
Bergm: Bayesian Exponential Random Graphs in R

Alberto Caimo & Nial Friel

School of Mathematical Sciences,

University College Dublin, Ireland

{alberto.caimo,nial.friel}@ucd.ie

January 16, 2012

Abstract

In this paper we describe the basic features of the Bergm package for the

open-source R software which provides a comprehensive framework for Bayesian

analysis for exponential random graph models: tools for parameter estimation,

model selection and goodness-of-fit diagnostics. We illustrate the capabilities of

this package describing the algorithms that drive the package through a tutorial

analysis of two well-known network datasets.

1 Introduction

The R package Bergm implements Bayesian analysis for Exponential Random Graph

Models (ERGMs) (Wasserman and Pattison (1996); Robins et al. (2007)) using the

methods described by Caimo and Friel (2011) and Caimo and Friel (2012). The package

provides a comprehensive framework for Bayesian inference and model selection using

Markov chain Monte Carlo (MCMC) algorithms. It can also supply graphical Bayesian

goodness-of-fit procedures that address the issue of model adequacy. Although com-

putationally intensive, the package is simple to use and represents an attractive way

of analyzing network data as it offers the advantange of a complete probabilistic treat-

ment of uncertainty. Bergm is based on the ergm package developed by Hunter et al.

(2008b) and therefore it makes use of the same model set-up and network simulation

1

ar
X

iv
:1

20
1.

27
70

v1
 [

st
at

.C
O

]
 1

3
Ja

n
20

12

algorithms. The Bergm package has been continually improved in terms of speed per-

formance over the last two years and one of the purposes of this paper is to highlight

these improvements. We feel that this package now offers the end-user a feasible option

for carrying out Bayesian inference for exponential random graphs.

Two well-known network datasets will be used throughout this tutorial for illus-

trative purposes: the first is the Kapferer Tailor Shop dataset (Kapferer, 1972) whose

directed edges represent work interactions in a tailor shop in Zambia (then North-

ern Rhodesia) and nodal attributes refer to the job status. The second network is

Zachary’s karate club (Zachary, 1977) which represents the undirected social network

graph of friendships between 34 members of a karate club at a US university in the

1970s. Figure 1 displays the graphs of these two networks.

In this paper we describe how to install and load Bergm (Section 2) providing a brief

summary of what Bayesian ERGMs are (Section 3). Sections 4, 5, and 6 overview the

algorithms and the functions used to produce posterior estimates for the parameters,

Bayesian goodness-of-fit procedures and model selection respectively. This paper does

not provide an exhaustive description of all the functionality and options available, and

more information about the commands and methods mentioned are available through

the R help system within the package.

Figure 1: Kapferer Tailor Shop directed graph (right) and Zachary’s karate club undi-

rected graph (right).

2

2 Getting Bergm

The Bergm package can be obtained and loaded in R using the following commands:

> install.packages("Bergm")

> library("Bergm")

Since Bergm depends on ergm (which in turn depends on network), coda, and mvt-

norm, installing the package will automatically load all the dependencies. All of

these packages are available on the Comprehensive R Archive Network (CRAN) at

http://CRAN.R-project.org.

The results presented in this paper have been obtained using R version 2.13.2 on

a Mac using Bergm version 2.1; ergm version 2.4-3; network version 1.6; coda version

0.14-6; and mvtnorm version 0.9-999.

3 Bayesian exponential random graphs

The Bayesian approach to statistical problems is probabilistic. Inference is based on the

posterior distribution which is the conditional probability of the unknown quantities

given the observed ones. The posterior extracts the information in the data and provide

a complete summary of the uncertainty about the unknowns.

In the ERGM context (see Wasserman and Pattison (1996) and Robins et al.

(2007)), the purpose of Bayesian inference is to learn about the posterior distribu-

tion of the model parameters θ of an observed graph y on n nodes:

π(θ|y) =
p(y|θ) p(θ)

p(y)
=

exp{θts(y)}
z(θ)

p(θ)

p(y)
, (1)

where s(y) is a known vector of sufficient network statistics (Figure 2) (Morris et al.,

2008), p(θ) is a prior distribution placed on θ, z(θ) is the likelihood normalizing con-

stant, and p(y) is the model evidence. Equation (1) provides a probabilistic statement

about how likely parameter values are after observing the data y. The likelihood

p(y|θ) is translated into a proper probability distribution that can be summarised by

computing expected values, standard deviations, quantiles, etc.

Unfortunately the posterior distribution (1) is doubly-intractable as both z(θ) and

p(y) cannot be evaluated analytically (Koskinen, 2004). This makes the use of standard

MCMC procedures infeasible.

3

http://CRAN.R-project.org

(a)

edge mutual edge 2-in-star 2-out-star

(a)

2-mixed-star transitive triad cyclic triad

(b)

edge 2-star 3-star triangle

(b)

Figure 2: Some of the most used configurations for directed (a) and undirected (b)

graphs.

