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Lennon Ó Náraigh1, Prashant Valluri2, D. Scott3, I.

Bethune3, and Peter D. M. Spelt4

1School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4
2Institute of Materials and Processes, Sanderson Building, School of Engineering,

University of Edinburgh, King’s Buildings, Edinburgh, EH9 3JL, UK
3Edinburgh Parallel Computing Centre, The University of Edinburgh, United Kingdom
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Abstract

We consider the linear and nonlinear stability of two-phase density-matched
but viscosity-contrasted fluids subject to laminar Poiseuille flow in a channel,
paying particular attention to the formation of three-dimensional waves. A
combination of Orr–Sommerfeld–Squire analysis with direct numerical sim-
ulation of the three-dimensional two-phase Navier–Stokes equations is used.
For the parameter regimes under consideration, under linear theory, the most
unstable waves are two-dimensional. Nevertheless, we demonstrate the ex-
istence of two distinct mechanisms whereby three-dimensional waves enter
the system, and dominate at late time. There exists a direct route, whereby
three-dimensional waves are amplified by the standard linear mechanism; for
certain parameter classes, such waves grow at a rate less than but compara-
ble to that of most-dangerous two-dimensional mode. Additionally, there is a
weakly nonlinear route, whereby a purely spanwise wave couples to a stream-
wise mode and grows exponentially. We demonstrate these mechanisms in
isolation and in concert. Consideration is also given to the ultimate state of
these waves: persistent three-dimensional nonlinear waves are stretched and
distorted by the base flow, thereby producing regimes of ligaments, ‘sheets’,
or ‘interfacial turbulence’. Depending on the parameter regime, these regimes
are observed either in isolation, or acting together.

1 Introduction

Two-layer channel flows are a useful model for several industrial systems, including
oil/gas transport and the cleaning of surfaces by flow. A large body of literature
is devoted to the linear theory of infinitesimally small perturbations in these flows,
mostly on (periodic) two-dimensional perturbations in the streamwise and wall-
normal directions of a uni-directional base state. The subject of this paper is the
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route by which three-dimensional small-amplitude waves eventually lead to wave
overturning, ligament formation and droplet entrainment allowing for flows that are
not periodic in the main flow direction. We concentrate herein on density-matched
laminar systems, representative of liquid/liquid flows, with the view that the addi-
tional effects of a density contrast is best studied subsequently; a viscosity contrast
is anyway usually present in gas/liquid systems, and is known often to produce
the dominant mechanism for linear instability, as recalled below. Our objective
is accomplished using a high-resolution direct numerical simulation of two-phase
density-matched but viscosity-contrasted flows in a long channel.

One possible route to droplet formation is a purely linear one: a single lin-
ear mode dominates and holds up to a very late stage before ligament formation.
Prior work on linear stabililty analysis of two-layer channel flows has been mostly
on two-dimensional systems, within the framework of Orr–Sommerfeld theory. Re-
sults obtained with two-dimensional nonlinear direct numerical simulations in Valluri
et al. (2007, 2010) follow linear theory up to a point close to the turnover of waves.
Linear stability analysis has revealed that the dominant mechanism that leads to
linear temporal growth is the so-called Yih mechanism (Yiantsios & Higgins, 1988),
due to the viscosity contrast across the interface (Yih, 1967). Viscosity stratifica-
tion leads to net work being done by the perturbation velocity and stress at the
interface. By using an energy budget, Boomkamp & Miesen (1996) verified that
this mechanism plays an important role in many papers on interfacial instability.
Other mechanisms for instability are also conveniently summarized by Boomkamp
& Miesen (1996). Of particular importance for laminar two-layer flow here also is a
Tollmien–Schlichting or shear-type mechanism (possibly in both fluids). Although
the Yih mechanism usually dominates, its growth rate being rather large and shear
modes only being unstable beyond a critical Reynolds number with relatively low
growth rates, competition between these modes has been observed by particular
choices of flow parameters (Yecko et al., 2002). The extension of the modal analysis
to three-dimensional disturbances, although not straightforward in view of the fact
that Squire’s theorem does not necessarily apply (Yiantsios & Higgins, 1988), shows
that the dominant mode is two-dimensional in a wide range of multiphase flow sit-
uations, albeit that for some parameter values large-amplitude three-dimensional
waves might result (Sahu & Matar, 2011).

In practice, disturbances are expected initially to be localized, and modal tem-
poral stability analysis may be of restricted value, as the manner whereby such
initially localized pulses are amplified should really be considered in linearly unsta-
ble cases: either amplification in at least one moving frame of reference and damping
in the laboratory frame (convective instability), or growing disturbances in the entire
domain in the laboratory frame (absolute instability). To determine absolute insta-
bility from the Orr–Sommerfeld theory for the two-dimensional model, the saddle-
point method was used initially in Valluri et al. (2010); Ó Náraigh et al. (2013) but
difficulties arose due to the presence of singularities in the complex wavenumber
plane and due to spatio-temporal mode competition. It was therefore necessary
to confirm independently the boundaries between convectively and absolutely un-
stable cases in parameter space. For this purpose, an alternative approach was
developed in by Ó Náraigh et al. (2013) wherein the Orr–Sommerfeld eigenvalue
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problem was converted into a Cauchy problem such that highly-efficient DNS of the
linearized equations of motion can be performed, and the evolution of an initially-
localized pulse tracked (the so-called ray-analysis approach, based on earlier work on
single-phase flows (Delbende & Chomaz, 1998; Delbende et al., 1998)). Using this
approach, the evolution of a pulse in an arbitrary frame of reference travelling at
velocity v with respect to the laboratory frame can be tracked, and the pulse growth
rate obtained as a function of v, from which the convectively or absolutely unstable
nature of instability can then be concluded. The existing evidence (Sahu & Matar,
2011) is that allowing for three-dimensional disturbances does not significantly move
convective/absolute boundaries here.

The extent to which such linear theory governs three-dimensional wave growth
has not yet been established. Furthermore, the growth rates from a modal linear
analysis are merely asymptotic (i.e. valid in the notional limit as t→ ∞ but before
the onset of nonlinear effects). Effects not captured by a modal analysis can be
present at early times and lead to substantial transient growth because the Orr–
Sommerfeld equation is non-normal and the eigenfunctions of a given mode are
not orthogonal. In this way, the growth of an arbitrarily-chosen initial condition
containing a mixture of Orr–Sommerfeld eigenmodes can produce transient growth
rates that are orders of magnitude in excess of the asymptotic growth rates computed
from the standard eigenvalue analyses. Transient growth has been reported for the
two-dimensional two-layer channel-flow problem (van Noorden et al., 1998) and for
transverse modes in a two-layer mixing layer (Yecko & Zaleski, 2005).

Various nonlinear mechanisms may eventually become dominant. For instance,
the linearly-most-dangerous streamwise mode may interact weakly nonlinearly with
spanwise modes, and the evolution of the spanwise modes is ‘slaved’ via a centre-
manifold-type approximation to the streamwise spanwise mode. For generic ref-
erences to this theory, see the work by Schmid & Henningson (2001). A specific
version of this theory also exists, but concerns only streamwise (two-dimensional)
modes in the context of a longwave model that only approximates the underlying
equations of motion (Barthelet et al., 1995). An extension of this approach has been
carried out by King & McCready (2000), and accounts for a range of of weakly non-
linear interactions between a wide variety of modes that are strongly excited in the
linear theory. The work by King & McCready (2000) is based on the full linearized
Navier–Stokes equations, but is still focused only on streamwise (two-dimensional)
modes.

The linearly-most-dangerous streamwise mode may stabilize at large amplitude
and thereafter, a finite-amplitude unidirectional travelling wave superimposed on
the base state is treated as a ‘new’ base state. This new base state may be un-
stable to three-dimensional perturbations. Typically, secondary growth rates are
computed via Floquet analysis (Schmid & Henningson, 2001). For gas/liquid jet
flows, such a route has been identified by Marmottant & Villermaux (2004), involv-
ing a secondary instability of Rayleigh-Taylor type. Although the present study is
on density-matched systems, ligament growth is observed in the results below, such
that there must be mechanisms other than the Rayleigh–Taylor instability at work
here.

Once a wave has overturned to form a ligament, various scenarios may lead
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to droplets. A tentative study of three-dimensional two-phase mixing-layer flow
by Scardovelli & Zaleski (1999) found that initial conditions corresponding to two-
dimensional linear theory cause the interface to develop into ‘sheets’, which break to
form cylinders that subsequently break up due to capillary instability. On the other
hand, for initial conditions that are sufficiently far from the description given by
linear theory, spanwise waves were found to develop on the sheet edges that further
develop into cylinders – this time pointing in the streamwise direction - which then
break up. Sheets and ligaments are observed in jet breakup as well as in two-layer
flows, with sheets often inflated resulting in a bag-type shape in gas/liquid systems
(e.g. the work by Marmottant & Villermaux (2004)).

Various governing mechanisms of the evolution of three-dimensional sheets and
ligaments have been identified. In the work by Marmottant & Villermaux (2004), a
simple force balance was proposed as a model of ligament dynamics in gas-assisted
jet breakup: mainly form drag exerted by the gas flow was argued to lead to an
increase in momentum of the ligament. A different mechanism has been identified in
breakup of droplets pinned on an adhering surface by shear flow in density-matched
systems: there, the work done by the tangential stress exerted by the exterior fluid
is converted into surface energy (Ding et al., 2010).

This paper is organized as follows. After an overview of methodology and vali-
dation tests in Section 2, and an outline of the pertinent general behaviour of modal
linear growth in Section 3, we use direct numerical simulations of channel flows in a
periodic domain in Section 4 to establish to what extent linear theory is followed, or
whether a non-linear mechanism becomes significant before the turnover of waves.
In Section 5 we investigate whether the findings for periodic domains carry over to
‘open’ domains (with an inlet and an outlet). Ligament dynamics are investigated
in Section 6. In Section 7, we report a transition to a highly-agitated flow regime.
Concluding remarks are presented in Section 8.

