvector pair). Assuming that a square matrix A (not necessarily

symmetric) is defined on the command line, to compute the eigenvalues alone, one types

dc=eig(A);

Here, the eigenvalues are returned in an array called dc. If one requires the eigenvalues and eigen-

vectors, one would type

[V,D]=eig(A);

Here D is a diagonal square matrix whose diagonal elements contain the eigenvalues; these can be

converted into a simple array using a ‘for’ loop:

n=length(D);

dc=0*(1:n);

for i=1:n

dc(i)=D(i,i);

end

If i labels the ith eigenvalue, then the corresponding eigenvector vi is accessed via the command

vi=V(:,i);
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23.3 Back to the condition number

We revisit the condition number of a square matrix A, recalling that it can be written as

κ(A) = ∥A∥2∥A−1∥2 = ∥A∥2∥A−1∥2.

We want to compute this without computing the inverse of A. Certainly, there is no problem in

estimating ∥A∥2 =
√
λmax – we simply use the power method. To get a ‘rough’ estimate of ∥A∥2

we might only do a few iterations of the power method (cutting down on the number of iterations

is especially important for large matrices).

To compute λmin, the smallest eigenvalue of B := ATA, we instead compute the largest eigenvalue

of B−1. We use a variant of the power method, with the iteration

b(k+1) =
B−1bk

∥b(k)∥2
.

This still looks like a matrix inversion is needed. However, we re-write this equation as

Bb(k+1) =
b(k)

∥b(k)∥2
, (23.2)

and this can be solved for b(k+1) without actually inverting B (e.g. Jacobi or Gauss-Seidel methods –

covered in more advanced Computational Science modules). We would again iterate Equation (23.2)

a few times and estimate λmin, giving

κ(A) ≈
[
λest
maxλ

est
min

]1/2
.

If our estimate of κ(A) is large, we know that doing a full matrix inversion of A might be dodgy.

Common Programming Error:

Estimates for the condition number are norm-dependent. In this module, we have used the

L2 operator norm; other operator norms will produce different estimates for the condition

number.

However, as a general rule, if the condition number appears large in the L2 sense, it probably is

large, and care is needed in doing matrix inversions.
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23.4 Google

To rank pages in a web search according to importance, Google finds the leading eigenvalue-

eigenvector pair of a huge matrix (the ‘search matrix’). The power method is used for this cal-

culation. Rather alarmingly, a multi-billion dollar company has at its heart a concept that can be

encapsulated in 72 lines of Matlab.
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Fitting polynomials to data

Overview

In this chapter we learn a method to ‘fit’ a polynomial to a dataset. This is an extremely useful

idea that finds applications in all areas of science. The idea is to start with a measured set of data

relating an independent variable x to a dependent variable y, and find a ‘nice’ curve connecting

these variables.

24.1 The idea

Suppose in an experiment we want to measure the relationship between an independent variable

x which we freely vary, and a dependent variable y, which is affected by changes in x. We would

create a data set

{(xi, yi)}Ni=1,

consisting of N (hopefully independent) measurements of the phenomenon. We would plot these

on a graph such as Figure 24.1. We want to find a mathematical description of the blue curve – the

curve that gives an analytical relationship for the ‘best’ approximation of the relationship between

x and y.

To find this curve, we assume that it can be described by a polynomial

f(x) = a0 + a1x+ a2x
2 + · · ·+ aMxM

where M is some degree to be determined (M will of course be different from N and must satisfy

154
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Figure 24.1: The idea of a least-squares approximation.

M ≤ N). We fix the coefficients ai by minimizing the square distance

D =
N∑
i=1

[f(xi)− yi]
2 . (24.1)

24.2 The minimization

We minimize D in Equation (24.1) by solving

∂D

∂ai
, i = 1, · · · ,M.

We have

∂D

∂an
=

∂

∂an

N∑
i=1

[
a0 + a1xi + a2x

2
i + · · ·+ anx

n
i + · · ·+ aMxM

i

]2
,

= 2
N∑
i=1

[
a0 + a1xi + a2x

2
i + · · ·+ anx

n
i + · · ·+ aMxM

i − yi
]
xn
i .
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Thus,

∂D

∂an
= 0 =⇒

N∑
i=1

[
a0 + a1xi + a2x

2
i + · · ·+ anx

n
i + · · ·+ aMxM

i

]
xn
i =

N∑
i=1

yix
n
i , n = 1, · · · ,M.

