Mechanics and Special Relativity (ACM10030) Assignment 2

Issue Date: 28th February 2011 Due Date: 21st March 2011

- 1. Force and torque One force acting on a machine part is $F = (-5.00 \text{ N}) \hat{x} + (4.00 \text{ N}) \hat{y}$. The vector from the origin to the point where the force is applied is $r = (-0.450 \text{ m}) \hat{x} + (0.150 \text{ m}) \hat{y}$.
 - (a) In a sketch show r, F, and the origin. You must show r and F on different sets of axes because they have different physical units.
 - (b) Use the right-hand rule to determine the direction of the torque. Then, compute the torque from the determinant definition. Make sure that the direction obtained in both calculations is the same.

2. Angular momentum and torque

- (a) Show that if the total linear momentum of a system of particles is zero, the angular momentum of the system is the same about all origins.
- (b) Show that if the total force on a system of particles is zero, the torque on the system is the same about all origins.
- 3. Gravitational forces on extended bodies Recall the law of gravity for point particles m_1 and m_2 : the force on particle 1 due to particle 2 is given by

$$F_{12} = -\frac{Gm_1m_2}{|x_1 - x_2|^2} \left(\frac{x_1 - x_2}{|x_1 - x_2|}\right).$$
(1)

In class, we stated that the same law holds for spherical bodies at finite separations, and that the proof of this statement follows by integration. In this problem we obtain a hint at how this integration might be done by considering the gravitational force exerted by a continuous line of particles on a point particle of mass m.

Consider the system shown in Fig. 1(a). A continuous line of particles extends from x = -a to x = a, at y = 0. A point mass lies at x = 0, y = L.

(a) Show that the force on the particle due to a point-like mass dm(x) extending from x to x + dx is

$$\mathrm{d}\boldsymbol{F}_{1,x} = -\frac{Gm\,\mathrm{d}m\,(x)}{\left(x^2 + L^2\right)^{3/2}}\left(L\hat{\boldsymbol{y}} - x\hat{\boldsymbol{x}}\right).$$

- (b) Assume a linear mass density $dm = \rho dx$ ($\rho = \text{Const.}$) and thus obtain the total force F_1 on the point mass m. Use a table of integrals if necessary.
- 4. Gravitational self-energy Consider a solid sphere of uniform density ρ , radius R_0 , and mass M.
 - (a) Explain why the gravitational interaction between a mass element dm and a solid sphere of radius r and constant density ρ where the mass element sits on the surface of the sphere is given by

$$\mathrm{d}\mathcal{U} = -G\mathrm{d}m\left(\frac{4}{3}\pi r^3\rho/r\right).$$

(b) By integrating over all such mass elements that sit in a shell of thickness dr on the surface of the sphere in part (a), show that the gravitational interaction between the shell and the sphere is

$$\mathrm{d}\mathcal{U} = -\frac{16}{3}\pi^2 G\rho^2 r^4 \,\mathrm{d}r.$$

(c) Do one final integration to show that the gravitational self-energy of the sphere is

$$\mathcal{U} = -\frac{3}{5} \frac{GM^2}{R_0}.$$

5. Bonus problem: This question is not mandatory, but can be used to top up the marks on the other questions, for a maximum of five top-up marks. Consider a particle that is constrained on top of a semicircle (Fig. 1(b)). Gravity points downwards. Suppose that the particle starts from rest. At what angle does the particle fall off the semicircle?

Give the solution in two forms: in terms of the angle ϕ , and the angle θ .

(a) Gravitational interaction between a particle and a rod.

(b) Sketch for bonus problem.

Figure 1: