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Abstract

Exponential random graph models are a class of widely used exponential fam-
ily models for social networks. The topological structure of an observed network
is modeled by the relative prevalence of a set of local sub-graph configurations
termed network statistics. One of the key tasks in the application of these mod-
els is which network statistics to include in the model. This can be thought of
as statistical model selection problem. This is a very challenging problem—the
posterior distribution for each model is often termed “doubly intractable” since
computation of the likelihood is rarely available, but also, the evidence of the
posterior is, as usual, also intractable. We present a fully Bayesian model se-
lection method based on a Markov chain Monte Carlo algorithm of Caimo and
Friel (2011) which estimates the posterior probability for each competing model
as well as a possible approach for computing the model evidence.

1 Introduction

Exponential random graph models are a powerful and flexible family of statistical
models for networks which allows us to model network topologies without requiring
any independence assumption between dyads (pairs of nodes). These models have
been utilized extensively in the social science literature since they allow to statistically
account for the complexity inherent in many network data. The basic assumption
of these models is that the topological structure in an observed network y can be
explained by the relative prevalence of a set of overlapping sub-graph configurations
s(y) also called graph or network statistics (see Figure 1).

Formally a random network Y consists of a set of n nodes and m dyads {Yij : i =
1, . . . , n; j = 1, . . . , n} where Yij = 1 if the pair (i, j) is connected (full dyad), and
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Yij = 0 otherwise (empty dyad). Edges connecting a node to itself are not allowed
so Yii = 0. The graph Y may be directed (digraph) or undirected depending on the
nature of the relationships between the nodes.

Exponential random graph models (ERGMs) are a particular class of discrete linear
exponential families which represent the probability distribution of Y as

p(y|θ) =
qθ(y)

z(θ)
=

exp{θT s(y)}∑
y∈Y exp{θT s(y)}

(1)

where s(y) is a known vector of sufficient statistics computed on the network (or
graph) (see Snijders et al. (2006) and Robins et al. (2007)) and θ are model parame-
ters describing the dependence of p(y|θ) on the observed statistics s(y). Estimating
ERGM parameters is a challenging task due to the intractability of the normalising
constant z(θ) and the issue of model degeneracy (see Handcock (2003) and Rinaldo
et al. (2009)).

An important problem in many applications is the choice of the most appropriate
set of explanatory statistics network statistics s(y) to include in the model from a
set of a priori plausible ones. In fact in many applications there is a need to classify
different types of networks based on the relevance of a set of configurations with respect
to others.

From a Bayesian point of view, the model choice problem is transformed into a
parameter estimation problem aiming at estimating the posterior probability of all
models within the considered class of competing models. In order to account for
the uncertainty concerning the model selection process, Bayesian Model Averaging
(Hoeting et al., 1999) offers a coherent methodolody which consists in averaging over
many different competing models.

In the ERGM context, the intractability of the likelihood makes the use of stan-
dard techniques quite challenging. The purpose of this paper is to present two new
methods for Bayesian model selection for ERGMs. This article is structured as fol-
lows. A brief overview of Bayesian model selection theory is given in Section 2. An
across-model approach based on a trans-dimensional extension of the exchange algo-
rithm of Caimo and Friel (2011) is presented in Section 3. The issue of the choice
of suitable jump proposals is addressed by presenting an automatic reversible jump
exchange algorithm involving an independence sampler based on a distribution fitting
a parametric density approximation to the within-model posterior. This algorithm
bears some similarity to that presented in Chapter 6 of Green et al. (2003). The sec-
ond novel method is a within-model approach for computing the model evidence. This
approach is based on the path sampling approximation for estimating the likelihood
normalizing constant and it makes use of nonparametric density estimation procedures
for approximating the posterior density of each competing model (Section 4). Three
illustrations of how these new method perform in practice are give in Section 5. Some
conclusions are outlined in Section 6. The Bergm package for R, provided some of the
functions used in this paper and it is available on the CRAN package repository at
http://cran.r-project.org/web/packages/Bergm.
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Figure 1: Some of the most used sub-graph configurations for undirected graphs (anal-
ogous directed versions can be used for digraphs).
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2 Overview of Bayesian model selection