In this equation, the xi’s and the yi’s are known from measurements and the a-coefficients are

unknown. We therefore re-write this equation in matrix form and solve the a-coefficients:

N∑
i=1

[
a0 + a1xi + a2x

2
i + · · ·+ anx

n
i + · · ·+ aMxM

i

]
=

N∑
i=1

yi,

N∑
i=1

[
a0 + a1xi + a2x

2
i + · · ·+ anx

n
i + · · ·+ aMxM

i

]
xi =

N∑
i=1

yixi,

N∑
i=1

[
a0 + a1xi + a2x

2
i + · · ·+ anx

n
i + · · ·+ aMxM

i

]
x2
i =

N∑
i=1

yix
2
i ,

... =
...

N∑
i=1

[
a0 + a1xi + a2x

2
i + · · ·+ anx

n
i + · · ·+ aMxM

i

]
xM
i =

N∑
i=1

yix
M
i ,

Re-write again:

a0

(∑
i

1

)
+ a1

(∑
i

xi

)
+ · · ·+ aM

(∑
i

xM
i

)
=

N∑
i=1

yi,

a0

(∑
i

xi

)
+ a1

(∑
i

x2
i

)
+ · · ·+ aM

(∑
i

xM+1
i

)
=

N∑
i=1

yixi,

a0

(∑
i

x2
i

)
+ a1

(∑
i

x3
i

)
+ · · ·+ aM

(∑
i

xM+2
i

)
=

N∑
i=1

yix
2
i ,

... =
...

a0

(∑
i

xM
i

)
+ a1

(∑
i

xM+1
i

)
+ · · ·+ aM

(∑
i

x2M
i

)
=

N∑
i=1

yix
M
i ,
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This is an (M + 1)× (M + 1) system for the unknown a-coefficients. We re-write it in a compact

notation, in matrix terms:
S0 S1 · · · SM

S1 S2 · · · SM+1

...
...

SM SM+1 · · · S2M


︸ ︷︷ ︸

=M


a0

a1
...

aM

 =


b0

b1
...

bM

 , (24.2)

where

Sn =
∑
i

xn
i , n = 0, · · · ,M,

and

bn =
∑
i

yix
n
i , n = 0, · · · ,M.

Provided M is invertible, Equation (24.2) is solved and the a-coefficienits are obtained:
a0

a1
...

aM

 = M−1


b0

b1
...

bM

 . (24.3)

Exercise 24.1 Write a Matlab function to implement the algorithm in Equations (24.2)–(24.3).

It should read in vectors x and y from the command line, as well as a trial polynomial degree

M . See below for how to generate test vectors to validate your code.

Writing test vectors

Suppose we have a code that implements the algorithm in Equations (24.2)–(24.3), and that we

want to test it. We would create an array of equally-spaced x-values (say):

x=0:0.1:20;

We would then create a test vector y consisting of a definite signal (some well-defined curve), as

well as some random noise, taken (say) from a normal distribution:

sd=10; y=2+0.5*x-2*(x.∧2)+0.1*(x.∧3)+sd*rand(1,length(x)); (24.4)
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This creates a vector y that consists of the well-defined curve

2 + 0.5x− 2x2 + 0.1x3,

superimposed on which are random perturbations drawn from a normal distrubution of standard

deviation sd=10 and mean zero (to visualize, plot (x, y) in Matlab!).

Suppose that we have a matlab function whose first line is

a_vec=least_squares(xin,yin,M);

...