2 Problem statement and computational methodologies

In this section we present the problem statement and the two computational method-
ologies used in this study, which are linear theory and direct numerical simulation
(DNS) of the fully nonlinear governing equations.

2.1 Problem statement

Throughout this paper, we study the two-phase Navier–Stokes equations, in a rect-
angular Cartesian frame (x, y, z) in a channel geometry [0, Lx]× [0, Ly]× [0, Lz]. We
fix Lz = 1 in the nondimensional framework described below. We are interested in
density-matched pressure-driven channel flow, for which an equilibrium configura-
tion is unidirectional two-phase Poiseuille flow, wherein the phases are confined in
two layers parallel to the direction of flow. Either the pressure gradient or the flow
rate is fixed. We therefore assign labels j = B, T to the fluid layers, and consider the
case in which the bottom layer contains the more viscous fluid. The dimensionless
physical parameters in the problem are the Reynolds number Re = ρTV Lz/µT , the
viscosity ratio m = µB/µT (bottom/top), the surface-tension parameter (inverse
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capillary number) S = γ/(µTV ). Here, γ denotes the (dimensional) surface tension.
Across interfaces separating the two phases, the following standard jump conditions
are satisfied:

Jn̂·
[
−pI+ µj

(
∇uj +∇uT

j

)]K· t̂(r) = 0, Jn̂·
[
−pI+ µj

(
∇uj +∇uT

j

)]
·n̂K = Sκ,

(1)
where n̂ is a normal vector to the interface (pointing from j = B to j = T ), and
t̂(1) and t̂(2) are the tangent vectors. The brackets J·K denote the jump condition
across the interface ((j = T ) − (j = B)), and κ denotes the interfacial (mean)
curvature. Note that for large-amplitude non-equilibrium situations (characterized
by wave overturning and droplet entrainment), the notion of ‘top’ and ‘bottom’
fluids becomes ambiguous. However, the ambiguity is removed by identifying j = T
with the less viscous fluid and j = B with its more viscous counterpart.

Boundary conditions are required to close the system of equations. Bounding
walls with the implied no-slip boundary conditions are introduced at z = 0 and z =
Lz. Inlet/outlet boundary conditions are imposed in the streamwise (x-) direction,
and periodic boundary conditions in the spanwise (y-) direction: at the inlet, the
velocity field is prescribed as u(x = 0) = (U0(z), 0, 0), and at the outlet, ∂xu = 0.
Here U0(z) is a prescribed inlet condition, the mean value of which sets the velocity
scale V . Throughout this paper, the inlet condition is taken to be Poiseuille flow-
profile obtained by computing the steady flat-interface solution of the Navier–Stokes
equations for a particular flat-interface height h0. At times, we also make use of
periodic boundary conditions in the x-direction. Finally, the system is perturbed
either through initial conditions or through a forcing localized in space; details of
these are presented together with the linear and nonlinear simulation techniques in
the subsequent subsections.

2.2 Linear theory

Linear theory is used in subsequent sections to study the early-time development
of three-dimensional disturbances. It is shown that some of the characteristics of
the linear regime are retained at later times by the subsequent nonlinear regime,
thereby underscoring the importance of understanding fully the initial linear phase
of the wave development. In linear theory, small-amplitude disturbances grow or
decay exponentially, with growth rates and phase speeds determined from a modal
Orr–Sommerfeld–Squire (OSS) eigenvalue analysis. The idea behind this approach
is to linearize the equations of motion around a steady base state corresponding to
uni-directional flow, to reduce the linearized equations down to an equation pair in-
volving the wall-normal velocity and vorticity, and to Laplace–Fourier transform the
resulting linear differential-algebraic equation. The transformed problem is recalled
here in generic terms as follows:

λ

(
MOS 0
MC MS

)(
w̃αβ(z, λ)
ω̃z,αβ(z, λ)

)
=

(
LOS 0
LC LS

)(
w̃αβ(z, λ)
ω̃z,αβ(z, λ)

)
, (2)

where LOS depends on wavenumbers and the wall-normal derivative, LOS = LOS[iα, iβ, ∂z],
and similarly for the other operators. Here, following standard notation, α denotes
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a wavenumber in the streamwise direction and β denotes a wavenumber in the span-
wise direction. For wall-bounded flows, solution of Equation (2) for the eigenvalue
λ gives a discrete family of eigenvalues for each Fourier mode, {λn(α, β)}∞n=0. The
growth rate is then determined by the eigenvalue with the largest real part. In fact,
this approach is rather standard and is not discussed further here (but see Sahu &
Matar (2011) and Appendix A).

2.3 Nonlinear DNS

Beyond linear theory, DNS of the Navier–Stokes equations is used in the following,
through the stage of overturning waves, ligament formation and up to the point of
droplet entrainment. A levelset method is utilized with a continuous surface tension
model (Sussman & Fatemi, 1998). In this levelset formalism, the basic Navier–Stokes
equations for density-matched fluids are modelled as(

∂u

∂t
+ u · ∇u

)
= −∇p+ 1

Re
∇ ·
[
µ
(
∇u+∇uT

)]
+ δϵ(ϕ)Sn̂∇ · n̂, (3a)

∇ · u = 0, (3b)

n̂ =
∇ϕ
|∇ϕ|

,
∂ϕ

∂t
+ u · ∇ϕ = 0. (3c)

Here, ϕ(x, t) is the levelset function indicating in which phase the point x lies
(ϕ < 0 in the bottom layer, ϕ > 0 in the top layer). The (possibly multivalued)
interface η(x, t) is therefore the zero level set, ϕ(x, t) = 0 =⇒ x = (x, y, η(x, y, t)).
Moreover, the levelset function determines the unit vector normal to the interface
(n̂), as well as the viscosity, via the relation µ = m (1−Hϵ(ϕ)) + Hϵ(ϕ). The
function Hϵ(ϕ) is a regularized Heaviside function, which is smooth across a width
ϵ = 1.5∆x. Finally, δϵ(s) = dHϵ(s)/ds is a regularized delta function supported on
an interval [−ϵ, ϵ]. The delta function δϵ(s) is implemented either via an analytical
expression for dHϵ(s)/ds , or through finite-differencing of Hϵ(·). For the problem
under consideration, both approaches yield identical results. The details of the
numerical method are discussed below under several headings.

Grid structure, momentum treatment: The velocities and pressure are dis-
cretized on an isotropic MAC grid, with velocities defined at cell faces and pressures
defined at cell centres, and grid spacing ∆z; the timestep is denoted by ∆t. The
convective derivative is treated using a third-order Adams–Bashforth scheme (Boyd,
2001). The momentum fluxes are treated in a flux-conservative fashion, and the
derivatives in the momentum term in the ith direction in Equation (3a) are written
as follows:

∂x (µ∂xui) + ∂y (µ∂yui) + ∂z (µ∂zui)︸ ︷︷ ︸
=Di

+ ∂x (µ∂xi
u) + ∂y (µ∂xi

v) + ∂z (µ∂xi
w)︸ ︷︷ ︸

=Ci

, (4)

such that each derivative in the sum can be approximated numerically as a dif-
ference taken between two cell faces, thereby accurately taking account of the
momentum flux between cells. The expression (4) is discretized in time using a
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Crank–Nicolson treatment for the second-order manifestly diffusive terms Di and a
third-order Adams-Bashforth treatment for the leftover terms Ci:

1
2

(
Dn+1

i +Dn
i

)
+ 23

12
Cn
i − 4

3
Cn−1
i + 5

12
Cn−2
i , (5)

where n here denotes the nth timestep in the simulation. Several other methods for
implementing the finite-differencing of the momentum term were attempted, but the
method described here proved to be the best at capturing the stress profile across
the interface.

Pressure treatment, operator inversions, levelset advection: The pres-
sure and associated incompressibility constraint are treated using the projection
method. Both the implicit momentum step and the pressure correction step call for
Helmholtz’s equation and Poisson’s equation, respectively. For the Helmholtz step,
successive over-relaxation is used. For the Poisson step, we experimented with two
methods: successive over-relaxation, or GMRES with a block-Jacobi preconditioner,
which was implemented using the PETSc library. The two methods yielded iden-
tical results, albeit that the code’s performance was substantially improved under
GMRES (Scott et al., 2013a). Finally, the levelset function ϕ is advected using
a third-order WENO scheme (Ding et al., 2007), and the resulting updated lev-
elset function is reinitialized using a Hamilton–Jacobi equation and the algorithm
of Russo & Smereka (2000). The maximum curvature is limited to 1/∆z.

Practical implementation: The numerical method is coded in Fortran 90 for
implementation on a distributed/shared-memory architecture, using a combination
of OpenMP and MPI (Gropp et al., 1994). The code is run on a supercomputer in
which the basic processor is an AMD Opteron 2.3GHz Interlagos processor. For a
typical simulation 1024 such processors were used for 12 hours. The source code of
the GMRES version is available under an open-source license (Scott et al. (2013b)).

This approach resolves large changes in interfacial topology with only a small
amount of mass loss. Specifically, for a typical simulation (P4, Table 1), we computed
maxt |VB(t)− VB(0)|/VB(0) = 4%, where VB(t) denotes the volume of the ‘bottom’
phase at time t, and the maximum is taken over the full duration of the simulation.
The mass loss in other simulations was similar. We have not found evidence of any
parasitic currents in the simulations. These can arise in levelset methods because
of the small-scale smoothing of the viscosity profile and the implementation of the
continuum surface force (Meland et al., 2007); their absence may be anticipated by
the large streamwise velocities and rapid instability timescales that are present in the
current problem. Comparisons of our results with the quasi-analytic linear theory
in Section 2.2 demonstrate that the standard levelset method maintains accuracy
with respect to the basic physical model in Equation (1).