Bayesian model comparison is commonly performed by estimating posterior model
probabilities. More precisely, suppose that the competing models can be enumerated
and represented by the set {mh : h = 1, . . . , H}. Suppose data y is assumed to have
been generated by model mh, the posterior distribution is:

p(θh|y,mh) =
p(y|θh,mh) p(θh|mh)

p(y|mh)
(2)

where p(y|θh,mh) is the likelihood and p(θh|mh) represents the prior distribution of
the parameters of model mh. The model evidence (or marginal likelihood) for model
mh

p(y|mh) =

∫
θh

p(y|θh,mh) p(θh|mh) dθh (3)

represents the probability of the data y given a certain model mh and is typically im-
possible to carry out analytically. However, the model evidence is crucial for Bayesian
model selection since it allows us to make statements about posterior model probabil-
ities. Bayes’ theorem can be written as

p(mh|y) =
p(y|mh) p(mh)∑H
1 p(y|mh) p(mh)

. (4)

Based on these posterior probabilities, pairwise comparison of models, mh and mk say,
can be summarised by the posterior odds:

p(mh|y)

p(mk|y)
=
p(y|mh)

p(y|mk)
× p(mh)

p(mk)
. (5)

This equation reveals how the data y through the Bayes factor

BFhk =
p(y|mh)

p(y|mk)
(6)

updates the prior odds
p(mh)

p(mk)
(7)

to yield the posterior odds.
By treating p(mh|y) as a measure of the uncertainty around of model mh a natural

approach for model selection is to choose the most likely mh a posteriori, i.e. the model
for which p(mh|y) is the largest.

Bayesian model averaging (Hoeting et al., 1999) provides a way of summarising
model uncertainty in inference and prediction. After observing the data y is possible
to predict a possible future outcome y∗ by calculating an average of the posterior
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distributions under each of the models considered, weighted by their posterior model
probability.:

p(y∗|y) =
H∑
h=1

p(y∗|mh,y)p(mh|y) (8)

where p(y∗|mh,y) represents the posterior prediction of y∗ according to model mh and
data y.

As we said above model evidence is generally difficult to compute and exact solu-
tions are known for a small class of distributions. Numerical integration methods are
usually needed, either general methods such as Gaussian integration or a Monte Carlo
method, or methods specialized to statistical problems such as the Laplace approxi-
mation, Gibbs sampling or the EM algorithm.

2.1 Computing Bayes factors

Generally speaking there are two approaches for compunting Bayes factors: across-
model and within-model estimation. The former strategies involve the use of an
MCMC algorithm generating a single Markov chain which crosses the joint model
and parameter space so as to sample from

p(θh,mh|y) ∝ p(y|θh,mh) p(θh|mh) p(mh). (9)

One of the most popular approach used in this context of the reversible jump MCMC
algorithm of Green (1995) which is briefly reviewed in Section 2.1.1.

Within-model strategies focus on the posterior distribution (2) of each competing
model mh separately aiming at estimating their model evidence (3) which can then
be used to calculate Bayes factors (see for example Chib (1995), Chib and Jeliazkov
(2001), Neal (2001), Friel and Pettitt (2008), and Friel and Wyse (2012), who present
a review of these methods).

2.1.1 Reversible jump MCMC

The Reversible Jump MCMC (RJMCMC) algorithm is a flexible technique for model
selection introduced by Green (1995) which allows simulation from target distributions
on spaces of varying dimension. In the reversible jump algorithm, the Markov chain
“jumps” between parameter subspaces (models) of differing dimensionality, thereby
generating samples from the joint distribution of parameters and model indices.

To implement the algorithm we consider a countable collection of candidate models,
{ml : k = 1, . . . , K}, each having an associated vector of parameters θl of dimension
Dl which typically varies across models. We would like use MCMC to sample from
the joint posterior (9).

In order to jump from (θk,mk) to (θh,mh), one may proceed by generating a ran-
dom vector u from a distribution g and setting (θh,mh) = fhj((θk,mk),u). Similarly
to jump from (θh,mh) to (θk,mk) we have (θk,mk) = fjh((θh,mh),u

∗) where u∗ is a
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random vector from g∗ and fhk is some deterministic function. However reversibility is
only guaranteed when the parameter transition function fkh is a diffeomorphism, that
is, both a bijection and its differential invertible. A necessary condition for this to
apply is the so-called “dimension matching”: dim(θk) + dim(u) = dim(θh) + dim(u∗)
(where dim(·) stands for “dimension of”). In this case the acceptance probability can
be written as:

min

{
1,
p(θh,mh|y)

p(θk,mk|y)

p(mh → mk)

p(mk → mh)

g∗(u∗)

g(u)
|J |
}

(10)

where p(mh → mk) is the probability of jumping from model mh to model mk, and |J |
is the Jacobian resulting from the transformation from ((θk,mk),u) to ((θh,mh),u

∗).
Mixing is crucially affected by the choice of the parameter of the jump proposal

distribution g and this is one of the fundamental difficulties that makes RJMCMC
often hard to use in practice (Brooks et al., 2003).

