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Format of the Project

The main project in Epidemiological Modelling in STAT 40510 will be made up of several
tasks.

� Follow the online lectures independently, attend weekly office hours in Weeks 5-7.
� Over the same time period, complete (in a group) Tasks 1 and 2 to test your
knowledge of what you have learned.

� Again over the same time period, you will be assigned your most challenging
task, Task 3. You should begin to do background reading to understand what is
required here.

� In Week 8, you should present your work to date, the presentation should consist
of:

– The theoretical concepts you have learned in Tasks 1–2;
– How you will apply these in Task 3.

� The final report (due towards the end of the trimester) will be based entirely on
Task 3.
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STAT 40510 Task 1

We start with a very general SEIR model which allows for natural births and deaths in
a closed population:

dS

dt
= µN − µS − βIS

N
(1a)

dE

dt
=

βIS

N
− (µ+ a)E (1b)

dI

dt
= aE − (γ + µ)I (1c)

dR

dt
= γI − µR. (1d)

1. Show that S + E + I + R = N , but note that this is only constant because of
the simplifying assumption that birth and death rates are equal; in general N is a
variable.

2. Show that Equation (1) has two constant solutions, a disease-free equilibrium

DFE = (N, 0, 0, 0),

and an endemic equilibrium

EE = (S0, E0, I0, R0),

where all of the coefficients here are non-zero.

3. Compute the coefficients of the endemic equilibrium in terms of a, β, γ, µ.

4. Show that, for given initial conditions S(0) > 0, E(0) = 0, I(0) > 0, and
R(0) = 0, the solution of Equation (1) remains inside the hypercube [0, N ]4 for
all time.

Hint: Assume for contradiction that I(t∗) = 0. By continuity, there is an interval
of time [0, t∗) where I(t) > 0. On this interval, show:

� Use the integrating-factor method of ordinary-differential equations to write
the solution of Equation (1)(a) as:

S(t) = S(0)e−
∫ t
0 [µ+(β/N)I]dt + · · · ,

where the · · · are to be filled in, hence conclude that S(t) > 0 for t ∈ [0, t∗).
� Use a similar approach to show that E(t) > 0 for t ∈ [0, t∗).
� Use

dI

dt
= aE − (γ + µ) > −(γ + µ)I.

From this, we can use Gronwall’s inequality to conclude that

I(t) > I(0)e−(γ+µ)t, t ∈ [0, t∗).

In particular, I(t) > I(0)e−(γ+µ)t > 0 as t → t∗, which is a contradiction,
since I(t∗) = 0.
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� From this, conclude that I(t) ≥ 0 for all t ≥ 0 and hence,

S(t), I(t)E(t)R(t) ≥ 0, for all t ≥ 0.

� But S + E + I +R = N , so . . .

5. Equation (1) can be re-written as:

d

dt


S
E
I
R

 =


0

βIS/N
0
0

+


−βIS/N
−aE

aE − γI
γI

 ,

=


0

βIS/N
0
0

−


βIS/N
aE

−aE + γI
−γI

 ,

= F − V ,

where F represents the rate of generation of new infections and V represents
the transfer of individuals from one compartment to the next. We linearize this
equation around the constant disease-free state to obtain:

d

dt


S
E
I
R

 =


0 0 0 0
0 0 βS(0)/N 0
0 0 0 0
0 0 0 0




S
E
I
R



−


0 −βS(0)/N 0 0
0 a 0 0
0 −a γ 0
0 0 −γ 0




S
E
I
R


Zoom in in the E and I-compartments, these are the infected compartments:

d

dt

(
E
I

)
=

(
0 βS(0)/N
0 0

)
︸ ︷︷ ︸

=F

(
E
I

)
−
(

a 0
−a γ

)(
E
I

)
︸ ︷︷ ︸

=V

FV −1 is the next-generation matrix for the SEIR model. In other, more com-
plicated models, the next-generation matrix will be bigger than 2 × 2, and the
steps in calculating it will be more involved. However, the principle will always be
the same: zooming in on the infected compartments and breaking up the resulting
rate equations into F and V . Furthermore, R0 will always be defined as:

R0 = max spec(FV −1),

that is, R0 is the maximum eigenvalue of the next-generation matrix.

For the SEIR model, show that:

R0 = β/γ.
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