A priori, we do not know what is the best value for M . We would make a few attempts, by calling

our function multiple times as follows:

a_vec1=least_squares(xin,yin,1);

a_vec2=least_squares(xin,yin,2);

a_vec3=least_squares(xin,yin,3);

a_vec4=least_squares(xin,yin,4);

We would then calculate the square distance D between the polynomial curve and the data in each

case. There is a simple tool in Matlab called polyval: given an array

a_vec=[a0,a0, ... ,aM]

and an input vector x, typing

yM=polyval(a_vec,x)

returns the polynomial
∑M

i=0 aix
i evaluated at the x-points in the array x. Thus, we would type

y1=polyval(a_vec1,x);

y2=polyval(a_vec2,x);

y3=polyval(a_vec3,x);

y4=polyval(a_vec4,x);

We compute the square distance from the true curve in each case by typing

diff1=norm(y1-y)^2;

diff2=norm(y1-y)^2;

diff3=norm(y1-y)^2;

diff4=norm(y1-y)^2;
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For our curve of best fit, we choose the M -value that minimizes diff (the residual). In practice,

there can be a range of M -values that produce a similar residual. As a general rule of thumb, it

is best to choose the minimum possible M -value, for the general philosophical reason that physical

laws tend to be simple, and hence, the simplest possible approximate solution should be chosen.

STOP Immoral and reprehensible scientific practice:

Many cases of scientific misconduct have arisen where in the absence of true data, data

has been created or ‘falsified’ as in Equation (24.4).

We used Equation (24.4) to test a code; bad people have used similar equations to write

bogus scientific papers and accrue prestige and promotions. They are usually found out.

If you do this, I will come after you with a big stick.

24.3 A built-in function

Finally, instead of our notional code ‘least squares.m’ to compute the algorithm in Equations (24.2)–

(24.3), there is of course a built-in Matlab function. One would type

a_vec=polyfit(xin,yin,M);,

where xin and yin are as before and M is the trial degree of the least-squares polynomial. As

before, the least-squares polynomial is reconstructed via

yM=polyval(a_vec,x);
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Random-number generation

Overview

Can a deterministic machine such as a computer generate truly random numbers? The answer is

no! In fact, what generally passes for ‘random’ numbers on a computer are sequences of numbers

generated by an iterative map with nice properties. Such sequences – generated using a deterministic

map are called ‘quasi-random’.

Random numbers are required frequently in computation:

• Creating random matrices for testing codes.

• Creating initial codnitions for a simulation. Random initial conditions remove any ‘bias’ that

could creep into a simulation from user-selected initial conditions.

• Data encryption.

• Choosing the order in which experiemntal data is analyzed, drawing subjects from a wider

pool for a test in social science, thereby eliminating selection bias.

• Picking the lottery numbers.

• Solving stochastic differential equations in a pathwise manner (for stock-market modelling,

fluids simulations &c&c).

160
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25.1 Matlab’s built-in random-number generator

Typing

r=rand;

one obtains a number r ∈ (0, 1). The number r is a realization of a random variable with a uniform

distribution in (0, 1). In other words, the probability that a realization random variable r is between

x and x+ dx is as follows:

P(x < r < x+ dx) = dx×

1, if 0 < x < 1,

0, otherwise.

The realizations r of the random variable are drawn from a long list of numbers called the global

stream. One can find out certain properties of the global stream by typing RandStream.list; on

my computer I received the following answer:

>> RandStream.list

The following random number generator (RNG) algorithms are available:

mcg16807: Multiplicative congruential generator,

with multiplier 7^5, modulo 2^31-1

mlfg6331_64: Multiplicative lagged Fibonacci generator,

with lags 63 and 31, 64 bit (supports parallel streams)

mrg32k3a: Combined multiple recursive generator

(supports parallel streams)

mt19937ar: Mersenne Twister with Mersenne prime 2^19937-1

shr3cong: SHR3 shift-register generator summed with CONG

linear congruential generator

swb2712: Modified Subtract-with-Borrow generator, with lags 27 and 12

To find out which method is currently being used to create the global stream, one types stream =

RandStream.getDefaultStream; on my computer I got

>> stream = RandStream.getDefaultStream

stream =
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mt19937ar random stream (current default)

Seed: 0

RandnAlg: Ziggurat

Here ‘mt19937ar’ refers to something called the ‘Mersenne twister’ algorithm; in this chapter we

discuss a simpler algorithm which has some of the same features the Mersenne twister.

25.2 The Linear congruential generator

This is an iterative map for generating a sequence of integers I1, I2, · · · , each between [0,RANDMAX]

according to the following algorithm:

Ij+1 = (aIj + c)modm, (25.1)

where

• m > 0 is the modulus,

• a is the multiplier, 0 ≤ a < m,

• c is the increment, 0 ≤ c < m.