The following forcing procedure was used to ‘trip’ the open systems investigated
in this paper (i.e. those with an inlet). The z-component of Equation (3) is modified
to include a localized continuous-in-time momentum forcing term F (x, t) that is
compactly supported in the x-direction, and contains a polychromatic mixture of
y-modes and temporal frequencies (the Fourier modes in the mixture have equal
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amplitude and a random phase); specifically, we have

F (x, t) = δϵ(ϕ(x, t))δLx(x)

[
A0

NyNT

Ny−1∑
i=0

NT∑
j=1

cos

(
2πiy

Ly

+
ΩCjt

NT

+ φij

)]
, (6a)

where

δLx(x) =

{
1 + cos

[
16π
Lx

(
x− 1

8
Lx

)]
, 1

16
Lx ≤ x ≤ 3

16
Lx,

0, otherwise.
(6b)

The prefactors in Equation (6a) have the effect of localizing the momentum distur-
bance at the interface, and at x = Lx/8. (Note, the divergence of the velocity field
is not disturbed by this forcing.)

The cutoff forcing frequency in Equation (6a) is taken to be ΩC = 20. For
most of the parameter cases considered, this is much larger than the frequency
of the linearly most-dangerous mode. However, even for those parameter cases
where this condition is not satisfied, for sufficiently large amplitudes A0, the non-
passive nature (i.e. ϕ-dependence) of the forcing in Equation (6a) is important,
and further frequencies are generated nonlinearly, such that the ‘effective forcing’
contains frequencies greater than ΩC , including that of the linearly most-dangerous
mode. Beyond the compact source region, these source-based nonlinearities play no
role, except that they provide a broad spectrum of frequencies that are subsequently
excited in the wave dynamics. The nonlinearities that do eventually matter for the
interfacial waves are provided by the ‘natural’ evolution of the waves first of all in
spatio-temporal linear theory and then in weakly nonlinear theory.

We shall compare and contrast results obtained with this approach not only
to linear theory, but also to results of the nonlinear simulations subject to periodic
boundary conditions in the x-direction (i.e., periodic conditions for velocity, whereas
the periodic conditions for the pressure are such that a constant pressure drop over
the unit cell is prescribed). In these periodic cases, the system is perturbed through
the initial condition for the interface location; the initial conditions involve forcing
spanwise modes (with a tiny contribution from streamwise modes):

η(x, y, t = 0) = h0 +
1
9
A0

3∑
n=1

3∑
m=1

cos (α0nx+ β0my + φnm)

+ 1
9
ϵA

3∑
n=1

3∑
m=1

[
cos (nα0x+ φnm) + cos (mβ0y + φnm)

− cos (2α0nx+ β0ny + φnm)− cos (α0nx+ 2β0ny + φnm)

]
, (7a)

or forcing of both streamwise and spanwise modes:

η(x, y, t = 0) = h0 +
1
12
A0

3∑
n=1

3∑
m=0

cos (α0nx+ β0my + φnm)

+ 1
12
ϵA

3∑
n=1

3∑
m=0

[
cos (nα0x+ φnm) + cos (mβ0y + φnm)

− cos (2α0nx+ β0ny + φnm)− cos (α0nx+ 2β0ny + φnm)

]
(7b)

(note the different limits on the summation index m). Here, A0 is some amplitude,
φij ∈ [0, 2π) is a randomly-selected phase, and ϵA = (2.23× 10−5)A0 is a small
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Figure 1: Validation of DNS against separate semi-analytical Orr–Sommerfeld de-
scription.

parameter. Also, α0 = 2π/Lx and β0 = 2π/Ly are the fundamental wavenumbers in
the streamwise and spanwise directions respectively. These protocols will be exam-
ined to see to what extent the three-dimensionality of the evolving waves depends
on the initial conditions. Obviously, the initial conditions in Equation (7a) promote
growth in the spanwise direction compared to the streamwise direction, while the ini-
tial conditions in Equation (7b) show no preference for either streamwise or spanwise
waves. The development of qualitatively similar three-dimensional large-amplitude
wave structures in both sets of initial conditions would be a strong indicator that
such three-dimensionality is inherent in the system, rather than being a byproduct
of some carefully-selected initial conditions.
Unless indication is given to the contrary, a grid spacing ∆z = 1/160 is used
throughout this work. This choice is checked on a case-by-case basis using the
following tests: first, with ∆z = 1/160, the full DNS solver reproduces the results of
quasi-analytical Orr–Sommerfeld theory (e.g. Section 2.4). Also, the key nonlinear
features (large-amplitude waves, wave overturning, ligaments) are virtually identi-
cal for ∆z = 1/160, 1/225. Finally, the timestep is chosen such that the advective
CFL number based on the maximum base-state velocity U0(z) is at most 0.2. For
the small surface-tension parameters considered throughout this work, timesteps
that satisfy the advective CFL criterion automatically satisfy the capillary-wave
CFL condition. Note also: although not all the momentum terms are treated in a
Crank–Nicolson way (see Equation (5)), for the parameters under consideration, the
numerical stability of the code was not affected by the diffusive contributions in the
momentum equation.

2.4 Validation of nonlinear DNS code against linear theory

The code has been rigorously validated with respect to the two-dimensional Orr–
Sommerfeld quasi-analytic theory. We have computed the DNS values of the growth
rate and wave speed of the most-dangerous temporal mode for the parameter values

(Re, r,m,S) = (100, 1, 30, 0.01), h0 = 0.3; (8)

good agreement is obtained with respect to the eigenvalue analysis (Figure 1). The
parameters Re, m, and S are varied throughout the work, but the density ratio
is maintained at r = 1 and the film thickness is maintained at h0 = 0.3. The
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Figure 2: (a) Space-time plot of the norm n(x, t) for the parameters in Equation (8);
(b) Comparison between spatio-temporal Orr–Sommerfeld analysis and the DNS
at the pulse maximum; (c) Comparison between spatio-temporal Orr–Sommerfeld
analysis and the DNS at the source of the disturbance.

parameter ranges studied are motivated by the work’s intended application, namely
the modelling of viscous soil removal in plants during cleaning and product turnover
operations (Valluri et al., 2010). Here, ∆z = 1/160 is sufficient for the simulations
to have converged, with the convergence criteria as described above in Section 2.3.
Also, for Equation (8), ∆t = 10−4 is sufficient for the advective CFL condition
described in Section 2.3 to be satisfied.

As a further test, we examined the inlet/outlet version of the code, with Neumann
boundary condition ϕx(x = 0) = ϕx(x = Lx) = 0, subject to an impulsive force
(varying only in x; no y-dependence) applied at very early time, centred at x = Lx/3.
We expect standard spatio-temporal Orr–Sommerfeld analysis (Ó Náraigh et al.,
2013) to apply to the present case. Thus, we predict that a two-dimensional pulse
should form as a result of the imposed initial condition, whose maximum should
grow at the same rate as the temporally most-dangerous mode. Moreover, the same
Orr–Sommerfeld analysis demonstrates that the flow parameters (8) should produce
absolute instability, in other words, disturbances grow at the location of the initial
impulse, in addition to being convected downstream by the same impulse (Huerre
& Monkewitz, 1990; Ó Náraigh et al., 2013). It is therefore also expected that the
disturbance should grow at the source, with a growth rate given by the value of
the Orr–Sommerfeld frequency Ω(α) evaluated at the saddle point in the complex
α-plane. A spacetime plot of the pulse norm

n(x, t) =

(∫ 1

0

|w(x, z, t)|2dz
)1/2

is therefore shown in Figure 2(a) (w represents the perturbation velocity in the
wall-normal direction, see Appendix A). Information from this plot is extracted in
Figure 2(b), where the pulse maximum is followed. The pulse maximum grows at
the same rate as the temporally most-dangerous mode as computed by the Orr–
Sommerfeld analysis. Furthermore, the instability grows at the source (absolute
instability), and the numerical growth rate is in agreement with the theoretical
growth rate computed from the saddle-point of the complex Orr–Sommerfeld eigen-
value analysis. The measured period in Figure 2(c) is 0.9±0.1. The apparent period
is only half this amount, because absolute values are taken in plotting n(x, t), rather
than a signed velocity. The theoretical value of the period is 2π/7.095 = 0.8856.
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Figure 3: Modal growth rates obtained directly from solving the Orr–Sommerfeld–
Squire problem. Here, (m,Re,S) = (30, 100, 0.01).

Thus, the numerical period and the theoretical periods (equivalently wave speeds)
agree. The growth rates are also in agreement. A final test involves the study
of a parameter class that is convectively unstable. Specifically, we repeated these
DNS calculations with Re = 40 (the other parameters in Equation (8) remain-
ing the same). Standard spatio-temporal Orr–Sommerfeld analysis indicates that
this parameter class is convectively unstable. This is confirmed by the DNS (not
shown): the norm n(x, t) decays at the source location, while the growing distur-
bance is convected downstream; and grows at a rate corresponding to the temporally
most-dangerous mode computed from Orr–Sommerfeld analysis. Further tests con-
cerning the full Orr–Sommerfeld–Squire analysis (not shown here, but demonstrated
throughout the paper) demonstrate that numerical method also captures the three-
dimensional modes.

