Applied Statistical Modelling (STAT 40510) Main Project
 Task 1: Theoretical Characterization of the Models

Dr Lennon Ó Náraigh

TBC

Format of the Project

The main project in PK in STAT 40510 will be made up of several tasks.

- Follow the online lectures independently, attend weekly office hours in Weeks 5-7.
- Over the same time period, complete (in a group) Tasks 1 and 2 to test your knowledge of what you have learned.
- Again over the same time period, you will be assigned your most challenging task, Task 3. You should begin to do background reading to understand what is required here.
- In Week 8, you should present your work to date, the presentation should consist of:
- The theoretical concepts you have learned in Tasks 1-2;
- How you will apply these in Task 3.
- The final report (due towards the end of the trimester) will be based entirely on Task 3.

Consider the following set of equations for a two-compartment PK model (IV administration).

$$
\begin{align*}
\frac{\mathrm{d} A_{1}}{\mathrm{~d} t} & =-k_{10} A_{1}-k_{12} A_{1}+k_{21} A_{2} \tag{1a}\\
\frac{\mathrm{~d} A_{2}}{\mathrm{~d} t} & =k_{12} A_{1}-k_{21} A_{2} \tag{1b}
\end{align*}
$$

with initial conditions

$$
A_{1}(0)=S D, \quad A_{2}(0)=0
$$

1. Using matrix methods for systems of linear ODEs, show that $C p(t)=A_{1} / V_{1}$ satisfies:

$$
\begin{equation*}
C p(t)=A \mathrm{e}^{-\alpha t}+B \mathrm{e}^{-\beta t}, \tag{2a}
\end{equation*}
$$

Here, A and B are constants, but they are not arbitrary integration constants; they satisfy:

$$
\begin{equation*}
A=\frac{S \cdot D\left(\alpha-k_{21}\right)}{V_{1}(\alpha-\beta)}, \quad B=\frac{S \cdot D\left(k_{21}-\beta\right)}{V_{1}(\alpha-\beta)} \tag{2b}
\end{equation*}
$$

Also,

$$
\begin{align*}
\alpha & =\frac{1}{2}\left[\left(k_{10}+k_{12}+k_{21}\right)+\sqrt{\left(k_{10}+k_{12}+k_{21}\right)^{2}-4 k_{21} k_{10}}\right] \tag{2c}\\
\beta & =\frac{1}{2}\left[\left(k_{10}+k_{12}+k_{21}\right)-\sqrt{\left(k_{10}+k_{12}+k_{21}\right)^{2}-4 k_{21} k_{10}}\right] . \tag{2d}
\end{align*}
$$

2. Let

$$
\mathrm{AUC}=\int_{0}^{\infty} C p(t) \mathrm{d} t
$$

Show that:

$$
\mathrm{AUC}=\frac{A}{\alpha}+\frac{B}{\beta}
$$

3. The clearance for a two-compartment model is defined as $\mathrm{Cl}=k_{10} V_{1}$. Show that:

$$
\mathrm{Cl}=\frac{S \cdot D}{\mathrm{AUC}}
$$

Show also that:

$$
V_{1}=\frac{D}{A+B}
$$

Suppose now that the patient receives

- An initial dose D, such that:

$$
A_{1}(0)=S D, \quad A_{2}(0)=0
$$

- A continuous, intravenous infusion at $t>0$, at a rate \dot{a}.

Equations (??) (at $t>0$) are now modified to read:

$$
\begin{align*}
\frac{\mathrm{d} A_{1}}{\mathrm{~d} t} & =-k_{10} A_{1}-k_{12} A_{1}+k_{21} A_{2}+\dot{a} \tag{3a}\\
\frac{\mathrm{~d} A_{2}}{\mathrm{~d} t} & =k_{12} A_{1}-k_{21} A_{2} \tag{3b}
\end{align*}
$$

At steady state, $\mathrm{d} A_{1} / \mathrm{d} t=\mathrm{d} A_{2} / \mathrm{d} t=0$.
4. Show that at steady state, $A_{1}=\dot{a} / k_{10}$, with $C p_{s s}=A_{1} / V_{1}$.
5. Find $C p(t)=A_{1} / V_{1}$ in the non-steady state, for Equation (??).
6. If the initial dose D is such that $A_{1}(0)=\dot{a} / k_{10}$, then D is called the loading dose, and denoted by D_{L}. Show that

$$
D_{L}=\frac{C p_{s s} V_{1}}{S F} .
$$

7. Lidocaine is an anti-arrhtymic drug that is used in the treatment of premature ventricular contractions. A $70-\mathrm{kg}$ male patient is to receive an intravenous infusion of Lidocaine to maintain a plasma concentration of $2 \mathrm{mg} / \mathrm{L}$. Calculate a loading dose of Lidocaine hydrochloride ($S=0.87$) to achieve this plasma concentration immediately. Lidocaine has the following volume: $V_{1} /[$ patient mass $]=0.5 \mathrm{~L} / \mathrm{kg}$.
