
Mechanics and Special Relativity (ACM10030)
Assignment 3

Issue Date: xx March 2010
Due Date: xx March 2010

Questions 1 and 2 carry five marks each; Question 3 carries ten marks. In question 2, a
numerical answer is required. You may use Me = 5.97×1024 kg. In the other questions,
a symbolic answer is fine.

1. Refer to Fig. 1(a). A projectile of mass m is fired from the surface of the earth
at an angle α from the vertical. The initial speed v0 is equal to

√
GMe/Re.

How high does the projectile rise? Neglect air resistance and the earth’s rota-
tion.

Hint: Do not try to solve for the orbit! Instead, use the conservation laws
directly.

We use conservation of angular momentum. The initial angular momentum is

Jinit = Rv0 sin α into the page.

The angular momentum at the maximum point is

Jtop = rmaxv1 into the page,

and the velocity is purely tangent to the earth’s surface at this point. Equating
these quantities gives a formula for v1 in terms of other things:

v1 = Rv0 sin α/rmax.

Next, we use conservation of energy:

1
2
v2

0 −
GMe

R
= 1

2
v2

1 −
GMe

rmax

.

But v2
0 = GMe/R. Hence,

−1
2

GMe

R
= 1

2
v2

1 −
GMe

rmax

,

and

v2
1 =

R sin2 αGMe

r2
max

.
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So,

−1
2

GMe

R
= 1

2
R sin2 αGMex

2 −GMex, x = 1/rmax.

Tidying up,
R sin2 αGMex

2 − 2GMex + (GMe/R) = 0,

with solution

x =
GMe ±

√
G2M2

e −G2M2
e sin2 α

R sin2 αGMe

.

This simplifies further:

x =
1±

√
1− sin2 α

R sin2 α
=

1 + cos α

R sin2 α
.

Finally,

rmax =
R sin2 α

1± cos α
.

But which sign to choose? Note that if α = 0, then the quadratic becomes
degenerate and has solution x = r−1

max = 1/ (2R). We would like our formula to
possess this behaviour: rmax → 2R as α → 0. This suggests taking the MINUS
sign. For, as α → 0, sin2 α ∼ α2, and 1− cos α ∼ α2/2. Thus, the final answer
is

rmax =
R sin2 α

1− cos α
.

2. A space vehicle is in circular orbit around the earth. The mass of the vehicle
is 3, 000 kg and the radius of the orbit is 2Re = 12, 800 km. It is desired to
transfer the vehicle to a circular orbit or radius 4Re.

(a) What is the minimum energy expenditure required for the transfer?

(b) An efficient way to accomplish the transfer is to use a semi-elliptical
orbit (known as a Hohmann transfer orbit), shown in the figure. What
velocity changes are required at the points of intersection, points A and
B in Fig. 1(b).

(a) Since a circular orbit minimises the effective potential, the minimum energy
required for the transfer is associated with a transfer to a second circular
orbit. Now

E1 = −GMem

4Re

,

and

E2 = −GMem

8Re

and the minimum energy is

∆E = E2 − E1 = −GMem

8Re

+
GMem

4Re

=
GMem

8Re

.
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We also need a numerical answer to three significant figures. We use

GMem/Re = 1.8666e + 11,

and obtain ∆E = 2.33e + 10 J.

(b) The first transfer point: This involves a transition from an circular to an
elliptic orbit, of semimajor axis 2a = 6Re.

E1 = −GMem

4Re

= 1
2
mv2

1 −
GMem

2Re

,

E1t = −GMem

6Re

= 1
2
mv2

1t −
GMem

2Re

,

Solving for the velocities, obtain

v1 =

√
GMe

2Re

, v1t =

√
2GMe

3Re

.

Hence,

∆v1 = v1t − v1 =
√

GMe/Re

(√
2/3−

√
1/2

)
.

Now √
GMe/Re = 7.8879e + 03,

hence
∆v1 = 863 m/s.

The second transfer point: This involves a transition from elliptic orbit of
semimajor axis 2a = 6Re, to a circular orbit, of radius 4Re.

E2t = −GMem

6Re

= 1
2
mv2

2t −
GMem

4Re

,

E2 = −GMem

8Re

= 1
2
mv2

2 −
GMem

4Re

,

Solving for the velocities, obtain

v2t =

√
GMe

6Re

, v2 =

√
GMe

4Re

.