4

In order to carry out Bayesian inference for ERGMs, the Bergm package makes use

of a combination of Bayesian algorithms and MCMC techniques. The exchange algo-

rithm circumvents the problem of computing the normalizing constants of the ERGM

likelihoods, while the use of multiple chains interacting with each others (population

MCMC approach) by means of adaptive direction sampling is able to speed up the

computations and improve chain mixing quite significantly.

4 Bayesian parameter estimation

In order to estimate (1), the Bergm package uses the exchange algorithm described in

Section 4.1 of Caimo and Friel (2011) to sample from the following distribution:

p(θ′,y′,θ|y) ∝ p(y|θ)p(θ)ε(θ′|θ)p(y′|θ′) (2)

where p(y′|θ′) is the likelihood on which the simulated data y′ are defined, ε(θ′|θ) is

any arbitrary proposal distribution for the augmented variable θ′. As we will see in

the next section, this proposal distribution is set to be a normal centered at θ.

At each MCMC iteration, the exchange algorithm consists of a Gibbs update of

θ′ followed by a Gibbs update of y′, which is drawn from the p(·|θ′) via an MCMC

algorithm (Hunter et al., 2008b). Then a deterministic exchange or swap from the

current state θ to the proposed new parameter θ′. This deterministic proposal is

accepted with probability:

α = min

(
1,
qθ(y′)p(θ′)h(θ|θ′)qθ′(y)

qθ(y)p(θ)h(θ′|θ)qθ′(y′)
× z(θ)z(θ′)

z(θ)z(θ′)

)
,

where qθ and qθ′ indicates the unnormalised likelihoods with parameter θ and θ′,

respectively. Notice that all the normalising constants cancel above and below in the

fraction above, in this way avoiding the need to calculate the intractable normalising

constant.

The exchange algorithm is implemented by the bergm function in the following

way:

for i = 1, . . . , N

1. generate θ′ from ε(·|θ)

5

2. simulate y′ from p(·|θ′)

3. update θ ← θ′ with probability

log(α) = min

(
0, [θ − θ′]

t
[s(y′)− s(y)] + log

[
p(θ′)

p(θ)

])
(3)

end for

where s(y) is the observed vector of network statistics and s(y′) is the simulated vector

of network statistics.

4.1 Block-update sampler

Step 1 of the algorithm consists in generating θ′ from some proposal distribution

within each iteration. Bergm uses a block-update sampler with normal proposal to

simultaneously update of the parameter values in the MCMC chain:

ε(θ′|θ) ∼ N (θ,Σε). (4)

Typically, tuning the proposal distribution ε from which θ′ is drawn represents the

crucial part of the algorithm since a poor tuning of the proposal parameter Σε can

slow down the chain’s mixing rate and therefore the algorithm can take a very long

time to converge to the stationary posterior density.

4.2 Parallel adaptive direction sampler

In order to improve mixing a parallel adaptive direction sampler (ADS) is considered:

at each i-th iteration of the algorithm we have a collection of H different chains in-

teracting with one another. By construction, the state space consists of {θ1, . . . ,θH}
with target distribution p(θ1|y)⊗ · · ·⊗ p(θH |y). A parallel ADS move consists of gen-

erating a new value θ′h from the difference of two parameters θh1 and θh2 (randomly

selected from other chains) multiplied by a scalar term γ which is called parallel ADS

move factor plus a random term ε called parallel ADS move parameter (Figure 3)

which is equivalent to the block-update sampler defined in (4). The algorithm can be

summarised as follows:

6

for i = 1, . . . , N

for h = 1, . . . , H

1. generate h1 and h2 such that h1 6= h2 6= h

2. generate θ′h from γ(θh1 − θh2) + ε(·|θh)

3. simulate y′ from p(·|θ′h)

4. update θh ← θ′h with probability

min

(
0, [θh − θ′h]

t
[s(y′)− s(y)] + log

[
p(θ′h)

p(θh)

])
(5)

end for

end for

���

�����

�

Figure 3: The parallel ADS move of the current state (darker blue dot) consists of

generating a new parameter value along the direction made by the difference of two

randomly sampled parameter states (light blue dots) belonging to different chains plus

a random term ε.

7

4.3 Kapferer tailor shop network

Consider the Kapferer Tailor Shop network and a 3-dimensional model including the

following network statistics: edges (edges), mutual edges (mutual) and cyclic triples

(ctriple) involving nodes with the same job status, where the job status is represented

by a categorical variable of 8 levels:

edges
∑

i<j yij

mutual
∑

i<j yijyji

ctriple("job")
∑

i<j<k yijyjkyki where i, j, k have the same job status

The format of the model specification is the same of an ergm formula:

> formula <- y ~ edges + mutual + ctriple("job")

Then we can use the bergm function to sample from the posterior distribution using the

MCMC algorithm described above. In this example we use the parallel ADS procedure.