3 Reversible jump exchange algorithm

In the ERGM context, RJMCMC techniques cannot be used straightforwardly because
both the likelihood normalizing constant z(θ) in (1) cannot be computed analytically.
Here we present an implementation of an RJMCMC approach for ERGMs based on
the extention of the exchange algorithm for exponential random graph models (Caimo
and Friel, 2011).

For each model mh, this algorithm allows sampling from the following augmented
distribution:

p(θ′h,y
′,θh|y,mh) ∝ p(y|θh,mh)p(θh|mh)h(θ′h|θh,mh)p(y

′|θ′h,mh) (11)

where p(y|θh,mh) and p(y′|θ′h,mh) are respectively the original likelihood defined on
the observed data y and the augumented likelihood defined on simulated data y′,
p(θh|mh) is the parameter prior and h(θ′h|θh,mh) is any arbitrary proposal distribution
for θ′h. Marginalising (11) over θ′h and y′ yields the posterior of interest p(θh|y,mh).

Auxiliary variable methods for intractable likelihood models, such as the exchange
algorithm, have not been used in a trans-dimensional setting before. In order to
propose to move from (θk,mk) to (θ′h,m

′
h), the algorithm (11) can be extended to

sample from:

p(θ′h,θk,m
′
h,mk,y

′|y) ∝ p(y|θk,mk)p(θk|mk)p(mk)h(θ′h,m
′
h|θk,mk)p(y

′|θ′h,m′h)
(12)

where p(y|θk,mk) and p(y′|θ′h,m′h) are the two likelihood distributions for the data y
under model mk and the auxiliary data y′ under the competing model m′h respectively,
p(θk|mk) and p(mk) are the priors for the parameter θk and the respective model mk

and h(θ′h,m
′
h|θk,mk) is some jump proposal distribution. Analogously as before, the

marginal of (12) for θ′h and m′h is the distribution of interest (9).
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The issue with this method is that tuning the jump proposals h(·) in a sensible
way so as to get a reasonable mixing can be difficult and automatic choice of jump
parameters (Brooks et al., 2003) does not apply in this context due to the double
intractability of the likelihood distribution.

3.1 Pilot-tuned RJ exchange algorithm

We now consider nested models or models differing by at most one variable. In this
case, the move from (θk,mk) to a larger model (θ′k+1,m

′
k+1) such that dim(m′k+1) =

dim(mk)+1 can be done by proposing the trasformation (θ′k+1,m
′
k+1) = ((θk, θ

′
k+1),mk+1)

where the (k + 1)-th parameter value θ′k+1 is generated from some distribution gk+1

and then accepting the move with the following probability:

α = min

{
1,
qθk,mk

(y′)

qθk,mk
(y)

qθ′
k+1,m

′
k+1

(y)

qθ′
k+1,m

′
k+1

(y′)

p(θ′k+1|m′k+1)

p(θk|mk)

p(m′k+1)

p(mk)

1

gk+1(θ′k+1)

h(m′k+1|mk)

h(mk|m′k+1)

}
(13)

where qθk,mk
(y) indicates the unnormalized likelihood of p(y|θk,mk) (and so forth for

the other functions q(·)). The reverse move is similar and is accepted with probability
α−1.

The jump within the same model mk is accepted with the following probability:

α = min

{
1,
qθk,mk

(y′)

qθk,mk
(y)

qθ′
k,m

′
k
(y)

qθ′
k,m

′
k
(y′)

p(θ′k|m′k)
p(θk|mk)

p(m′k)

p(mk)

g(θk)

g(θ′k)

}
. (14)

3.2 Auto-RJ exchange algorithm

Finding suitable proposals for the jump between models is an very challenging task
and is vital in order to ensure adequate mixing of the trans-dimensional Markov chain.
In practice, tuning the jump proposals of the pilot-tuned algorithm is very difficult
without any information about the posterior density covariance structure. A possible
approach would be to use an independence sampler which does not depend on the
current state of the MCMC chain but fits a parametric density approximation to the
within-model posterior distribution so as to have an acceptance rate as high as possible.

