
Mechanics and Special Relativity (ACM10030)
Assignment 1

Issue Date: 02 February 2010
Due Date: 09 February 2010

1. Recall the equations of trajectory motion in a uniform gravitational field g:

x = x0 + u0t, (1a)

y = y0 + v0t− 1
2
gt2. (1b)

where (x0, y0) is the initial location of the particle relative to a given inertial
frame and v0 := (u0, v0) is the initial velocity. Neglect air resistance.

A girl throws a water balloon at an angle α above the horizontal with a speed
|v0|. The horizontal component of the balloon’s velocity is directed towards
a car that is approaching the girl with a constant speed V . If the balloon
is to hit the car at the same height at which it leaves her hand, what is the
maximum distance the car can be from the girl when the balloon is thrown?

The answer, H, involves V , |v0|, α, and g.

We are to consider the foremost tip of the car. We ask the question, at what
time does the balloon hit the tip, assuming that the collision occurs at the launch
height. The initial velocity of the balloon is v0 = (u0, v0) = |v0| (cos α, sin α).
We work in the FOR of the earth with a choice of origin (x0, y0) = (0, 0). Hence,

x = |v0| cos α t, y = |v0| sin α t− 1
2
gt2.

The coordinate of the car in this frame is

xcar = H − V t,

where the minus sign indicates that the car is approaching the girl, who is fixed to
the FOR of the earth. To find the time of collision, form the following equality:

x = xcar =⇒ |v0| cos α t = H − V t =⇒ (|v0| cos α + V ) t = H.

Hence,

tcoll =
H

|v0| cos α + V
.

Rather unsurprisingly, the collision is hastened by the car’s having a finite velocity
in the girl’s direction.
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Now we find H. At the collision time, y = ycar too. This location is at y = 0.
Hence, |v0| sin αtc − 1

2
gt2c = 0. Assuming tc 6= 0, obtain

tc =
2v0 sin α

g
.

Now we have two equations for tc. We equate them and solve for H,

tc =
2|v0| sin α

g
=

H

v0 cos α + V
,

hence
H = 2|v0| sin α (V + |v0| cos α) g−1.

2. Consider a particle experiencing the force F = +kx, a repulsive spring force
(note the POSITIVE sign!!).

(a) Write down the equation of motion and the energy.

(b) Reduce the motion to an integral using the energy. Focus on the case
where the energy is positive.

(c) Solve this integral and find x(t).

Hint:
∫

dy√
1 + y2

= sinh−1(y) + Const., sinh y =
ey − e−y

2
.

We have the force F = +kx, hence the potential is U = −kx2/2, and the
conserved energy is

E = 1
2
m

(
dx

dt

)2

− 1
2
kx2,

Calling σ =
√

k/m, this is

E = 1
2
m

(
dx

dt

)2

− 1
2
mσ2x2.

The energy is not positive definite. However, we focus on the case where the initial
conditions conspire to give E > 0. Inverting for dt/dy,

dx

dt
=

√
2E

m

√
1 + 1

2

mσ2x2

E
,

dt

dx
=

√
m

2E

1√
1 + 1

2
mσ2x2

E

,

t =

√
m

2E

∫ x

x0

dx√
1 + 1

2
mσ2x2

E

.
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We transform to dimensionless variables: y2 = mσ2x2/(2E). The integral is thus

t =
1

σ

∫ y

y0

dy√
1 + y2

,

where y0 = x0(mσ2/2E)1/2 and y = x(mσ2/2E)1/2. The integral is given:

t =
1

σ

[
sinh−1 y − sinh−1 y0

]
.

Define a constant of integration Ã,

Ã = sinh−1 y0

Hence,

σt = sinh−1 y − Ã ⇐⇒ y = sinh
(
σt + Ã

)
,

and, restoring the x-coordinate, this is

x =

√
2E

mσ2
sinh

(
σt + Ã

)
.

Defining a further constant of integration

B̃ =

√
2E

mσ2
,

the solution is
x = B̃ sinh

(
σt + Ã

)
.

Using sinh s = (es − e−s) /2, this is

x = 1
2
B̃eÃeσt − 1

2
B̃e−Ãe−σt.

Defining further constants of integration A = B̃eÃ/2 and B = −B̃e−Ã/2, this is

x = Aeσt + Be−σt,

and A and B can be fixed by the initial conditions on y and ẏ.

Note: The functions sin and sinh could not be more different. The function sin is
periodic; the function sinh blows up exponentially as its argument tends to ±∞
(See Fig. 1).

3. Consider the potential

U (x) = 1
2
mω2x2 − 1

4
mλ2x4,

where ω and λ are positive constants, and where m is the particle mass. Find
the points of unstable equilibrium, the point of stable equilibrium, and the
period of small oscillations about the stable equilibrium. Sketch the potential
function and mark in the equilibrium points.
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Figure 1: The difference between sin and sinh.