3 Modal linear growth

We use the approach based on linear theory outlined in Section 2.2 to study the
initial growth of small-amplitude waves, outlining several features of the dispersion
relation for future reference. The calculations are carried out for the parameter val-
ues m = 30, with various values of S and Re. Figure 3 shows the Orr–Sommerfeld–
Squire growth rates for the parameter set (m,Re,S) = (30, 100, 0.01). A large
range of modes is unstable. The most-dangerous modes are streamwise, and the α-
dispersion relation in Figure 3(b) is ‘flat’, such that a band of unstable wavenumbers
with very similar growth rates is excited. Upon increasing the surface tension but
leaving the other parameters the same, similar features pertain (Figure 4). Here,
however, the spanwise growth rates are much smaller than the streamwise ones, and
the range of excited modes is narrower. Note also that the α-dispersion relation is
flatter than before. Consideration is also given to a situation wherein a very narrow
range of modes is excited ((m,Re,S) = (30, 300, 0.3), Figure 5). The dispersion
relation (Figure 5(b)) now possesses a sharp peak at α ≈ 4.2, such that a single
mode will feature prominently in the evolution of the interface. Also, in spite of the
larger Reynolds number than before, three-dimensional waves are more stable in this
situation, and only a narrow range of spanwise waves are unstable. These disper-
sion relations will be used subsequently to explain the linear and weakly nonlinear
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Figure 4: The same as Figure 3, but with (m,Re,S) = (30, 100, 0.1).
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Figure 5: The same as Figure 3, but with (m,Re,S) = (30, 300, 0.3).

evolution of the interfacial waves in the full DNS.

4 Linear and nonlinear waves in periodic simulations

We begin the presentation of results obtained with direct numerical simulations of
cases wherein streamwise-periodic boundary conditions are used. Although these
boundary conditions do not reflect the behaviour of a real system, it is appropriate
to consider such simulations, for a number of compelling reasons: first, these simu-
lations comprise a ‘clean’ database, wherein only a small number of modes is active
initially, and wherein issues surrounding spatio-temporal growth do not enter, such
that the growth of waves can be investigated unambiguously in the framework of
linear theory. Also, although a Fourier transform may be taken in a non-periodic
domain, the results there are ambiguous because of boundary effects, and such a
decomposition is more appropriate in a periodic system. A brief summary of the
most important simulations performed is given in Table 1; further detail is presented
below in the text.

4.1 Subcritical route to three-dimensional waves

Consideration is first given to the simulation P3, involving the parameter set (m,Re,S) =
(30, 300, 0.3). The Orr–Sommerfeld–Squire analysis in Section 3 indicates that this
parameter set produces instability, with large temporal growth rates for streamwise
waves, and no temporal growth for waves with spanwise components. The same
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Case Parameters Geometric Parameters Figure

P1 A0 = 0.002, S = 0.01, Re = 100,
ICs: Equation (7a)

(Lx, Ly, Lz) = (2, 1, 1) Figure 7

P2 A0 = 0.002, S = 0.01, Re = 100,
ICs: Equation (7b)

(Lx, Ly, Lz) = (2, 1, 1) Figure 8

P3 A0 = 0.02, S = 0.3, Re = 300,
ICs: Equation (7a)

(Lx, Ly, Lz) =
(1.58, 1, 1)

P4 A0 = 0.02, S = 0.1, Re = 100,
ICs: Equation (7a)

(Lx, Ly, Lz) = (2, 1, 1)

Table 1: Summary of the main periodic simulations, with m = 30.
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Figure 6: Interfacial spectra for the case P3. (a) Streamwise modes. (b) Spanwise
modes, with β = 2π/Ly. Both figures show the action of weakly nonlinear mecha-
nisms. In particular in (b) the growth of the purely spanwise mode with α = 0 is
shown.

quasi-analytical theory predicts that for the geometry prescribed in the P3 simula-
tion, only one unstable mode should be present, with α = 3.97 and Ωi = 10.85.

The inception of the three-dimensional wave structures in the DNS takes place at
early times, when the wave amplitudes are small. To understand this genesis, spectra
of the interface height were taken at different times. The spectrum is computed with
respect to the interface η(x, y, t), defined as follows:

η(x, y, t) = min
i
Z(x, y, t), Z(x, y, t) = {zi|ϕ(x, y, zi, t) = 0, i = 1, 2, · · · }. (9)

For small-amplitude waves, i = 1 only, corresponding to a situation wherein there
are no overturning waves, droplets, or ligaments. For i > 1, the interfacial spectrum
loses any definite meaning, and spectral data in this regime are not discussed further.
The results of the spectral analysis are shown in Figure 6. Figure 6(a) shows a time
series of the streamwise modes only. The mode α = 3.96 grows exponentially fast,
at a rate given by OSS theory. As further predicted by the same theory, the other
modes do not grow initially. However, as time goes by, the other modes undergo
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exponential growth, in a manner that is perfectly consistent with weakly nonlinear
theory (Barthelet et al., 1995): the nth multiple of the fundamental wavenumber α =
α0 = 3.97 grows at a rate nΩi(α0). This agreement is particularly appropriate, as the
parameters in the case P3 are such that only one mode is initially linearly unstable,
such that other modes (overtones) become ‘enslaved’ to the single dominant mode
and grow exponentially at integer multiples of the growth rate of the fundamental.

Consideration is also given to spanwise modes with β = β0 := 2π/Ly (Fig-
ure 6(b)), wherein an interesting feature arises: the purely spanwise mode (α = 0, β0)
that is stable in normal-mode linear theory grows exponentially at the same rate as
the streamwise most-dangerous mode (α = 3.96, β = 0). It is as if the purely span-
wise mode is slaved to the most-dangerous streamwise mode. Further streamwise
modes at (α ̸= 0, β0) are also excited nonlinearly, but their amplitude remains small
compared to the exponentially-growing mode until close to the wave turnover time.
Thus, in a first approximation, the purely spanwise mode (i.e. (α ̸= 0, β0)) can be
viewed as behaving nonlinearly, while all other relevant modes behave according to
linear theory. This additional enslavement of the purely spanwise mode is explained
in generic terms without resort to a full resolution of the amplitude equations in a
weakly nonlinear analysis. The interface is decomposed into its constituent Fourier
modes:

η(x⊥, t) =
∑
p

Ap(t)e
ip·x⊥ , x⊥ = (x, y),

p := (α, β) =

(
2πpx
Lx

,
2πpy
Ly

)
, px, py ∈ Z. (10a)

Generically, the equations for the amplitudes Ap can be written as follows:

dAp

dt
= λpAp +

∑
q

M(q,p)AqAp−q +
∑
q

∑
r

N (q, r,p)AqArAp−q−r, (10b)

where we have truncated the expression at cubic order in the amplitudes. We
focus on the mode p = (0, β0). We examine mode combinations (p,p − q) and
(q, r,p − q − r) corresponding to amplitudes that do not decay rapidly in linear
theory. For this reason, wavenumbers with |β| = 2β0 and higher are neglected on
the right-hand side of Equation (10b), since it is known from linear theory and from
spectral analysis of the full DNS that the full (α, β) spectrum decays rapidly as |β|
moves away from zero. Under these restrictions, only quadratic contributions play
a role for the case p = (0, β0). Also, only the modes q = (±α0, 0) and q = (±α0, β0)
enter into the interaction term (here α0 := 2π/Lx). This results in the following
reduced amplitude equation:

dAp

dt
= λpAp +M[p, (α0, 0)]A(α0,0)A(−α0,β0) +M[p, (α0, β0)]A(−α0,0)A(α0,β0)

+M[p, (−α0, β0)]A(α0,0)A(−α0,β0) +M[p, (−α0, 0)]A(−α0,0)A(α0,β0). (10c)

Typically, Equation (10c) is supplemented with a set of equations for other relevant
amplitudes which together form a finite set of interacting modes, leading to a closed
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system of nonlinear amplitude equations (Schmid & Henningson, 2001). However,
here the argument is continued in a more heuristic way as follows. Given the evi-
dence in Figure 6(a)–(b), in a first approximation, over the time interval of interest,
where the amplitude A0,β0 grows significantly, the modes (±α0, 0) can be treated
as growing according to linear theory, while the modes (±α0, β0) can be treated as
merely oscillatory, having no growth. Also, Aα0,0 = A−α0,0, since η(x⊥, t) is real.
Equation (10c) can be simplified further by ‘bundling up’ the oscillatory functions
as follows:

dAp

dt
= λpAp + C(t)eΩi(α0,0)t (10d)

where C(t) is a bounded linear combination of sinusoidal oscillatory functions.
Equation (10d) is a standard linear first-order ODE, whose asymptotic solution
is Ap ∝ eΩi(α0,0)t, in other words, the purely spanwise mode p = (0, β0) is slaved to
the most-dangerous streamwise mode.

4.2 Supercritical route to three-dimensional waves – linear
regime

We also consider parameter sets far from criticality. We start by examining the
parameters in Equation (8), recalled here as (Re,m,S) = (100, 30, 0.01). For these
parameters, under linear theory, two-dimensional and three-dimensional waves are
strongly amplified, with growth rates that are comparable in magnitude (e.g. Fig-
ure 3); in particular,

Ωi(α = 9.42, β = 0)

Ωi(α = 9.42, β = 2π/Ly)
=

1.832

1.364
≈ 1.343,

from the same Orr–Sommerfeld–Squire analysis. Before examining the interfacial
spectra in detail, some qualitative observations are made about the interfacial evolu-
tion in general. Snapshots of the interface configuration for cases using Equation (7a)
(P1) and (7b) (P2) as periodic initial conditions are presented in Figures 7 and 8,
respectively. Recall that the different initial conditions are given by Equation (7).
After an initial regime of wave growth, wave overturning takes place, and large

three-dimensional structures form. By comparing Figures 7 and 8, it is clear that
the same nonlinear features appear in both simulations, regardless of the relative
strength of the streamwise compared to the spanwise modes in the initial condition,
albeit that for the case P1, the nonlinear waves possess less symmetry in the span-
wise direction. This confirms the hypothesis that three-dimensional structures are
intrinsic to the system, and are not a mere byproduct of a contrived selection of the
initial data.

We have investigated briefly the physical mechanism that governs early-stage
small-amplitude wave growth. By analysing the tangential-stress distribution at the
interface, we have confirmed that the results from the DNS support the standard
conclusion from linear theory that the instability is precipitated by a mismatch in
the viscosity across the interface (e.g. Yih (1967); Boomkamp & Miesen (1996)).