In this spirit, we can propose to jump from (θk,mk) to (θ′h,m
′
h) using the following

jump proposals:
h(θ′h,m

′
h|θk,mk) = w(θ′h|m′h) h(m′h|mk) (15)

where h(m′h|mk) represents between-model jump proposal from model mk to model
m′h and w(θ′h|m′h) is the within-model jump proposal for model m′h. As remarked
above, the within-model proposals have to be tuned in a sensible way. Posterior
density approximations such as standard distributions with parameters determined by
the moments of a sample drawn from (12) can be used as within model proposals for
each competing model. For example, w(θl|ml) can be a normal distribution N (µ̂l, Σ̂l)
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where µ̂l and Σ̂l are the posterior mean and covariance estimates for each model ml.
In our experience the choice of normal proposals appear to fit quite well in most of the
examples we looked at.

The algorithm can be therefore summarized in two steps: the first step (offline) is
used to sample from the posterior (11) of each model ml and to estimate the parameters
µ̂l and Σ̂l of the within-model jump proposal; the second step (online) carries out the
MCMC computation of (12).

The algorithm can be written in the following concise way:

OFFLINE RUN
(0) Estimation of p(θl|y,ml) for l = 1, . . . , H

i Set µ̂l = E(θl|y,ml) and Σ̂l = Cov(θl|y,ml)
ii Use w(θl|ml) ∼ N (µ̂l, Σ̂l) as within-model jump proposals, when
proposing to jump to model ml

ONLINE RUN
(1.1) Gibbs update of (m′h,θ

′
h,y

′)
i Propose m′h from the prior p(·)
ii Propose θ′h with probability w(·|µ̂h, Σ̂h)
iii Draw y′ from p(·|θ′h,m′h)

(1.2) Accept the jump from (θk,mk) to (θ′h,m
′
h) with probability:

min

{
1,
qθk,mk

(y′)

qθk,mk
(y)

qθ′
h,m

′
h
(y)

qθ′
h,m

′
h
(y′)

p(θ′h|m′h)
p(θk|mk)

p(m′h)

p(mk)

w(θk|µ̂k, Σ̂k)

w(θ′h|µ̂h, Σ̂h)

}
. (16)

4 Estimating model evidence

In this section we present a within-model approach for estimating the evidence p(y)
(For ease of reading, we will omit the conditioning on the model indicator ml).The aim
is to provide a useful method for low-dimensional models to use as a “ground-truth”
reference to compare with the reversible jump exchange algorithm. The method follows
from noticing that for any parameter θ?, equation (2) implies that:

p(y) = p(y|θ?) p(θ?)

p(θ?|y)
=
qθ?(y)

z(θ?)

p(θ?)

p(θ?|y)
. (17)

This is also the starting point for Chib’s method for estimating the evidence (Chib,
1995). Typically θ? is choosen as a point falling in the high posterior probability region
so as to increase the accuracy of the estimate. To estimate (17), the calculation of
the intractable likelihood normalizing constant z(θ?) and an estimate of the posterior
density p(θ?|y) are required.
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Estimating z(θ?) via path sampling

The first problem can be tackled using a path sampling approach. Consider introducing
an auxiliary variable t ∈ [0, 1]. We consider the following distribution:

pt(y|θ) = p(y|θ)t = p(y|θt) =
qθt(y)

z(θt)
=

exp{(θt)T s(y)}∑
y∈Y exp{(θt)T s(y)}

(18)

Taking logarithm and differentiating z(θ?t) with respect to t yields basic identity:

d

dt
log [z(θ?t)] =

1

z(θ?t)

d

dt
z(θ?t)

=
1

z(θ?t)

d

dt

∑
y∈Y

exp
{

(θ?t)T s(y)
}

=
1

z(θ?t)

∑
y∈Y

[
θ?T s(y)

]
exp

{
(θ?t)T s(y)

}
=
∑
y∈Y

[
θ?T s(y)

]
p(y|θ?t)

= Ey|θ?t

[
θ?T s(y)

]
. (19)

where Ey|θ?t denotes the expectation with respect to the sampling distribution p(y|θ?t).
Therefore integrating (19) from 0 to 1 we have that:

log

{
z(θ?)

z(0)

}
=

1∫
0

Ey|θ?t[θ
?T s(y)] dt.