The initial value I0 is called the seed. Here modm means ‘the remainder upon division by m’.

The modm in Equation (25.1) ‘folds back’ an integer I larger than m into the interval [0,m− 1].

Thus, the maximum number in the I-sequence is m− 1, hence

RANDMAX ≤ m− 1.

For a given m, suppose that a and c are chosen very cleverly so that for the first m iterations, the

I-numbers are all different. Because of the modm in Equation (25.1), the next I-number must be

come from the list of numbers already genrated, and the list will begin to repeat itself.

Theorem 25.1 The linear congruential algorithm (25.1) is periodic, with period at most m.

This is bad – we were looking for a completely random sequence of numbers, not a periodic list!

The way out of course is to make m extremely large, so that it takes a long time before one notices

the periodicity.

Theorem (25.1) says the period is ‘at most’ m – for very bad choices of a and c the period can be

much smaller, which again is disastrous. The idea therefore is to choose m, a, and c in such a way

that a huge chunk of the I-sequence must be taken before any repetition is observed.1

1As in the episode of ‘Numbers’ Series 3, ‘Traffic’, see http://numb3rs.wolfram.com/303/demonstrations.html
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The linear congruential algorithm has all sorts of other drawbacks – see Numerical Recipes in C

(Chapter 7) for a complete discussion. It would appear to be the ‘Euler method of random-number

generators’ – good for pedagogical instruction, but little more. I would not trust my credit card

details to an encryption scheme based on this algorithm! Moreover, I would not try to make my own

linear congruential genearator without studying a bit of number theory and reading Knuth’s book

(Volume 2, Chapter 1).

Random numbers in a interval

To get (pseudo) random (pseudo) real numbers in the interval (0, 1), one simply takes

r = Ii/(RANDMAX+ 1).

25.3 Seeding the random-number generator

One can have the computer choose the initial condition I0. This can add a (desirable) amount of

uncertainty to the outcome of the sequence (25.1). On the other hand, often one wishes to repeat

the same simulation over and over again (e.g. for validation purposes), and having a different seed

each time will lead to different outcomes. For that reason, RNGs typically allow one to fix the seed.

There is a procedure for doing this in Matlab, for any of the RNG algorithms available.

To do this, we create a new stream of random numbers based on whatever Matlab’s default RNG

is, together with the seed 1. In Matlab versions 7.10 and later, this is done as follows:

% Check which random stream is accessed:

stream = RandStream.getDefaultStream;

% Grab method into a new string:

method=stream.Type;

% Create a new stream of random numbers:

newstream= RandStream(method,’seed’,1);

From now on, one must be careful to draw the random numbers from the new stream. This can be

done by passing an additional argument to commands such as rand, e.g.

r=rand(newstream)
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A further pitfall is the following:

Common Matlab Programming Error:

Seeding the random number generator at lots of points in a code. It should only be seeded

at the very top of a code. Otherwise, the sequence of numbers will repeat with a very

short period!

In other situations, it is desirable to have uncertainty in the outcome of the pseudorandom sequence,

but for that uncertainty to be controlled by the user. Computer nerds like to this by using ‘Unix

Epoch time’ as the seed. This is the number of seconds that have elapsed since Midnight 1 January

1970 (really, it should be midnight Coordinated Universal Time (UTC)). It is computed in Matlab

as

S=etime(clock,datevec(’01/01/1970’));

As before, we create a new stream of random numbers based on whatever Matlab’s default RNG is,

together with the seed S:

% Check which random stream is accessed:

stream = RandStream.getDefaultStream;

% Grab method into a new string:

method=stream.Type;

% Create a seed using Unix Epoch time:

S=etime(clock,datevec(’01/01/1970’));

% Create a new stream of random numbers:

newstream= RandStream(method,’seed’,S);

Again, random numbers must now be drawn from the new stream, e.g. r=rand(newstream);.
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Matlab code

A practical Matlab example to draw numbers for the Irish National lottery (integers 1, 2, · · · , 45).