By default, the number of chains is set as twice the number of dimensions of the model.

It is possible to choose a different number of chains by using the argument nchains.

In order to perform the block-site update described in Section 4.1 it is necessary to

set nchains = 1. For each chain, we can then set the number of burn-in iterations

(burn.in) and the number of iterations after the burn-in (main.iters). The number

of iterations used to simulate a network y′ at each iteration is defined by the argument

aux.iters.

> post.est <- bergm(formula,

+ burn.in=200,

+ gamma=0.7,

+ main.iters=1000,

+ aux.iters=25000)

The population MCMC with parallel ADS move is the default procedure of the bergm

function. The total number of iterations (eg the size of the posterior sample) is nchains

× main.iters. The proposal covariance structure Σε is defined by the argument

sigma.epsilon which is set to be a diagonal matrix with every diagonal entry equal to

a small number. In many cases, good mixing of the chain is ensured by a sensible tuning

of the parallel ADS move factor gamma and therefore the argument sigma.epsilon can

8

be generally left at its default setting. As said above, parallel ADS is adopted as the

default procedure but it is automatically disabled in the case of uni-dimensional models

where the block-update sampler is used and the argument gamma is used to tune the

variance of the normal proposal distribution ε.

After completing the estimation, post.est is an object of the class bergm and

contains a list of attributes among which are the real and CPU time (in seconds)

taken by the estimation process:

> post.est$time

user system elapsed

99.083 0.759 100.659

It is possible to visualise the results of the MCMC estimation by using the bergm.output

function which is based on the coda package (Plummer et al., 2006) which is an R pack-

age for MCMC output analysis and diagnostics.

> bergm.output(post.est,lag.max=50)

MCMC results for Model: y ~ edges + mutual + ctriple("job")

Posterior mean:

theta1 (edges) theta2 (mutual) theta3 (ctriple.job)

Chain 1 -3.4256853 3.7647452 0.8168465

Chain 2 -3.4091174 3.7447376 0.8567871

Chain 3 -3.4140165 3.7377072 0.8532598

Chain 4 -3.4366544 3.7868822 0.8585445

Chain 5 -3.4201932 3.8034972 0.8340857

Chain 6 -3.4009597 3.7021253 0.8433665

Posterior sd:

theta1 (edges) theta2 (mutual) theta3 (ctriple.job)

Chain 1 0.2046574 0.4287769 0.1882377

Chain 2 0.2291025 0.4960458 0.1829550

Chain 3 0.1903504 0.4453100 0.1700874

Chain 4 0.2673414 0.5266250 0.1655076

9

Chain 5 0.2474045 0.4652013 0.1543426

Chain 6 0.2696806 0.4775102 0.1949814

Acceptance rate:

Chain 1 0.213

Chain 2 0.267

Chain 3 0.246

Chain 4 0.224

Chain 5 0.260

Chain 6 0.237

Overall posterior density estimate:

theta1 (edges) theta2 (mutual) theta3 (ctriple.job)

Post. mean -3.4177711 3.7499491 0.8438150

Post. sd 0.2373836 0.4768709 0.1782518

Overall acceptance rate: 0.241166666666667

The output above shows the results of the MCMC estimation: posterior means and

standard deviations, and acceptance rates for every chain in the population and for

the overall chain. Notice that the posterior summaries of each chain are consistent

with each other. Figure 4 displays the MCMC diagnostic plots produced by the

bergm.output function. In this example, we notice a low density effect expressed

by the negative value of the posterior mean of the density effect parameter (edges)

combined with the positive mutuality and transitivity within people having the same

job status expressed by the mutual edge and cyclic triple parameters respectively. The

overall acceptance rate is around 24% and the autocorrelation is negligible after lag

50.

10

θ1 (edges)

-4.0 -3.5 -3.0 -2.5

0.
0

0.
5

1.
0

1.
5

2.
0

0 2000 4000 6000

-4
.0

-3
.5

-3
.0

-2
.5

Iterations

0 10 20 30 40 50

-1
.0

0.
0

0.
5

1.
0

Lag

A
ut
oc
or
re
la
tio
n

θ2 (mutual)

2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

0 2000 4000 6000

2.
0

3.
0

4.
0

5.
0

Iterations

0 10 20 30 40 50

-1
.0

0.
0

0.
5

1.
0

Lag

A
ut
oc
or
re
la
tio
n

θ3 (ctriple.job)

0.5 1.0 1.5

0.
0

1.
0

2.
0

0 2000 4000 6000

0.
2

0.
6

1.
0

1.
4

Iterations

0 10 20 30 40 50

-1
.0

0.
0

0.
5

1.
0

Lag

A
ut
oc
or
re
la
tio
n

MCMC output for Model: y ~ edges + mutual + ctriple("job")

Figure 4: MCMC diagnostics for the overall chain.