Hence,

∆v2 = v2 − v2t =
√

GMe/Re

(√
1/4−

√
1/6

)
.

Now √
GMe/Re = 7.8879e + 03,

hence
∆v2 = 724 m/s.
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3. Consider a particle of mass m in two dimensions, experiencing a central force
F = −kr, where r is the radius vector of the particle relative to the force
centre, and in an inertial frame. There are two ways of solving for the motion
of such a system. The first way is as to write down the equations of motion
in Cartesian form,

mẍ + kx = 0, mÿ + ky = 0,

and observe that the answer is two uncoupled SHM’s, x = Ax cos (ωt + ϕx),
y = Ay cos (ωt + ϕy), where Ax and Ay are constants. This solution pair
satisfies the generic conic-section equation

A (x/Ax)
2 + B (x/Ax) (y/Ay) + C (y/Ay)

2 + D (x/Ax) + E (y/Ay) + F = 0,

where
A = C = 1, D = E = 0,

B = −2 cos θ, F = − sin2 θ, θ = ϕx − ϕy.

Hence, B2 − 4AC = 4 (cos2 θ − 1) < 0, and the motion is an ellipse. This is
the quick and easy answer. However, the assignment requires that you follow
the class notes, and find the answer as follows:

(a) What is the angular momentum J for the particle relative to the force
centre? Show that this is conserved.

(b) Write down the equations of motion in two dimensions, in polar coordi-
nates.

Hint: Fr = −kr, Fθ = 0.

(c) Reduce the system to a one-equation problem and identify the effective
potential. Sketch the result.

Answer: mr̈ = − (dUeff/dr), Ueff = [J2/(2mr2)] + (kr2/2).

(d) Using the class notes as a hint, find the shape of the orbit of the particle.
Are the orbits always closed?

Hint: Reduce the orbit problem to the integral

θ − θ0 =
J√
2m

∫ r ds

s2

√
E − 1

2
J2

ms2 − 1
2
ks2

,

and explain why E is always positive. Then solve for the integral using

I =

∫
ds

s
√−Cs4 + Bs2 − A

= −1
2

∫
du√−Au2 + Bu− C︸ ︷︷ ︸

u=1/s2

=

1
2

1√
A

sin−1

[ −2Au + B√
B2 − 4AC

]
,

where A, B, and C are positive constants.

(e) Would a solar system governed by such a force law make sense? [0 points,
but please think about this. The answer makes life on earth possible.]
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(a) The angular momentum of the particle about the force centre is

J = mr × v, v = ṙ.

Newton’s law for the particle is

mr̈ = −kr.

The rate-of-change of angular momentum is

dJ

dt
= r × d

dt
(mv) = r × (−kr) = 0,

which we knew already because F is central.

(b) Because the angular momentum is conserved, the motion takes place in the
plane defined by r(0) and v(0). Therefore we choose a coordinate system
(x, y) in this plane, whose origin is at the force centre. The potential for the
central force F = −kr is

U = 1
2
k|r|2 = 1

2
kr2,

hence Fr = −∂U/∂r = −kr, and Fθ = − (1/r) (∂U/∂θ) = 0. Newton’s
equations are thus

m
(
r̈ − rθ̇2

)
= −∂U

∂r
= −kr,

m
(
rθ̈ + 2ṙθ̇

)
= 0.

(c) The EOM in the θ direction can be re-written as

m

r

d

dt

(
r2θ̇

)
= 0,

hence J = mr2θ̇ is conserved. This is the magnitude of the angular momen-
tum, because J = mrr̂ × (ṙr̂ + rθ̇θ̂) = mr2θ̇ẑ, where ẑ is normal to the
plane of motion. Therefore, J/(mr2) = θ̇, and the centrifugal force in the
radial equation becomes

mrθ̇2 = mr

(
J

mr2

)2

=
J2

mr3
.

The radial equation of motion is

mr̈ =
J2

mr3
− kr,

= − ∂

∂r

(
1
2

J2

mr2
+ 1

2
kr2

)
,

= −∂Ueff

∂r
, Ueff = 1

2

J2

mr2
+ 1

2
kr2.

The effective potential is shown in Fig. 2.
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(d) From the effective potential, we obtain the conserved energy

E = 1
2
mṙ2 + 1

2

J2

mr2
+ 1

2
kr2 = 1

2
mṙ2 + Ueff (r) .