Now if we choose a discretization of the variable t such that t0 = 0 < · · · < ti < · · · <
tI = 1, this leads to the following approximation:

log

{
z(θ?)

z(0)

}
≈

I−1∑
i=0

(ti+1 − ti)
(
Ey|θ?ti [θ

?T s(y)] + Ey|θ?ti+1
[θ?T s(y)]

2

)
, (20)

where Ey|θ?ti [θ
?T s(y)] is equal to θ?TEy|θ?ti [s(y)] i.e. the expected network statistic

counts simulated from θ?ti multiplied by the constant θ?. Remember that z(0) is

analytically available and it is equal to 2(n
2) i.e. the number of possible graphs on the

n nodes of the observed network. In terms of computation, Ey|θ?ti [θ
?T s(y)] can be

easily estimated using the same procedures used for simulating auxiliary data from
the ERGM likelihood. Hence in (20) two types of error emerge: discretization of (4)
and Monte Carlo error due to the simulation approximation of Ey|θ?ti [θ

?T s(y)].
The path of ti’s is important for the efficiency of the evidence estimate. For exam-

ple, we can choose a path of the type ti = (1/I)c where c is some tuning constant: for
c = 1 we have equal spacing of the I points in the interval [0, 1], for c > 1 we have
that the ti’s are chosen with high frequency close to 0 and for 0 < c < 1 we have that
the ti’s are chosen with high frequency close to 1.
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Estimating p(θ?|y)

A sample from the posterior p(θ|y) can be gathered (via the exchange algorithm, for
example) and used to calculate a kernel density estimate of the posterior probability at
the point θ?. In practice, because of the curse of dimensionality, this implies that the
method cannot be used, for models with greater than 5 parameters. In this paper we
used the fast and easy to use np package for R (Hayfield and Racine, 2008) to perform
a nonparametric density estimation of the posterior p(θ?|y).

��

�

����

Figure 2: Path sampling: for each θ? we estimate z(θ?) via path sampling using the
expected network statistics simulated from some points θ?ti along the line connecting
0 to θ?.

5 Applications

5.1 Gahuku-Gama system

The Gahuku-Gama system (Read, 1954) of the Eastern Central Highlands of New
Guinea was used by Hage and Harary (1984) to describe an alliance structure among
16 sub-tribes of Eastern Central Highlands of New Guinea (Figure 3). The system has
been split into two network: the “Gamaneg” graph for antagonistic (“hina”) relations
and the “Gamapos” for alliance (“rova”) relations. An important feature of these
structures is the fact that the enemy of an enemy can be either a friend or an enemy.

5.1.1 Gamaneg

We first focus on the Gamaneg network by using the 3 competing models specified in
Table 1 using the following network statistics:
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Figure 3: Gahuku-Gama system graphs: Gamaneg (left) and Gamapos (right).

edges
∑

i<j yij
triangles

∑
i<j<k yjkyikyij

4-cycle
∑

i<j<l<k yijyjlylkyki

We are interested to understand if the transitivity effect expressed by triad closure
(triangle) and 4-cycle is a closed structure that can sustain mutual social monitoring
and influence (Pattison and Robins, 2002).

Model m1 y ∼ edges
Model m2 y ∼ edges + triangles
Model m3 y ∼ edges + triangles + 4-cycle

Table 1: Competing models.

Both the pilot-tuned RJ and auto-RJ exchange algorithms were run for 100, 000
iterations using very flat normal parameter priors p(θl|ml) ∼ N (0, 100Il) for each
model ml where Il is the identity matrix of size equal to the number of dimensions
of model ml, uniform model priors and 3, 000 iterations for the auxiliary network
simulation. The proposal distributions of the pilot-tuned RJ has been empirically
tuned so as to get reasonable acceptance rates for each competing model. The offline
step of the auto-RJ consisted of gathering an approximate sample from p(θ|y) and
then estimating the posterior moments µ̂l and Σ̂l for each of the three models using
the parallel ADS update procedure. The exchange algorithm was run for 1, 000 ×Dl

iterations (discarding the first 100×Dl iterations as burn-in) where Dl is the dimension
of the l-th model using the population MCMC approach described in Caimo and Friel
(2011). We tuned the parallel ADS move factors γ so as to get a reasonable acceptance
rate during the offline step of the estimation. The accuracy of the estimates µ̂l and Σ̂l

depends on the number of iterations of the auto-RJ offline run. In this example, the
above number of iterations 1, 000 ×Dl of has been empirically shown to be sufficient
for each competing model ml. Tables 2 and 3 report the posterior parameter estimates
of the model selected for the pilot-tuned RJ and auto-RJ. Figure 4 shows the results
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from the pilot-tuned RJ: model posterior diagnostics plot and the parameter posterior
diagnostics plot. Figure 5 shows the same plots from auto-RJ. Between-model and
within-model acceptance rates (reported in Table 3) are calculated as the proportions
of accepted moves from (θk,mk) to model (θ′h,m

′
h) for each k : k 6= h and when k = h

respectively. The mixing of the auto-RJ algorithm within each model is faster than the
pilot-tuned RJ algorithm due to the good approximation to the posterior distribution.
The pilot-tuned algorithm took about 24 minutes to complete the estimation and the
auto-RJ took about 31 minutes (including the offline step).

