
Mechanics and Special Relativity (MAPH10030)
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1. Consider a particle that is constrained on top of a semicircle (See Fig. 1). Gravity
points downwards. Suppose that the particle starts from rest. At what angle does
the particle fall off the semicircle? [4 points]

Hint: Please give the solution in two forms: in terms of the angle φ, and the angle
θ. The answer in the φ-angle is given in the e-book mentioned in Lecture 1.

Work in the θ coordinates. In the absence of constraints, the EOM is

m
(
r̈ − rθ̇2

)
= −∂U

∂r
,

m
(
rθ̈ + 2ṙθ̇

)
= −1

r

∂U
∂θ

,

where U = mgy = mgr sin θ. Now the motion is constrained, ṙ = 0, so we use
the constrained EOM discussed in class

mrθ̇2 = Nr −mg sin θ,

mrθ̈ = −mg cos θ.

Reduce the tangential equation to an energy-conservation law:

E = 1
2
mθ̇2 + mgr sin θ = E = E (t = 0) = mgr sin (π/2) = mgr.

Hence,
rθ̇2 = 2g (1− sin θ) .

Insert this result into the radial EOM, obtain

Nr = −mg sin θ + mrθ̇2 = g (2− 3 sin θ) .

The particle falls off the semicircle when the force constraining it to the surface
vanishes, i.e. Nr = 0, or

2
3

= sin θ.

It is customary to measure the angle in this problem form the vertical, φ = 1
2
π−θ,

hence cos φ = sin θ, and
φ = cos−1 2

3
.

Subtract one mark if the answer in decimal form, θ = 0.73 Rad or θ ≈ 0.73, Rad,
as both these answers are wrong.
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2. One force acting on a machine part is F = (−5.00 N) x̂ + (4.00 N) ŷ. The vector
from the origin to the point where the force is applied is r = (−0.450 m) x̂ +
(0.150 m) ŷ.

• In a sketch show r, F , and the origin [1 point].

See Fig. 1 (b).

• Use the right-hand rule to determine the direction of the torque. Then,
compute the torque from the determinant definition. Make sure that the
direction obtained in both calculations is the same [3 points].

By the RHR, the direction of the torque is into the page. Using the deter-
minant rule,

τ =

∣∣∣∣∣∣

x̂ ŷ ẑ
−0.450 0.150 0
−5.00 4.00 0

∣∣∣∣∣∣
,

= ẑ (−0.450× 4.00 + 0.150× 5.00) = −1.05ẑ.

Since the coordinate frame is right-handed, ẑ must point out of the page,
hence τ is into the page.

3. (a) Show that if the total linear momentum of a system of particles is zero, the
angular momentum of the system is the same about all origins. [3 points]

Given:
∑

i pi = 0. Angular momentum:

J =
∑

i

ri × pi.

A new system of axes: r′i = ri + R, where dR/dt = 0 because we are
effecting an instantaneous shift in the axes. Hence, p′i = pi, and

J ′ =
∑

i

r′i × pi,

=
∑

i

(ri + R)× pi,

=
∑

i

(ri × pi + R× pi) ,

= J +

(
R×

∑
i

pi

)
,

= J .

(b) Show that if the total force on a system of particles is zero, the torque on
the system is the same about all origins [3 points].

Let Fi be the total force experienced by particle i. This can be decomposed
into interactions and external parts, but that is not needed. Let us note
however, that

Fi =
∑

i6=j

F interaction
ij + F external

i .
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Now,
∑

i Fi = 0 in a particular system of axes, and r′i = ri + R represents
an instantaneous shift in axes. The forces ought to be translation invariant,
hence F ′

i = Fi. Hence,

τ ′ =
∑

i

r′i × F ′
i ,

=
∑

i

(ri + R)× Fi,

=
∑

i

(ri × Fi + R× Fi) ,

= τ +

(
R×

∑
i

Fi

)
,

= τ .

4. Recall the law of gravity for point particles m1 and m2: the force on particle 1
due to particle 2 is given by

F12 = − Gm1m2

|x1 − x2|2
(

x1 − x2

|x1 − x2|
)

. (1)

In class, we stated that the same law holds for spherical bodies at finite separations,
and that the proof of this statement follows by integration. In this problem we
obtain a hint at how this integration might be done by considering the gravitational
force exerted by a continuous line of particles on a point particle of mass m.

Consider the system shown in Fig. 2. A continuous line of particles extends from
x = −a to x = a, at y = 0. A point mass lies at x = 0, y = L.