The energy for this potential well is never negative, since E ≥ Ueff(r) > 0.

The equation for dr/dt is found from the conserved energy:

dr

dt
=

√
2

m

√
E − Ueff (r).

We also know dθ/dt from angular-momentum conservation:

dθ

dt
=

J

mr2
.

Dividing these equations one by the other and using the chain rule gives
dr/dθ:

dr

dθ
=

√
2

m

mr2

J

√
E − Ueff (r),

dθ

dr
=

J√
2m

1

r2
√

E − Ueff (r)
,

θ = θ0 +
J√
2m

∫ r

r0

dr

r2

√
E − 1

2
J2

mr2 − 1
2
kr2

,

= θ0 + J

∫ r

r0

r−1dr√
2mEr2 − J2 −mkr4

,

= θ0 + 1
2
J

∫ r2

r2
0

ds

s
√

2mEs− J2 −mks2
,

where we have used s = r2,

ds = 2rdr,
ds

2r
= dr,

ds

2r2
=

ds

2s
=

dr

r
.

Introduce
A = J2, B = 2mE, C = mk,

and consider the integral

I =

∫
ds

s
√

Bs− A− Cs2
,

= −
∫

dt√−At2 + Bt− C
, t = 1/s,

=
1√
A

sin−1

( −2At + B√
B2 − 4AC

)
.
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Hence,

θ − θ0 = 1
2
J ×

[
1

J
sin−1

(−(2J2/r2) + 2mE√
4m2E2 − 4J2mk

)]
,

mE − J2 1

r2
= sin 2 (θ − θ0)

√
m2E2 − J2mk,

1

r2
= (mE/J2)− sin 2 (θ − θ0)

√
(m2E2/J4)− (mk/J2),

r2 =
1

(mE/J2)− sin 2 (θ − θ0)
√

(m2E2/J4)− (mk/J2)
.

Multiply above and below by J2/mE and obtain

r2 =
J2/mE

1−
√

1− (J2k/mE2) sin [2 (θ − θ0)]
.

Identify
r0 =

√
J2/mE, δ =

√
1− (J2k/mE2) < 1,

hence

r2 =
r2
0

1− δ sin [2 (θ − θ0)]
.

Moreover, from the effective potential, U ′eff (r0) = 0 =⇒ r0 = J/
√

mk,
hence E ≥ Ueff (r0) = J

√
k/m. Thus, 0 ≤ J2k/mE2 ≤ 1, and the radicand

always exists.

Choose θ0 s.t. sin [2 (θ − θ0)] = cos 2θ = cos2 θ − sin2 θ. Thus, the orbit
equation is

r2 − δr2 cos2 θ + δr2 sin2 θ = r2
0,

that is,
x2 (1− δ) + y2 (1 + δ) = r2

0.

This is the equation of an ellipse with semi-major axis a = r0/
√

1− δ and
semi-minor axis b = r0/

√
1 + δ. The curve is always an ellipse because δ < 1.

The curve can be re-written as

x2

a2
+

y2

b2
= 1.

The eccentricity ε is defined by the relation [minor]2 = [major]2 (1− ε2),
hence,

1− δ

1 + δ
= 1− ε2, ε2 =

2δ

1 + δ
≤ 1 for δ ≤ 1.

(e) We have shown that the ‘solar system on a spring’ satisfies Kepler’s First Law
(it also satisfies Kepler’s Second Law – equal areas in equal times). How-
ever, it does not satisfy the Thirds Law (periods). It is therefore inconsistent
with observations. It is not, however, physically impossible. The effective-
potential well is produces bound orbits at all energies, so such a solar system
would be highly stable (more stable than the real one). However, with this
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stability there comes a price: the effective-potential well exerts its pull out
to r = ∞. Indeed, r ∼ kr2/2 as r → ∞. Thus, all matter in the universe
would be drawn into the sun’s gravitational field. The earth’s gravitational
field would extend similarly. This would increase the probability of collisions
between the earth and other massive bodies, so making life on earth impossi-
ble. Thus, the inverse-square law is yet another piece in the jigsaw of design
(or coincidence) that makes life on earth possible.

(a) Problem 1 (b) Problem 2

Figure 1: Definition sketches

Figure 2: The effective potetnial for F = −kr.
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