1 f u n c t i o n [ r v e c ]= l o t t o ( )

2

3 % Check which random stream i s a c c e s s ed :

4 s t ream = RandStream . ge tDe fau l tS t r eam ;

5 d i s p l a y ( ’ d e f a u l t s t ream : ’ )

6 d i s p l a y ( st ream )

7 % Grab method i n t o a new s t r i n g :

8 method=stream . Type ;

9

10 % Create a seed u s i n g Unix Epoch t ime :

11

12 S=et ime ( c lock , da t evec ( ’ 01/01/1970 ’ ) ) ;

13

14 % Create a new stream o f random numbers u s i n g the f o l l o w i n g pa ramete r s :

15 % Method : Matlab ’ s d e f a u l t .

16 % Seed : Unix Epoch t ime .

17

18 newstream= RandStream (method , ’ s eed ’ ,S ) ;

19 d i s p l a y ( ’ custom stream : ’ )

20 d i s p l a y ( newstream )

21

22

23 % The f o l l o w i n g imp l ementa t i on o f the b u i l t −i n f u n c t i o n ” r a n d i ”

24 % draws the d e s i r e d numbers from a un i fo rm d i s t r i b u t i o n i n t o an a r r a y .

25 %

26 % Syntax :

27 % rve c=r a nd i ( streamname , toprange , nrow , n co l ) ;

28 %

29 % 1. The f i r s t argument , streamname i s o p t i o n a l .

30 % We are e n t e r i n g our custom stream as an argument .

31 % 2. The second argument , top range i s the maximum i n t e g e r drawn . The

32 % minimum i n t e g e r i s by d e f a u l t s e t to one .

33 % 3. The t h i r d argument i s the number o f rows i n the output a r r a y .

34 % 4. the f o u r t h arguemnt i s the number o f columns i n the same a r r a y .

35

36 r v e c = r a nd i ( newstream , 45 , 6 , 1 ) ;

sample matlab codes/lotto.m
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Exercise 25.1 Explain why this is a good method for assigning ‘quick-picks’ to participants in

the National Lottery, but would be a very bad way to conduct the actual draw.

25.4 Matlab’s built-in functions – Other aspects

We have already seen in Section 25.3 that the basic RNG in Matlab can be modified in (at least)

two ways:

• Selecting a new seed;

• Using extensions to rand to generate random integers instead of random (pseudo) real num-

bers in (0, 1). However, these random numbers are always drawn from a uniform distribution

– numbers within range are all equally likely to be drawn, whether they are big or small, positive

or negative.

The Matlab family of RNGs can be extended further to generate random numbers from non-uniform

distributions. For example,

r=randn(10000,1)

is a random vector with 10,000 elements, all of which are drawn from the standard normal distribu-

tioni of mean 0 and standard deviation 1. The default stream is used.

Just how normal this vector is can be examined by drawing a histogram:

hist(r,50);

Here, the second argument is the number of bins, or the number of intervals in the discrete his-

togram. This can be chosen to make the graph as pretty as possible. We can do better by comparing

this numerical distribution to the true normal distribution

P (x) =
1√
2π

e−x2/2.

Create a new vector of x-points:

xx=-4:0.1:4;

Create a new histrogram with bins centred at the xx-points:
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yy=hist(r,xx);

Normalize this new vector to be a PDF:

yy=yy/(sum(yy)*(xx(2)-xx(1)));

Plot and compare!

plot(xx,yy,xx,(1/sqrt(2*pi))*exp(-xx.^2/2))

The results are impressive (Figure 25.1)!
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Figure 25.1: Matlab example showing normally-distributed data from an RNG calculation



Appendix A

Calculus theorems you should know

Theorem A.1 (Triangle Inequality) Let x and y be real numbers. Then

|x+ y| ≤ |x|+ |y|.

This result extends (e.g. by induction) to n real numbers x1, · · · , xn:∣∣∣∣∣
n∑

i=1

xi

∣∣∣∣∣ ≤
n∑

i=1

|xi|.

Theorem A.2 (Intermediate value theorem) Let f : [a, b] → R be a continuous real-valued

function, with f(a) < f(b). Then for each real number u with f(a) < u < f(b), there exists at

least one value c ∈ (a, b) such that f(c) = u.