Pilot-tuned RJ Auto-RJ
Parameter Post. Mean Post. Sd. Post. Mean Post. Sd.

Model m1

θ1 (edge) -1.15 0.21 -1.15 0.21
Model m2

θ1 (edge) -0.97 0.36 -0.96 0.37
θ2 (triangle) -0.31 0.41 -0.29 0.37

Model m3

θ1 (edge) -0.98 0.51 -1.15 0.37
θ2 (triangle) -0.76 0.47 -0.31 0.42
θ3 (4-cycle) -0.05 0.12 0.02 0.17

Table 2: Summary of posterior parameter estimates.

Within-model Pilot-tuned RJ Auto-RJ
Model m1 0.14 0.62
Model m2 0.11 0.42
Model m3 0.00 0.48

Between-model 0.07 0.04

Table 3: Acceptance rates.

Pilot-tuned RJ Auto-RJ

B̂F 1,2 14.46 21.68

B̂F 1,3 1506.43 1425.77

p̂(m1|y) 0.93 0.95
p̂(m2|y) 0.06 0.04
p̂(m3|y) 0.01 0.01

Table 4: Bayes factor and posterior model probability estimates.
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Figure 4: Pilot-tuned RJ exchange algorithm output: posterior model probabilities
(top) and posterior parameter probabilities (bottom).
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In terms of the calculating the evidence based on path sampling, Figure 6 shows the
behaviour of Ey|θ?t

[
θ?T s(y)

]
for 50 equaly-spaced path points ti from 0 to 1. The larger

the number of temperatures I and the number of simulated networks, the more precise
the estimate of the likelihood normalizing constant and the longer the computing effort.
In this example we estimated (19) using 100 path points and sampling 500 network
statistics for each of them. In this case, this setup has been empirically shown to be
sufficiently accurate. We set c to be equal to 1 for all the models.. However different
choices for c do not seem to have a big influence on the estimation results if I is large
enough.
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Figure 6: E[θ?T s(y)] estimated from a ladder of 50 equally-spaced path points.

A nonparametric density estimation of p(θ|y) for each competing model was imple-
mented using approximate posterior samples gathered from the output of the exchange
algorithm. Bayes Factor estimates for different sample sizes (which are increasing with
the number of model dimension) are reported in Table 5. The results are consistent
with the ones obtained by RJ exchange algorithms displayed in Table 4. The evidence-
based approach took about a few seconds to estimate model evidence for m1 and m2

and about 6 minutes for model m3 using the biggest sample sizes displayed in Table 4.
According to the scale of Kass and Raftery (1995) there is positive/strong evidence

in favor of model m1 which is the one including the number of edges. Thus in this
case the only strong effect of the antagonistic structure of the Gahuku-Gama tribes is
represented by the low edge density.

5.1.2 Gamapos

In this example, we considered the same competing models of Table 1. In this case the
pilot-tuned RJ exchange algorithm was infeasible to be used effectively as it turned out
to be very sensitive to the choice of the jump proposal. We used the auto-RJ exchange
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Sample sizes
Model m1 100 500 1, 000 5, 000
Model m2 150 750 1, 500 7, 500
Model m3 200 1, 000 2, 000 10, 000

B̂F 1,2 18.83 18.72 17.75 19.09

B̂F 1,3 1029.67 1483.52 1363.91 1390.08

Table 5: Bayes Factor estimates for increasing values of sample sizes used for the
posterior density estimation.

algorithm with the same setup of the previous example. The output from auto-RJ
exchange algorithm is displayed in Figure 8 and the parameter posterior estimates in
Table 6.

Parameter Post. Mean Post. Sd.
Model m3 (within-model acc. rate: 0.3)
θ1 (edge) -2.41 0.45
θ2 (triangle) 2.91 0.71
θ3 (4-cycle) -0.66 0.22
Model m1 (within-model acc. rate: 0.64)
θ1 (edge) -1.15 0.20
Model m2 (within-model acc. rate: 0.3)
θ1 (edge) -1.69 0.35
θ2 (triangle) 0.48 0.20

Between-model acc. rate: 0.03

Table 6: Summary of posterior parameter estimates and acceptance rates.

We also calculated the evidence for each models following the same setup of the
Gamaneg example. In Table 7 are reported the Bayes Factor estimates of the auto-RJ
exchange algorithm and evidence-based method using the biggest sample sizes for the
posterior density estimation of the previous example.