Figure 9 shows time series of interfacial spectra. It is clear from this figure that
the streamwise and spanwise waves that develop on the interface in the snapshots
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(a) t = 1.0 (b) t = 2.0 (c) t = 3.0

(d) t = 4.0 (e) t = 5.0 (f) t = 6.0

Figure 7: DNS solution for case P1 (S = 0.01, A0 = 0.002, and initial conditions
given by Equation (7a)). Snapshots of the interface profile at various times, coloured
by wave elevation from black (z = 0.25) to white (z = 0.4).

(a) t = 1.5 (b) t = 2.5 (c) t = 3.0

(d) t = 3.5 (e) t = 3.8 (f) t = 4.0

Figure 8: DNS solution for case P2 (S = 0.01, A0 = 0.002, and initial conditions
given by Equation (7b)). Snapshots of the interface profile at various times, coloured
by wave elevation from black (z = 0.25) to white (z = 0.55).
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(c) P2, streamwise modes
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(d) P2, spanwise modes

Figure 9: Interfacial spectra for the cases P1 and P2. (a), (b) P1, with spanwise-
dominant forcing; (c), (d) P2, with an equal mixture of spanwise and streamwise
modes. Here (Re,m,S) = (100, 30, 0.01), and A0 = 0.002. The downwards-pointing
kinks coincide with wave overturning.

in Figures 7–8 arise directly from linear theory: the streamwise and spanwise ‘long’
waves with α = 3.14, 6.28, 9.42 in Figure 9 enjoy a period of exponential growth at
a rate given by Orr–Sommerfeld–Squire theory (shorter waves exhibit weak nonlin-
earity and are discussed briefly below Section 4.3). A further comparison between
the interfacial snapshots and the spectral plots in Figure 9 indicates that the inter-
facial waves grow according to linear theory until close to the point of overturning.
This is similar to the behaviour observed in prior studies for related two-dimensional
flows (Valluri et al., 2007, 2010). From the interfacial snapshots, the overturning
time is t = 4.0 in Figure 7 and t = 3.0 in Figure 8. (The overturning is retarded in
Figure 7 because of the suppression of the most-dangerous spanwise modes in the
initial conditions in Equation (7a) compared to Equation (7b)). Also, in Figure 9,
‘kinks’ in the time series of the spectral amplitudes signal wave overturning, and
roughly coincide with the end of the regime of exponential growth in the amplitudes
(i.e. the end of the regime of linearized dynamics).

The fact that linear theory applies to the DNS in Figure 9 even at late times,
up to the onset of wave overturning, can be used to explain further the origin of
and lead-up to the wave coalescence in Figures 7 and 8. In particular, three wave
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Figure 10: Snapshots of the interfacial spectra (streamwise modes) for the case P2.
(a) Linear regime; (b) weakly non-linear regime.

crests are visible in Figure 8 at t = 3.0. The distance between the two leftmost
wave crests decreases over time; by the time overturning takes place at t = 3.8, the
two wave crests are coincident, and this leads to a complicated nonlinear interaction
whereby the topmost overturned wave undergoes elongation and ligament formation.
The lead-up to this coalescence-type event is readily explained by linear theory: in
Figures 3–4, the dispersion curve for the two cases S = 0.01, 0.1 are extremely flat,
such that the amplification of the most-dangerous mode is comparable in magnitude
to that of neighbouring modes in Fourier space. Thus, a band of waves is selected
by the instability, each of which has a distinct phase velocity, thereby creating a
situation wherein the waves ‘race’ each other. Clearly, in a linear regime, such racing
waves will merely pass through one another. However, in Figure 8 the merging of
the waves under the linear ‘racing’ phenomenon coincides with wave overturning,
such that the two overturned waves become ‘locked in’ to one another, leading to
the complicated structures seen in Figure 8(e)–(f).

4.3 Supercritical route to three-dimensional waves – non-
linear regime

Consideration is also given to snapshots of the interface spectra, at various times,
focusing on streamwise modes (Figure 10). Our purpose here is to investigate the
weakly nonlinear regime of the wave evolution - no matter how brief this may be.
For, although Figure 10(a) and earlier figures (e.g. Figures 7–9) demonstrate that
the results of linear theory pertain for long waves up until near the point of wave
overturning, such overturning necessarily has its origin in the presence of the nonlin-
ear terms in the full Navier–Stokes equations. Also, it is of inters to understand the
discrepancy in Figure 9, wherein the relatively short wave at α = 12.56 grows at a
faster rate than that predicted by linear theory. Thus, in Figure 10, snapshots of the
streamwise modal spectra at relatively late times (i.e. just prior to overturning) are
examined. The most salient finding is that the simplified weakly non-linear theory
in the work by Barthelet et al. (1995) do not pertain: not only overtones of the
linearly most-dangerous mode, but also other combinations are present. This is eas-
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ily explained however by the fact that the parameter regime under investigation is
far beyond criticality. Indeed, the most prominent wave to be excited in the weakly
non-linear regime is at α = 15.70 , which suggests a three-wave interaction involving
the linearly-excited modes at α = 6.28 and α = 9.42. The second most-prominent
wave to be excited in the non-linear regime is indeed an overtone of the linearly
most-dangerous mode at α = 9.42, which contributes to the steepening of said wave
in real space.
Thus, the relatively short waves in the simulation are amplified at rates above those
implied by linear theory. This fact can also be used to explain why the relatively
short wave at α = 12.56 does not obey linear theory, whereas longer waves (α =
3.14, 6.28, 9.42) do. Finally, in real space, the nonlinear wave combinations do not
saturate, but rather overturn, and a combination of spanwise growing waves with an
overturning streamwise wave produces the ligaments seen in Figure 8. From these
findings for a system far from criticality, it is concluded that linear theory plays a
large role in determining the final three-dimensional wave structures that appear
in the system. In particular, it is demonstrated that three-dimensional waves that
initially grow exponentially are further amplified at late times, and develop finally
into nonlinear three-dimensional ligaments. The mechanism for the creation of this
final state is described in detail in a later section (Section 6), where we demonstrate
that its origin is kinematic rather than dynamic, and arises because the persistent
spanwise waves undergo distortion and stretching under the action of the mean flow.

Consideration is also given to the robustness of the weakly nonlinear theory for
spanwise modes developed in Section 4.1 (e.g. Equations (10)). Although the dis-
cussion in Equations (10) takes place in the context of a simulation wherein only a
single streamwise mode is linearly unstable, the derivation of Equation (10d) will
carry over in an approximate sense to the cases P1,P2, and P4, due to the following
chain of arguments. For, only a number of unstable modes fit inside the periodic
channels. In the simulations P1–P2 and P4, the dispersion relations are ‘flat’, mean-
ing that all unstable modes have a growth rate comparable to the most-dangerous
modal growth rate. The spanwise (linearly stable) mode will therefore ‘see’ the
streamwise modes as a single unstable mode, and under the coupling described in
Equation (10), will be amplified at (close to) the maximal rate. By examining rele-
vant spectra (Figure 11(a)), we have confirmed that this is indeed the case: in the
simulations P1–P2 considered earlier, after some transience, the purely spanwise
mode (0, 2π/Ly) does indeed grow at the same rate as the most-dangerous (stream-
wise) mode. However, given the long transient time before such weakly nonlinear
interactions enter, the simulation is utterly dominated by the modes that are linearly
unstable. This reflects the strong supercriticality of this parameter set. A further
simulation (P4) is intermediate between (P1,P2) and P3: both the direct mechanism
and the weakly nonlinear mechanism play a role in producing the three-dimensional
waves (Figure 11(b,c)).

5 Linear and nonlinear waves in open flows

We perform fully nonlinear simulations for long open channels, with Lx between 3.16
and 8.0. The aim is to investigate whether the findings obtained for wave growth in

19



Three-dimensional laminar two-layer liquid/liquid flows

0 1 2 3
10

−2

10
0

10
2

10
4

t

|h
αβ

|,β
=

2π
/L

y

 

 α=0

α=3.14

α=6.28

α=9.42

OSS, α=9.42, β=0

OSS, α=9.42, β=2π/L
y

(a) P1 revisited, spanwise
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(b) P4, streamwise
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(c) P4, spanwise

Figure 11: Interfacial spectra for the cases P1, P4. (a) Case P1 revisited, streamwise
modes. (b) Streamwise modes, P4 (c) Spanwise modes, P4, with β = 2π/Ly.
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(a) t = 3.0 (b) t = 4.0 (c) t = 4.5 (d) t = 4.8

(e) t = 1.5 (f) t = 2.5 (g) t = 3.0 (h) t = 3.7

Figure 12: Effect of forcing amplitude on nonlinear channel flow DNS: top row, case
CH1 (A0 = 10); lower row, CH4 (A0 = 100). Snapshots of the interface profile at
various times.

periodic domains carry over to open flows. In contrast to periodic cases, the forcing
is localized in space, but continuous in time (Equation (6)). The simulations are
summarized in Table 2 and 3 and are reported below in the text in more detail.

A parametric study of the effect of the forcing amplitude A0 on the interface
evolution is conducted, the results of which are summarized in Table 2 (CH1–CH4).
Further simulations on a wider domain are also considered (CH5 , Table 3). The
simulations have been carried out over a long period of time tmax = 5. Snapshots of
the interface shape for CH1 (A0 = 10) are shown in Figure 12 (upper row), which are
compared with CH4 (A0 = 100) in the lower row. The case CH4 can be compared
directly with Figure 13, where a wider domain was used with the same forcing pa-
rameters; in the latter, a somewhat more three-dimensional flow is observed, but the
main flow behaviour is similar. From the results shown in Figure 12 it is concluded
that the strength of the forcing has only a limited effect on the subsequent liga-
ment formation: the remaining trend is that the transverse disturbances are more
pronounced when the forcing amplitude is larger. Furthermore, comparison with
results for the periodic system in Figures 7-8 shows these to be qualitatively similar,
indicating that the physical mechanisms that drive the development towards liga-
ment formation persist under changes in the forcing mechanisms. Finally, the main
strong nonlinear flow behaviour in the CH5 simulation is illustrated in Figure 13(e),
where the interface exhibits ‘sheet’-like ligaments downstream at a late stage. This
behaviour is examined further with respect to other simulations, corresponding to
different values of Re and S.