From class notes, equilibrium corresponds to U ′(x) = 0. Now,

U ′(x) = mω2x−mλ2x3.

Setting this to zero gives x = 0 or

ω2 = λ2x2.

Hence, the equilibria are

x0 = 0,

x±λ = ±ω

λ
.

The stability or otherwise of the equilibria is characterised by the second derivative
of U(x):

U ′′(x) = mω2 − 3mλ2x2.

We have,

U ′′(x0) = mω2 > 0, · · · stable,

U ′′(x±λ) = mω2 − 3mλ2

(
ω2

λ2

)
= −2mω2 < 0, · · · unstable.

The frequency of small oscillations around x0 = 0 is

√
U ′′(x0)/m =

√
mω2/m = ω.

The period is therefore
T = 2π/ω.

A sketch of the potential well is shown in Fig. 2.
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Figure 2: Quadratic-quartic potential well

4. Consider a particle moving about the bottom of a potential well. We know
from class that

E = 1
2
mẋ2 + U (x) ,

and hence that

dx

dt
=

√
2

m

√
[E − U (x)],

dt

dx
=

√
m

2

1√
[E − U (x)]

.

The turning-points x1 and x2 of the motion occur at dx/dt = 0, or E =
U(x), and the half-period is the time required by the particle to go from one
turning-point to another (See Fig. 3).

1
2
T =

√
m

2

∫ x2

x1

dx√
[E − U (x)]

.

Now, consider a spring that exerts the following quartic restoring potential:

U(x) = 1
4
mλ2x4

(a) If the particle has mass m and is released from rest at x = A, prove that
the half-period can be written as

1
2
T = [Some function of m,E, and λ]

× [Some integral independent of the mechanical parameters]

It is required that you derive these functions explicitly.

(b) Does the period depend on A? Would the period depend on A if U(x)
were a quadratic potential?

Hint: You may need the following substitution:

y =

(
1
4

mλ2

E

)1/4

x.
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Figure 3: The turning points x1 and x2 for a typical potential well.

We have
E = E(t = 0) = no kinetic energy + 1

4
mλ2A4.

Thus, a general expression for the energy is

1
4
mλ2A4 = 1

2
mẋ2 + 1

4
mλ2x4,

and
1
2
mẋ2 = 1

4
mλ2

(
A4 − x4

)
= E − U(x).

The turning points of the motion (where ẋ vanishes) are therefore x1 = −A and
x2 = +A. We now have enough material to write down the half-period:

1
2
T =

√
m

2

∫ A

−A

dx√
E − 1

4
mλ2x4

.

As usual, we take a factor of E outside downstairs in the square root. There is no
ambiguity here since E is necessarily positive.

1
2
T =

√
m

2E

∫ A

−A

dx√
1− 1

4
mλ2x4

E

.

Let’s use the substitution:

y =

(
mλ2

4E

)1/4

x.

The upper limit is

yupper =

(
mλ2

4E

)1/4

A,

=

(
mλ2A4

4E

)1/4

, E = 1
4
mλ2A4,

= 1.
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Similarly, ylower = −1. Note also,

dx =

(
4E

mλ2

)1/4

dy.

Putting it all together,

1
2
T =

√
m

2E

(
4E

mλ2

)1/4 ∫ 1

−1

dy√
1− y4

. (∗)

This is the final answer. The integral is a pure number that is independent of the
mechanical properties like energy, mass, and the potential constant λ.

For the second part, let us elaborate on the answer. Calling the pure integral I,
we have

1
2
T = I

(
m2

4E2

4E

mλ2

)1/4

,

= I
( m

λ2E

)1/4

,

= I

(
m

λ2
(

1
4
mλ2A4

)
)1/4

,

= I

(
4

λ4A4

)1/4

.

To four significant figures, the integral I is calculated numerically as I = 2.622.
Finally,

T =
2
√

2I

λA
.

This makes sense dimensionally: The dimensions of λ are

[λ] =
1

Length× Time
,

hence [
1

λA

]
=

1
1

Length×Time
× Length

= Time,

which is the correct dimension for the period.

As for the harmonic oscillator, the period can be obtained from class notes, OR
from replacing powers of 4 with powers of 2 in the expression (*). (To be utterly
consistent, we should also replace λ2/4 with ω2/2 in the potential function.) The
result of the latter procedure is

1
2
T =

√
m

2E

(
2E

mω2

)1/2 ∫ 1

−1

dy√
1− y2

.
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But now the factors involving energy cancel exactly!!

1
2
T =

1

ω

∫ 1

−1

dy√
1− y2

.

The integral is a known one in this case: it is equal to π. Thus,

1
2
T = π/ω =⇒ T = 2π/ω.

This is totally independent of the amplitude A of the oscillation. You should note
that the cancellation of the energy in the expression

√
m

2E

(
pE

mλ2

)1/p

relies on p being equal to 2. Thus, only for quadratic potentials is the oscillation
period independent of amplitude.
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