Theorem A.3 (Mean-value theorem) Let f be a continuous function on the closed interval [a, b]

with a ≤ b, and let f be differentiable on the open interval (a, b). Then there exists a point c ∈ (a, b)

such that

f ′(c) =
f(b)− f(a)

b− a
.

Theorem A.4 (Mean-value theorem for integrals) Let f be a continuous function on the closed

interval [a, b] with a ≤ b. Then there exists a point c ∈ (a, b) such that

f(c) =
1

b− a

∫ b

a

f(x) dx.
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Theorem A.5 (Taylor’s Remainder Theorem) Let f be a continuous function on the closed

interval [a, b] with a ≤ b, and let f be n + 1 times differentiable on the open interval (a, b). Then

there exists a point ξ ∈ [a, b] such that

f(a) = f(a) + f ′(a)(b− a) + 1
2
f ′′(a)(b− a)2 + · · ·+ 1

n!
f (n)(a)(b− a) + 1

(n+1)!
f (n+1)(ξ)(b− a)n+1.

The term

Rn(b) =
1

(n+1)!
f (n+1)(ξ)(b− a)n+1 (A.1)

is called the remainder.

Theorem A.6 (Taylor’s Theorem) Let f be a continuous function on the closed interval [a, b]

with a ≤ b, and (1) let f be infinitely many times differentiable on the open interval (a, b). If,

furthermore, the following condition holds (condition (2)):

lim
n→∞

Rn(b) = 0, (A.2)

then

f(b) =
∞∑
p=0

1
p!
f (p)(a)(b− a)p. (A.3)

Note the pair of conditions (1) and (2) in Theorem (A.6). Condition (1) does not by itself guarantee

that an infinite taylor series of the kind (A.3) exists; consider for example the Taylor series of x

centred at zero for the function

f(x) =

0, if x = 0,

e−1/x2
, otherwise.

The Taylor series of f(x) centred at 0 is zero: for x ̸= 0 we have a Taylor series

fT (x) = 0,

which does not agree with the generating function

f(x) = e−1/x2

;

condition (2) is therefore important.



Appendix B

Facts about Linear Algebra you should

know

Overview

In this appendix, let V be a real vector space with dimension n < ∞, and equipped with a scalar

product

(·|·) : V × V → R

x,y 7→ (x|y).

B.1 Orthogonality

• Two vectors x, y are said to be orthogonal if (x|y) = 0.

• The set {x1, · · · ,xn} is called a basis for V if

– x1, · · · ,xn are linearly independent;

– x1, · · · ,xn span V .

Thus, for any x ∈ V , there exist real scalars α1, · · · , αn such that

x =
n∑

i=1

αixi.

• A basis {xi}ni=1 for V is said to be orthonormal if

(xi|xj) = δij.

170
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Given an orthonormal basis {xi}ni=1, we have, for arbitrary x ∈ V ,

x =
n∑

i=1

αixi,

(xj|x) =
n∑

i=1

αi(xj|xi),

(xj|x) =
n∑

i=1

αiδij,

hence

αj = (xj|x), x =
n∑

j=1

(xj|x)xj. (B.1)

In Quantum Mechanics, Equation (B.1) is called the completeness relation.

B.2 The Spectral Theorem

Throughout this section, let V = Rn. The usual basis means

e1 = (1, 0, 0, · · · , 0, 0),

e2 = (0, 1, 0, · · · , 0, 0),
... = ,

en = (0, 0, 0, · · · , 0, 1).

An arbitrary vector in Rn is written as a Cartesian n-tuple, x = (x1, · · · , xn)
T , which can be written

in terms of the usual basis as

x =
n∑

i=1

xiei.

In this section, we are interested in real, square (n×n) symmetric matrices; let A be such a matrix:

A : Rn → Rn,

x 7→ Ax,

such that (Ax)i =
∑n

j=1Aijxj. The symmetricness of A means that

Aij = Aji.

We have a simple lemma:



172 Appendix B. Facts about Linear Algebra you should know

Lemma B.1 The eigenvalues of A are real, and eigenvectors corresponding to distinct eigenvalues

are orthogonal.

A deeper result is the following:

Theorem B.1 The eigenvectors of A span Rn and can be chosen to form an orthonormal set.

This is a special case of the celebrated spectral theorem – the crowning achievement of Linear

Algebra.