A simulation with stronger surface tension has also been conducted (CH6, Ta-
ble 3). Snapshots of the interface at various times are presented in Figure 14. In
contrast to the simulations CH1-CH5 where the overturned waves formed ‘sheets’,
the late-time evolution of CH6 exhibits a highly-elongated ligament, attached to an
otherwise more-or-less two-dimensional structure. However, the contrasts between
CH5 and CH6 are largely superficial: not only do the three-dimensional waves and
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Case Parameters Description Figure

CH1 A0 = 10 Wave formation at the forcing location. The initial
waves are strongly two-dimensional. As the disturbances
propagate downstream, three-dimensional waves form
(wavelength 2π/Ly).

Figure 12
(a)-(d)

CH2 A0 = 20 The same as CH1
CH3 A0 = 50 The same as CH1
CH4 A0 = 100 Similar to CH1: Wave formation at the forcing location.

The initial waves are largely two-dimensional, with small
components in the spanwise direction. The waves grow
and become more two dimensional as they are carried
downstream. However, the three-dimensionality is not
quenched: in fact, at late times, it is enhanced as in the
CH1 case, thereby leading to a variety of structures with
spanwise wavelengths Ly and shorter.

Figure 12
(e)-(h)

Table 2: Parametric study showing the effects of varying the forcing amplitude.
Fluid parameters: (Re,m,S) = (100, 30, 0.01). Geometric parameters: Simulations
CH1-4 (Lx, Ly, Lz) = (3.16, 0.5, 1).

Case Parameters Description Figure

CH5 A0 = 100,
S = 0.01

Similar to CH5, but with (Lx, Ly, Lz) = (3.16, 1, 1) and
a correspondingly more three-dimensional flow.

Figure 13

CH6 A0 = 300,
S = 0.1

Long channel, with (Lx, Ly, Lz) = (8.0, 1, 1). Strongly
two-dimensional wave evolution, with three-dimensional
disturbances developing along wave crests. The dis-
turbances form into elongated ligament structures (‘fin-
gers’).

Figure 14

Table 3: Parametric study showing the effects of varying the surface tension. Other
parameters: (Re,m) = (100, 30).
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(a) t = 0.1 (b) t = 0.9 (c) t = 1.6

(d) t = 2.2 (e) t = 2.9

Figure 13: DNS for high-surface-tension case CH5 – snapshots of interfacial config-
uration at various times.

(a) t = 1.5 (b) t = 2.5 (c) t = 3 (d) t = 3.5

(e) t = 4 (f) t = 4.5 (g) t = 5 (h) t = 5.5

Figure 14: DNS for high-surface-tension case CH6 – snapshots of interfacial config-
uration at various times.
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subsequent sheet/ligament formation owe their origin to the same linear and weakly
nonlinear theories but in addition, careful consideration of further distinct param-
eter values (specifically, CH7, see Section 6) demonstrates that the two distinct
phenomena can co-exist. Finally, for open flows, comparisons with linear theory
are best presented not through spectra, but rather through an examination of the
spacetime evolution of the maximum interfacial curvature (for similar ideas in two
dimensions, see the work by Valluri et al. (2010)). This is done in the next section.

6 Ligament formation and dynamics/kinematics

Having characterized the three-dimensional waves in the linear and weakly non-linear
regimes, it is of interest further to characterize the spatio-temporal development of
ligaments as they move downstream, and also their precise physical origin.

6.1 The spatio-temporal development of ligaments

The ligament formation in the two-dimensional simulations in the work by Valluri
et al. (2010) occurs with a remarkable regularity. In the linearly absolutely unstable
regime, the dominant frequency in spectra taken from the interface height was close
to the saddle-point frequency; a broader spectrum was obtained in a convectively
unstable case. The results presented in this paper can in fact be integrated into this
two-dimensional picture, since the formation of three-dimensional structures (waves,
ligaments) is due initially to a rapidly-growing (linearized) two-dimensional wave,
which subsequently excites three-dimensional nonlinear disturbances. The aim of
this section is to obtain a diagnostic tool appropriate for three dimensions analogous
to the spacetime plots of wave elevation in the work by Valluri et al. (2010). This
tool should enable the observation of the co-creation of two-dimensional waves and
three-dimensional structures, and provide a means of measuring the frequency with
which these structures are created.

For these reasons, we track back the origin of the ligaments via the total inter-
facial curvature κx(x, t), defined here as

κx(x, t) = max
y,z

(∇ · n̂) . (11)

This quantity is plotted in respect of simulations CH5 and CH6 (Table 3). A further
parameter case is also examined, wherein (Re,m,S) = (300, 30, 0.3), with forcing
amplitude A0 = 300 and geometric parameters (Lx, Ly, Lz) = (8.16, 1, 1). This
simulation is referred to as CH7. The results are plotted in the (x, t) plane in
Figure 15. We have also examined a further curvature-related quantity, namely
maxy,z ∇2 · (∇2ϕ/|∇2ϕ|), where ∇2 = (∂y, ∂z) denotes the gradient operator re-
stricted to the (y, z)-plane. A spacetime plot based on this further curvature-related
quantity yields a nearly-identical picture (not shown). For all three plots in Fig-
ure 15, the narrow strips in spacetime where the curvature initially develops a large
magnitude can be related to the formation of interfacial waves, as is readily verified
by comparison with the interfacial snapshots, either in Figure 13 for CH5, or Fig-
ure 14 for CH6. These narrow strips broaden into much wider regions of spacetime
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(a) (b)

(c)

Figure 15: The maximum curvature in (y, z) planes versus (x, t) for Cases CH5 (a),
CH6 (b), and CH7 (c).
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where the curvature attains an even larger magnitude. These regions are similarly
associated with with ligaments.

The snapshots in Figure 15 also highlight the regularity with which wave/ligament
structures occur in all three parameter cases. These clearly defined frequencies in
turn provide a very clear framework in which to connect the development of the inter-
facial waves to linear stability analysis. Reference is made here to two-dimensional
standard linear theories for spatially localized continuous-in-time forcing (the use
of two-dimensional theories has already been justified at the start of this section).
These theories predict two kinds of system response (Huerre & Monkewitz, 1990;
Huerre, 2000; Otto et al., 2013), determined by the solution of a linearized equation
for the streamfunction ψ(x, t), with localized continuous-in-time forcing δ(x)e−iΩf t:

ψ(x, t) =
e−iΩf t

2π

∫ ∞

−∞

eiαx

D(α,Ωf )
dα +

1

2π

∫ ∞

−∞

eiαx−Ω(α)t

[Ω(α)− Ωf ]
∂D
∂Ω

∣∣
(α,Ω(α))

dα, (12)

where D(Ω, α) denotes the dispersion relation obtained from the unforced normal-
mode eigenvalue problem for the streamfunction ψ(x, t). The two kinds of response
are obtained by performing the integrals in Equation (12): the first integral is per-
formed using the theory of residues and the second one is carried out using the
saddle-point method (Huerre, 2000). The result is

ψ(x, t) ∼ iH(x)
ei[α

+(Ωf )x−Ωf t]

∂D
∂Ω

∣∣
(α+(Ωf ),Ωf )

− iH(−x) e
i[α−(Ωf )x−Ωf t]

∂D
∂Ω

∣∣
(α−(Ωf ),Ωf )

+

√
2

π
e−iπ/4

(
t
d2Ω

dα2

∣∣∣∣
α0

)−1/2
ei[α0x−Ω(α0)t]

[Ω(α0)− Ωf ]
∂D
∂Ω

∣∣
(α0,Ω(α0))

, t→ ∞, (13)

where α0 denotes the saddle point of Ω in the complex α-plane, and α±(Ωf ) denotes
the spatial growth rates associated with downstream propagation (plus sign) and
upstream propagation (minus sign). In reality, Equation (13) is a rather simplified
picture of the response, and arguments based on the saddle point can be complicated
by the existence of multiple saddle points, non-pinching saddles, and branch cuts in
the function Ω(α) (Ó Náraigh & Spelt, 2013; Juniper, 2006; Healey, 2006). However,
in the cases considered in this paper, Equations (12)–(13) apply. (Of course, this
statement is subject to the reservation that the present system is 3D, but see the start
of this section for the arguments concerning the applicability of the 2D theory to
the present system). Thus, in the absolutely unstable case, for which ℑ[Ω(α0)] > 0,
the last term in Equation (13) dominates, and the response of the system to forcing
is simply to oscillate at a natural frequency selected by the system (i.e. the saddle-
point frequency). Also, the disturbance is amplified in time at a rate given by the
imaginary part of the saddle-point frequency. On the other hand, for convectively
unstable cases with ℑ[Ω(α0)] < 0, the last term in Equation (13) dies out as t→ ∞,
meaning that only the first two terms survive, and the response of the system to
forcing is therefore to act as an amplifier, whereby the system oscillates temporally at
the input forcing frequency while undergoing spatial amplification both downstream
and upstream from the forcing.
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x Ω (DNS) Ωr (OS) C/A (OS) ℜ[Ω(α0)] (OS) Ωf,max (OS)

CH5 1.3 7.5± 0.6 7.09 A 7.08 N/A
CH6 2 5.9± 0.4 5.73 A 6.32 N/A
CH7 4.5 37± 1 32.5 C 38.8 38.3

Table 4: Frequency of ligament generation for three distinct parameter cases, to-
gether with comparisons against spatio-temporal (two-dimensional) OS theory. The
frequency of the most-dangerous temporal mode in Orr–Sommerfeld analysis (Ωr

(OS)) is shown for comparison. For cases CH5-CH6, the spatial growth rate −αi(αr)
admits no maximum away from αr = 0, meaning that it is impossible to compute a
maximum frequency Ωf,max.