Auto-RJ algorithm Evidence-based method
BF3,1 17.83 19.31
BF3,2 34.81 32.82

Table 7: Bayes factors estimates.

In the Gamapos network the transitivity and the 4-cycle structure are important
features of the network. The tendency to a low density of edges and 4-cycles expressed
by the negative posterior mean of the first and third parameters is balanced by a
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Figure 7: Auto-RJ exchange algorithm output: posterior model probabilities (top) and
posterior parameter probabilities (bottom).
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Figure 8: E[θ?T s(y)] estimated from a ladder of 50 equally-spaced path points.

propensity for local triangles which gives rise to the formation of small well-defined
alliances.

5.2 Collaboration between Lazega’s lawyers

The Lazega network data collected by Lazega (2001) and displayed in Figure 9 rep-
resents the symmetrized collaboration relations between the 36 partners in a New
England law firm, where the presence of an edge between two nodes indicates that
both partners collaborate with the other.

In this example we want to compare 4 models (Table 8) using the edges, geometri-
cally weighted degrees and geometrically weighted edgewise shared partners (Snijders
et al., 2006):

edges
∑

i<j yij

geometrically weighted degree (gwd) eφu
∑n−1

k=1

{
1−

(
1− e−φu

)k}
Dk(y)

geometrically weighted edgewise eφv
∑n−2

k=1

{
1−

(
1− e−φv

)k}
EPk(y)

shared partner (gwesp)

where φu = log(2), φv = log(2), Dk(y) is the number of pairs that have exactly
k common neighbors and EPk(y) is the number of connected pairs with exactly k
common neighbors.

As happened in the previous example, the pilot-tuned RJ exchange algorithm
proved to be ineffective due to the difficulty of the tuning problem. The auto-RJ
exchange algorithm was run for 100, 000 iterations using the same flat normal priors of
the previous examples and 20, 000 auxiliary iterations for network simulation. The of-
fline run consisted of estimating µ̂l and Σ̂l for each of the 4 models by using 6, 000×Dl

main iterations (discarding the first 1, 000 ×Dl iterations as burnin). The algorithm
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Figure 9: Lazega’s lawyers graph.

Model m1 y ∼ edges
Model m2 y ∼ edges + gwesp(log(2))
Model m3 y ∼ edges + gwesp(log(2)) + gwd(log(2))
Model m4 y ∼ edges + gwd(log(2))

Table 8: Competing models.
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took about 1 hour and 50 minutes to complete the estimation, the results of which are
displayed in Figure 10 and Table 9.

Parameter Post. Mean Post. Sd.
Model m2 (within-model acc. rate: 0.24)
θ1 (edge) -3.93 0.33
θ2 (gwesp(log(2))) 1.15 0.16

Model m3 (within-model acc. rate: 0.26)
θ1 (edge) -4.54 0.56
θ2 (gwesp(log(2))) -1.39 0.23
θ3 (gwd(log(2))) 0.79 0.62

Between-model acc. rate: 0.03

Table 9: Summary of posterior parameter estimates and acceptance rates.

The evidence-based algorithm was carried out using 200 path points from each of
which we sampled 500 networks. The results are reported in Table 10. The algorithm
took 25 seconds to estimate the evidence for model m1, 8 minutes for model m2, 9
minutes for model m3, 1 minute for model m4.

Auto-RJ algorithm Evidence-based method
BF2,1 > 106 > 106

BF2,3 5.72 4.65
BF2,4 > 106 > 106

Table 10: Bayes Factor estimates.

Table 10 displays the Bayes Factor for the comparison between model m2 (best
model) against the others. There is positive evidence to reject model m3 and very
strong evidence to models m1 and m4.

We can therefore conclude that the low density effect expressed by the negative edge
parameter combined with the positive transitivity effect expressed by the geometrically
weighted edgewise partners parameter are strong structural features not depending on
popularity effect expressed by the weighted degrees. These results are in agreement
with the findings reported in the literature (see Snijders et al. (2006) and Hunter and
Handcock (2006)).

6 Discussion

In this paper, we have presented two novel methods to Bayesian model selection for
exponential random graph models. The first one is an across-model approach based
on a trans-dimensional extention of the exchange algorithm for exponential random
graph models of Caimo and Friel (2011). An independence sampler making use of a
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Figure 10: Auto-RJ exchange algorithm output: posterior model probabilities (top)
and posterior parameter probabilities (bottom).
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Figure 11: E[θ?T s(y)] estimated from a ladder of 50 equally-spaced path points.

parametric approximation of the posterior is proposed in order to overcome the issue
of tuning of the jump proposal distributions and increase within-model accepteptance
rates. A within-model approach for estimating the model evidence relying on the path
sampling approximation of the likelihood normalizing constant and posterior density
estimation via nonparametric techniques is also proposed. Both methods have been
illustrated by three examples.