(a) Show that the force on the particle due to a point-like mass dm (x) extending
from x to x + dx is

dF1,x = − Gm dm (x)

(x2 + L2)3/2
(Lŷ − xx̂) .

We use the point-mass formula because dm is an infinitesimal mass element.
Let r be a vector from P = (x, 0) to the point M = (0, L). Then,

r =
−−→
OM −−→OP = Lŷ − xx̂.

The gravitational force on m due to dm is directed along −r and the sep-
aration distance in the force formula is r = |r| =

√
L2 + x2. Using the

formula
dF = −Gm dm

r

|r|3 ,

obtain

dF = −Gm dm
Lŷ − xx̂

(x2 + L2)3/2
.
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(b) Assume a linear mass density dm = ρ dx and thus obtain the total force F1

on the point mass m. You might have to use your favour table of integrals
to do this.

dF = −Gmρ dx
Lŷ − xx̂

(x2 + L2)3/2

F =

∫ x=a

x=−a

[
−Gmρ

Lŷ − xx̂

(x2 + L2)3/2

]
dx

= −GmρLŷ

∫ a

−a

dx

(x2 + L2)3/2
+ Gmρx̂

∫ a

−a

xdx

(x2 + L2)3/2

The second integral is zero because it is an odd function integrated over a
symmetric domain. Thus, the force is entirely directed in the y-direction, and
equal to

F = −GmρLŷ

∫ a

−a

dx

(x2 + L2)3/2
,

= −GmρL

L2
ŷ

∫ a/L

−a/L

ds

(1 + s2)3/2
,

= −GmρL

L2
ŷ

∫ a/L

−a/L

∂

∂s

s√
1 + s2

,

= −GmρL

L2
ŷ

2a/L√
1 + (a/L)2

.

Tidying up the formula yields the final answer [full marks if student gets to
here]:

F = −2Gmρa

L2

[
1 +

( a

L

)2
]−2

ŷ,

= −GmM

L2

[
1 +

( a

L

)2
]−2

ŷ

[Additional comment] For large separations L, the lowest-order contribution
to the force is

F = −GmM

L2
ŷ + O

(
(a/L)2) ,

and the point mass m ‘sees’ the rod as another point mass of mass M .

(c) How would the force distribution change if dm = ρ0 [1 + ε (x/L)] dx?

Now, the force integral is

F = −Gmρ0Lŷ

∫ a

−a

[1 + ε (x/L)] dx

(x2 + L2)3/2
+ Gmρ0x̂

∫ a

−a

[1 + ε (x/L)] xdx

(x2 + L2)3/2
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Identify the odd integrals and set them to zero:

F = −Gmρ0Lŷ

∫ a

−a

dx

(x2 + L2)3/2
+ Gmρ0x̂

∫ a

−a

ε (x/L) xdx

(x2 + L2)3/2

We have seen the integral for the y-direction before. To do it, let ρ → ρ0 in
part (b). Now there is a contribution to the force in the x-direction too:

Contribution in the x-direction = Gmρ0

∫ a

−a

ε (x/L) xdx

(x2 + L2)3/2

=
Gmρ0

L

∫ a/L

−a/L

s2 ds

(1 + s2)3/2
,

=
Gmρ0

L

[
sinh−1 s− s√

1 + s2

]a/L

−a/L

This is

Gmρ

L


2 sinh−1 (a/L)− 2 (a/L)√

1 + (a/L)2




Therefore, the force is

F = −ŷ
GMm

L2

[
1 +

( a

L

)2
]−2

+ x̂
GMm

L2

[
L

a
sinh−1 (a/L)−

[
1 +

( a

L

)2
]−2

]
.

[Full marks if the student gets this far.] (Note that M = 2aρ0 as before.)
[Additional comment] A plot of the function

f (∆) =
1

∆
sinh−1 ∆− [

1 + ∆2
]−2

.

shows that it is always positive (Fig. 2 (b)), and thus, the x-component of
gravity is always in the positive x-direction. This makes sense: the most
massive part of the rod is in the positive half-line, and these positive contri-
butions to the total force dominate over contributions negative contributions
from the negative half-line. Note, however, that there is an optimal a/L
value that maximizes this force.
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(a) Problem 1 (b) Problem 2

Figure 1: Sketches for problems 1 and 2

(a) Definition sketch
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(b) The function f (∆)

Figure 2: Problem 4
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