One may extend these arguments if a combination of forcing frequencies {Ωf1, · · · ,Ωfn}
is present. For the absolutely unstable case, the conclusion is unchanged, namely
that the dominant frequency in the response is given by the saddle point. For the
convectively unstable case, some further discussion is needed. Using the linearity
of the small-amplitude streamfunction equation, the response in Equations (12)–
(13) will consist of a sum over all forcing frequencies. In the convectively unstable
case, the dominant frequency well downstream (upstream) of the forcing will be that
frequency Ωf,max that maximizes the pertinent spatial growth rate, i.e. Ωf,max corre-
sponds to the most negative spatial wave number in the set {α±

i (Ωf1), · · · , α±
i (Ωfn)}.

This description is confirmed in numerical simulations in the absolutely unstable
case (Valluri et al., 2010). In those simulations, it was not possible to confirm the
theory for the convective case: because the spatial location where the temporal
frequencies were measured was very close to the source of the localized forcing (nec-
essarily so because the large spatial amplification rapidly led to wave overturning),
such that the most-important forcing frequency did not have enough space to be
selected by the spatial amplification arising from the different frequency-dependent
spatial growth rates.

We apply the theory in Equations (12)–(13) by considering the frequency of
ligament formation in the cases CH5–CH7. This was measured by examining a time
series κx(x, t), at a fixed location x. The frequencies were extracted by eye from
Figure 15 and the results were subsequently verified by a full spectral analysis of
κx(x, t) by carrying out Fourier transforms with respect to t at fixed x-locations. The
frequencies reported in Table 4 are obtained by the spectral analysis and the error
bound in the measured frequency is half the sampling frequency. The results are
shown in Table 4. The results are consistent with the theory in Equations (12)–(13).
For absolutely unstable parameter sets, the frequency of wave/ligament generation
is governed by the saddle-point frequency. For the convectively unstable parameter
set, the various theoretical frequencies are rather close, making any firm conclusion
difficult, although the DNS result for the generation frequency is the closest to the
forcing frequency that maximizes the spatial growth. This description of the co-
evolution of waves and ligaments is further strengthened in the following section,
where the mechanism for the ligament formation is examined, with due regard to
the life cycle of the ligament, from its genesis in linear waves, to its ultimate fate as
it is stretched and distorted by the background flow.
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Figure 16: Ligament length versus time (a) and position of the top of the ligament
tip relative to the interface above the foot (b) for various cases as indicated. In CH5
and m = 60, the ligaments are mostly thin sheets, whereas that traced in CH6 is a
highly elongated thread. For Re = 300, two ligaments have been traced: one being
thread-like (labelled Re300L1), the other tongue-like (labelled Re300L2). The data
are shown up to the point of tearing or breakup.

6.2 Ligament kinematics

Of the late-time behaviour ligaments we first study the distance between tip and
foot of ligaments in Figure 16(a). The timescale of growth is more or less the same
in all cases (including varying the surface tension parameter S and the viscosity
ratio m), with the notable exception of cases wherein the Reynolds number, Re,
is varied. The fact that an increase in the value of S by an order of magnitude
hardly affects the ligament length as a function of time is incompatible with the
governing physical mechanism being the work done by tangential shear stress being
converted into surface energy, as in a droplet stretched whilst pinned on a wall in
shear flow (e.g. Ding et al. (2010)). Furthermore, the ligament dynamics argument
of Marmottant & Villermaux (2004) for gas-assisted jets, when modified such that a
rate of change of momentum of a ligament corresponds to the shear stress integrated
over the ligament (rather than normal stress), would lead one to expect a significant
dependency in Figure 16(a) on the value of m, which is not observed.

The results in Figure 16(a) suggest instead that these ligaments are elongated
in a kinematic way, in line with the ‘strong-flow’ regime of droplet stretching in
the work by Cristini et al. (2003). A vector L is advected passively approximately
according to Batchelor (1967) (Chapter 3),

dLi

dt
= Lj

∂ui
∂xj

. (14)

where it is assumed that the vector length is small compared to length scales over
which ∇u varies. We first observe that a unidirectional flow (over a flat interface)
is independent of S, and that the corresponding dimensionless shear rate just above
the interface is hardly affected by the value of m but varies approximately linearly
with the value of Re. The large discrepancy in time scale seen in Figure 16(a) for
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Re = 300 (when compared with the other cases, which are all at Re = 100) can
largely be explained by kinematic elongation of ligaments: after multiplying the
time variable by Re, the velocity of elongation for Re = 300 differs only by a factor
of about two from the other data.

In fact, Equation (14) explains further details of the behaviour of ligaments in
these flows. Two regimes are seen in Figure 16(a): an early-time behaviour, which
further inspection of our data shows to be near-exponential in time, and a near-
linear regime. Although such behaviour was also observed in the two-dimensional
simulations in the work by Valluri et al. (2010), no further analysis was offered
there. In Figure 16(b), it is seen that at early times (up to the end of a near-
exponential time dependency in Figure 16(a)), the relative position of the interface
above the tip moves upwards relative to the interface above the ligament foot (we
have found this to be caused mostly by a downwards motion of the latter, which
would be expected from the foot - initially a large-amplitude wave - is drained to
form part of the ligament). The largest variation in the velocity field is normal to
the interface, and from Equation (14), this component of L is expected to increase
exponentially. Subsequently, this component of L saturates, rendering the right-
hand side of Equation (14) constant, thereby resulting in linear elongation.

7 Transition to interfacial ‘turbulence’

Finally, we consider in more detail some simulation results concerning the simulation
CH7 (Re = 300,S = 0.1). The resolution ∆z = 1/160 is still adequate to reproduce
small-amplitude waves consistent with Orr–Sommerfeld theory, and furthermore, to
produce more complicated grid-independent results at finite amplitudes. However,
the timestep was reduced to 7.5× 10−5, such that the advective CFL number based
on the inlet streamwise velocity is 0.23. Snapshots of the interface are shown at
various times in Figure 17–18. The early-time t > 0.675 results are similar to those
observed before for different parameter values: the disturbances downstream of the
forcing region are largely two-dimensional, with three-dimensional perturbations
superimposed on the crest of large-amplitude two-dimensional waves. These waves
are stretched into sheet-like ligaments reminiscent of those seen in the case CH5
(e.g. the large three-dimensional overturned wave at x ≈ 6, at t = 0.75). As the
ligament is stretched by the mean flow, it ‘rolls up’ and is carried out of the domain.
However, these events are accompanied by a violent collision on the windward side
between the ligament’s carrier wave and a neighbouring ligament just upstream
(e.g. t = 0.9, 0.975). Such collisions continue indefinitely, leading to a complicated
‘turbulent’ interfacial structure near the outlet.

Although irregular flow behaviour is observed in prior work (Valluri et al., 2010;
Fuster et al., 2009), its relation to a weakly-perturbed state is unclear from these
studies. In fact, the transition to a highly-agitated state observed in Figure 18 for a
three-dimensional system appears within a very short distance downstream from the
region where waves are still of small amplitude. The basic description given above
is supported by a further simple kinematic argument. For CH7, the frequency of
ligament generation is five times greater than that of CH5 (see Table 4). In addition,
the ligaments form only well downstream of the localized forcing (see Table 4 and
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(a) t = 0.525 (b) t = 0.675

(c) t = 0.75 (d) t = 0.825

Figure 17: DNS for the CH7 case (Re = 300,S = 0.1) – interface height at various
early times.
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(a) t = 0.9 (b) t = 0.975

(c) t = 1.125 (d) t = 1.35

Figure 18: DNS for the CH7 case (Re = 300,S = 0.1) – interface height at later
times.
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Figure 19: Snapshot of the interface height at t = 1.125, enlarged with respect to
the previous figure to show the co-existence of ligament ‘sheets’ and ‘fingers’.

Figure 17–18). Thus, a large number of ligaments is created very rapidly in a
small part of the domain. In addition, these ligaments are distorted by the mean
flow, wherein the mean shear rate on the gas side is three times larger for CH7
compared to CH5 (the mean shear rate is directly proportional to the Reynolds
number). Consequently, the extreme nonlinear structures in the flow are ‘bunched
up’ and interact to form the extremely complicated structures seen at late times in
Figure 18.

In Section 5 a distinction (albeit superficial) was drawn between the cases CH5
and CH6, based on the magnitude of S and the resulting ligament shapes: in
CH5 (low surface tension), the overturning waves initially formed three-dimensional
‘sheets’, while for CH6, elongated ligaments were observed. For Re = 300, both
structures are observed simultaneously (Figure 19). In certain gas-liquid systems (Mar-
mottant & Villermaux, 2004), elongated liquid sheets (similar to those described
herein) are inflated with gas from the upper layer to produce bag-like shapes that
subsequently break up to produce droplets. This mechanism is typically contrasted
with the scenario wherein finger-like ligaments that extend in the streamwise di-
rection break up into droplets (Azzopardi, 2003; Marmottant & Villermaux, 2004).
However, Figure 19 demonstrates that both phenomena may coexist, since both
‘sheets’ and elongated ‘fingers’ are visible therein. These numerical findings are
consistent with experimental results (Lecoeur et al., 2010), albeit for a a density-
contrasted system.

8 Discussion and conclusions

The initial motivation for the present study was to use fully nonlinear, three-
dimensional numerical simulations to identify which nonlinear mechanism should
dominate beyond the point where linear theory loses validity, and by what mech-
anism droplets are eventually formed, as a necessary basis for a future theoretical
nonlinear studies, given the diversity of types of nonlinear analysis that are avail-
able. The results for initially weakly-perturbed flows have been found to mostly
follow linear theory nearly up to the point of wave overturning. For a case wherein
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spanwise modes are linearly stable, a subsequent nonlinear mechanism for growth
has been identified and modelled theoretically, whereby spanwise modes are enslaved
by the dominant streamwise mode(s). This has also been demonstrated to occur in
a case wherein spanwise modes are linearly unstable, although there the spanwise
modes also eventually interact, to result in more involved nonlinear behaviour.