Acknowledgement Alberto Caimo was supported by an IRCSET Embark Initia-
tive award and Nial Friel’s research was supported by a Science Foundation Ireland
Research Frontiers Program grant, 09/RFP/MTH2199.

References

Brooks, S. P., Giudici, P., and O., R. G. (2003), “Efficient construction of reversible
jump Markov chain Monte Carlo proposal distributions (with discussion),” Journal
of the Royal Statistical Society, Series B, 65, 3–57.

Caimo, A. and Friel, N. (2011), “Bayesian inference for exponential random graph
models,” Social Networks, 33, 41 – 55.

Chib, S. (1995), “Marginal Likelihood from the Gibbs Output,” Journal of the Amer-
ican Statistical Association, 90, 1313–1321.

Chib, S. and Jeliazkov, I. (2001), “Marginal Likelihood From the MetropolisHastings
Output,” Journal of the American Statistical Association, 96, 270–281.

Friel, N. and Pettitt, A. N. (2008), “Marginal likelihood estimation via power posteri-
ors,” Journal of the Royal Statistical Society, Series B, 70, 589–607.

22



Friel, N. and Wyse, J. (2012), “Estimating the statistical evidence – a review,” Statis-
tica Neerlandica, (to appear).

Green, P. J. (1995), “Reversible jump Markov chain Monte Carlo computation and
Bayesian model determination,” Biometrika, 82, 711–732.

Green, P. J., Hjort, N. L., and Richardson, S. (eds.) (2003), Highly Structured Stochas-
tic Systems, Oxford University Press, chap. Trans-dimensional Markov chain Monte
Carlo.

Hage, P. and Harary, F. (1984), Structural Models in Anthropology, Cambridge Uni-
versity Press.

Handcock, M. S. (2003), “Assessing Degeneracy in Statistical Models of Social Net-
works,” Working Paper no.39, Center for Statistics and the Social Sciences, Uni-
versity of Washington.

Hayfield, T. and Racine, J. S. (2008), “Nonparametric Econometrics: The np Package,”
Journal of Statistical Software, 27.

Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T. (1999), “Bayesian
Model Averaging: A Tutorial,” Statistical Science, 14, 382–401.

Hunter, D. R. and Handcock, M. S. (2006), “Inference in curved exponential family
models for networks,” Journal of Computational and Graphical Statistics, 15, 565–
583.

Kass, R. E. and Raftery, A. E. (1995), “Bayes factors,” Journal of the American
Statistical Association, 90, 773–795.

Lazega, E. (2001), The collegial phenomenon : the social mechanisms of cooperation
among peers in a corporate law partnership, Oxford University Press.

Neal, R. M. (2001), “Annealed importance sampling,” Statistics and Computing, 11,
125–139.

Pattison, P. and Robins, G. L. (2002), “Neighbourhood-based models for social net-
works,” Sociological Methodology, 32, 301–337.

Read, K. E. (1954), “Cultures of the Central Highlands, New Guinea,” Southwestern
Journal of Anthropology, 10, 1–43.

Rinaldo, A., Fienberg, S. E., and Zhou, Y. (2009), “On the geometry of descrete
exponential random families with application to exponential random graph models,”
Electronic Journal of Statistics, 3, 446–484.

23



Robins, G., Pattison, P., Kalish, Y., and Lusher, D. (2007), “An introduction to
exponential random graph models for social networks,” Social Networks, 29, 169–
348.

Snijders, T. A. B., Pattison, P. E., Robins, G. L., and S., H. M. (2006), “New specifica-
tions for exponential random graph models,” Sociological Methodology, 36, 99–153.

24


	1 Introduction
	2 Overview of Bayesian model selection
	2.1 Computing Bayes factors
	2.1.1 Reversible jump MCMC


	3 Reversible jump exchange algorithm
	3.1 Pilot-tuned RJ exchange algorithm
	3.2 Auto-RJ exchange algorithm

	4 Estimating model evidence
	5 Applications
	5.1 Gahuku-Gama system
	5.1.1 Gamaneg
	5.1.2 Gamapos

	5.2 Collaboration between Lazega's lawyers

	6 Discussion