A further candidate route to three-dimensional instability was mooted in the
introduction, namely secondary instability. In this scenario, the linearly-most-
dangerous streamwise mode would stabilize at large amplitude and thereafter, a
finite-amplitude unidirectional travelling wave superimposed on the base state would
become the ‘new’ base state. This new base state could itself prove unstable to three-
dimensional perturbations. Secondary instability is therefore understood as the for-
mation of secondary waves on a nonlinear but non-overturned wavy base state, and
is exemplified by the kind of Floquet analysis performed by Schmid & Henningson
(2001). However, in the present system, the interfacial waves (both two- and three-
dimensional) turn over and form complicated highly nonlinear structures, rendering
analytic and quasi-analytic Floquet analyses around a wavy nonlinear base state
impossible, and secondary instability is therefore ruled out decisively in the present
context. Linear transient growth (as described in the Introduction) is also ruled
out as a route to three dimensionality, as the linear phase of the observed wave
growth (both two- and three-dimensional) is adequately described by asymptotic
(eigenvalue) linear theory.

Regarding the flow behaviour of waves that have overturned, space-time plots of
the interfacial curvature have revealed regular formation of ligaments, the frequency
of which has been related to linear theory in a manner that hinges upon whether
the system is absolutely or convectively unstable. The results from a parametric
study of the late-time evolution of ligaments and sheets have been demonstrated
to support a purely kinematic explanation of ligament stretching, rather than a
dynamic, force-balance-based one, and to be related to a regime of rapid stretching
of droplets in extensional flow. In a case for an elevated value of the Reynolds
number, a sudden transition to an agitated, strongly chaotic regime has also been
presented. This sudden transition has been discussed in the context of the increased
frequency at which ligaments are formed in that case.

Finally, we comment briefly on some outstanding issues and discuss possible ex-
tensions to the current work. Given our elucidation of the weakly nonlinear mecha-
nism that precipitates three-dimensional waves by coupling a streamwise mode to a
purely spanwise mode for the subcritical case (Section 4.1), a general weakly non-
linear analysis (i.e. a three-dimensional extension of the work by King & McCready
(2000)), would remain a useful way forward to disentangle the precise interaction
terms for the supercritical case (these are not accessible in the present 3D simula-
tions, which merely inform the growth of various modes). That said, the range in
time or space wherein such weakly nonlinear interactions dominate is clearly very
limited, and the frequency at which ligaments appear is still strongly coupled to
linear theory.

The simulations performed so far have involved three-dimensional channels where
the extent of the channel in the spanwise direction is Ly = 0.5, 1, and where the
results were qualitatively similar for both of these geometries. However, one may
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estimate the effect of widening the channel further beyond Ly = 1: in this situation,
a larger number of spanwise modes comes into play in linear theory, some of which
will be more unstable than those present in the current simulations. Thus, in wider
channels, the three-dimensional effects could become more prominent (depending
of course on the choice of parameters). However, this scenario involves a mere
strengthening of one of the routes to three-dimensional waves discussed in the paper
(namely the direct route via spanwise linear instability), and the results in such
a scenario are therefore expected to be qualitatively similar to the ones already
obtained. The indirect weakly nonlinear route depends strongly on a coupling of a
two-dimensional mode to purely spanwise modes, and it is expected that this route
would also be modified only in a qualitative fashion by going over to wider channels.

The density-matched model simulated in this paper has been selected for a
number of reasons. First, it enables one to focus uniquely on interfacial insta-
bilities driven in the linear regime by the viscosity-contrast mechanism (Yih, 1967;
Boomkamp & Miesen, 1996), thereby aiding theoretical understanding of this insta-
bility in a broader context. Also, it was motivated by our initial practical modelling
concern in the removal of viscous soils in plants during cleaning and product turnover
operations (Valluri et al., 2010). However, it will be of compelling interest to extend
this analysis to systems with a density difference, thereby widening unambiguously
both the applicability of the present findings and the scope of the high-performance
computing model developed in this paper.
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A Orr–Sommerfeld and Orr–Sommerfeld Squire equations

We describe here the equations and the numerical method for the 3D modal analysis
that is used directly in Section 2 and that forms the basis for the transient growth
calculations in Section 3. In the base state, the interface is flat (η = 0), the flow
is steady and unidirectional, v = w = 0, u = U0(z), and the pressure is linear,
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p = (dP/dL)x, under a negative dimensionless pressure gradient, dP/dL. The
solution for the laminar velocity profile is then

U0(z) =

{
UB(z) = −Re

2m
z2 + Az, 0 ≤ z ≤ h0,

UT (z) = −Re
2
(z − 1)2 +B (z − 1) , h0 ≤ z ≤ 1

. (15)

The constants A and B are determined from continuity of velocity and shear stress
at the interface:

UB(h0) = UT (h0), mU ′
B(h0) = U ′

T (h0). (16)

As mentioned in Sections 2–3, we study the stability of the system by subjecting the
base state to a small-amplitude three-dimensional perturbation. Each flow variable
is expressed as a sum of the base state and the perturbation:

η = h0 + ϵη0e
i(αx+βy−Ωt), w = ϵw̃(z)ei(αx+βy−Ωt), ωz = ϵω̃z(z)e

i(αx+βy−Ωt),

p =
dP

dL
x+ ϵp̃(z)ei(αx+βy−Ωt). (17)

Here ϵ is the infinitesimally small amplitude of the wave and η0 is its phase (with
|η0| = 1). Substituting Equations (17) into the equations of motion and boundary
conditions, and dropping terms that are nonlinear in the perturbed variables, we
get the following system of governing equations:

iαrRe
[(
w̃′′

B − k2w̃B

)
(UB − c)− w̃BU

′′
B

]
= m

(
w̃′′′′

B − 2k2w̃′′
B + k4w̃B

)
, (18a)

irRe [αω̃zB (UB − c) + βU ′
Bw̃B] = m

(
ω̃′′
zB − k2ω̃z

)
, (18b)

in the bottom phase, with k2 = α2 + β2, and

iαRe
[(
w̃′′

T − k2w̃T

)
(UT − c)− w̃TU

′′
T

]
= w̃′′′′

T − 2k2w̃′′
T + k4w̃T , (18c)

iRe [αω̃zT (UT − c) + βU ′
T w̃T ] = ω̃′′

zT − k2ω̃zT , (18d)

in the top phase. These are supplemented with the following no-slip and no-
penetration boundary conditions:

w̃ = w̃′ = ω̃z = 0 (19)

at the walls z = 0 and z = 1. In addition, matching conditions are prescribed at the
interface z = h0. In the streamwise direction, continuity of velocity and tangential
stress and the jump condition in the normal stress imply the following relations:

w̃B = w̃T , (20a)

w̃′
B + η0U

′
B = w̃′

T + η0U
′
T , η0 = w̃B/(c− UB) = w̃T/(c− UT ), (20b)

m
(
w̃′′

B + k2w̃B

)
= w̃′′

T + k2w̃T , (20c)

iαrRe [w̃B (c− UB) + w̃BU
′
B] +m

(
w̃′′′

B − 3k2w̃B

)
= iαRe [w̃′

T (c− UT ) + w̃TU
′
T ] +

(
w̃′′′

T − 3k2w̃T

)
+ Sk4

[
w̃′

T − w̃′
B

iα (U ′
B − U ′

T )

]
= 0. (20d)
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Finally, the same physical matching conditions applied to the spanwise direction
give rise to the following relations:

ω̃zB + iβU ′
Bη0 = ω̃zT + iβU ′

Tη0, (20e)

mω̃′
zB = ω̃zT . (20f)

Equations (18)–(20) constitute an eigenvalue problem for the velocities (w̃B, w̃T )
and vorticity components (ω̃zB, ω̃zT ), with eigenvalue λ = −iαc = −iω.

We solve Equations (18)–(20) using the Chebyshev collocation method described
by Boomkamp et al. (1997), wherein a trial solution involving the Chebyshev poly-
nomials Tj(·) is proposed in each domain:

w̃B(z) ≈
NB∑
j=0

ajTj(ηB1), ω̃zB(z) ≈
NB∑
j=0

bjTj(ηB2), (21a)

w̃T (z) ≈
NT∑
j=0

cjTj(ηT1), ω̃zT (z) ≈
NT∑
j=0

djTj(ηT2); (21b)

this reduces the differential equations (18) to a finite-dimensional eigenvalue prob-
lem. The variables (ηB1, ηB2, ηT1, ηT2) are linear transformations of the z-coordinate,
whose range is confined to [−1, 1]. The trial solution for (w̃B, w̃T ) is substituted into
the differential equation (18) and evaluated at (NB − 3, NT − 3) interior points;
similarly, the trial solution for (ω̃zB, ω̃zT ) is substituted into the differential equa-
tion (18) and evaluated at (NB−1, NT−1) interior points. This gives 2(NB+NT )−8
equations in 2(NB +NT ) + 4 unknowns; the system is closed by evaluating the trial
functions at the boundaries z = 0 and z = 1, and at the interface z = h0 (12 fur-
ther equations). In this way, a finite-dimensional analogue of Equations (18)–(20)
is obtained:

Av = λBv, (22)

where A and B are 2(NB +NT + 2)× 2(NB +NT + 2) complex matrices, and

v = (a0, · · · , aNB
, b0, · · · , bNB

, c0, · · · , cNT
, d0, · · · , dNT

)T

is a complex column-valued column vector. The eigenvalue λ is obtained using a
standard eigenvalue solver; the correctness of the implementation of the numerical
scheme has been validated by computing the dispersion relation λ(α, β) for a given
set of flow parameters, and comparing the result with the same dispersion relation
computed by an different, independent method (Sahu & Matar, 2011); the results
are identical.
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