11

5 Bayesian goodness-of-fit diagnostics

The bgof function provides a useful tool for assessing Bayesian goodness-of-fit so as to

examine the fit of the data to the posterior model obtained by the bergm function. The

observed network data y is compared with a set of networks y1,y2, . . . ,yS simulated

from S independent realisations θ1,θ2, . . . ,θS of the posterior density estimate. This

comparison is made in terms of high-level characteristics g(·) such as higher degree

distributions, etc. (see Hunter et al. (2008a)). The algorithm can be summarised as

follows:

for i = 1, . . . , S

1. sample θi from the estimate of p(θ|y)

3. simulate yi from p(·|θi)

4. calculate g(yi)

end for

For example, the code below is used to compare the Kapferer Tailor Shop network

with a series of networks simulated from 100 random realisations (sample.size) of

the estimated posterior distribution post.est using 50, 000 iterations (aux.iters) for

the network simulation step. The bgof function may take a few seconds to run and,

at the end of the execution, it will automatically plot the results as shown in Figure 5.

> bgof(post.est,

+ sample.size=100,

+ aux.iters=50000,

+ directed=TRUE,

+ n.ideg=20,

+ n.odeg=20,

+ n.dist=10,

+ n.esp=15)

The set of statistics used for the comparison of directed networks includes the in-degree

12

distribution, the out-degree distribution, the minimum geodesic distance distribution

and the edgewise shared partner distribution. The arguments n.ideg, n.odeg, n.dist,

and n.esp indicates the number of boxplots to plot for each distribution respectively.
0.
0

0.
1

0.
2

0.
3

0.
4

in degree

pr
op

or
tio

n
of

 n
od

es

0 2 4 6 8 11 14 17

Bayesian goodness-of-fit diagnostics

0.
0

0.
1

0.
2

0.
3

0.
4

out degree

pr
op

or
tio

n
of

 n
od

es
0 2 4 6 8 11 14 17

0.
0

0.
2

0.
4

0.
6

minimum geodesic distance

pr
op

or
tio

n
of

 d
ya

ds

1 2 3 4 5 6 7 8 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

edge-wise shared partners

pr
op

or
tio

n
of

 e
dg

es

0 2 4 6 8 10 13

Figure 5: Bayesian goodness-of-fit diagnostics. The red line displays the goodness of

fit statistics for the observed data together with boxplots of goodness of fit statistics

based on 100 simulated networks from the posterior distribution.

In Figure 5 we see, based on the various goodness of fit statistics, that the networks

simulated from the posterior distribution are in reasonable agreement with the observed

network. We can therefore conclude that the data is a reasonable fit to the model,

despite its simplicity.

13

6 Bayesian model selection

An important problem in statistical analysis is the choice of an optimal model from a

set of a priori competing models. In the ERGM context, this task translates into the

choice of which subset of network statistics should be included into the model.

Let m indicate a particular model from a set of competing models with correspond-

ing parameters θ. Following the Bayesian paradigm, interest focuses on exploring the

posterior distribution,

p(m,θ|y) ∝ p(y|m,θ) p(θ|m) p(m) (6)

where p(θ|m) and p(m) are prior distributions within model m, and on model m,

respectively. The reversible Jump Markov chain Monte Carlo (RJMCMC) algorithm

(Green, 1995) was designed to explore this type of posterior distribution across the

joint model and parameter space. It is therefore a type of MCMC algorithm that

allows one to jointly explore the uncertain between and within models.

This approach is very appealing since it relies exclusively on probabilistic consid-

erations but is very challenging from a computational viewpoint. As stated above,

the intractability of the likelihood normalising constant z(θ) in (1) renders standard

RJMCMC techniques infeasible. However, the exchange algorithm used for parameter

estimation can be easily generalised so as to include model indicators.

The auto-RJ exchange algorithm described in Caimo and Friel (2012) represents a

trans-dimensional RJMCMC extension of the exchange algorithm involving an inde-

pendence sampler based on a distribution fitting a parametric density approximation

to the within-model posterior. This approach overcomes the issue of the likelihood

intractability sampling from:

p(θ′,θ,m′,m,y′|y) ∝ p(y|θ,m)p(θ|m)p(m)w(θ′|m′)h(m′|m)p(y′|θ′,m′) (7)

where m and m′ are two competing models, p(y|θ,m) and p(y′|θ′,m′) are the two

likelihoods for the data y under model m and the simulated data y′ under model

m′ respectively, p(θ|m) and p(m) are the priors for the parameter and the respective

model m, w(θ′|m′) is a within-model proposal (independence sampler) which fit a

parametric density approximation to the model posteriors and h(m′|m) is a between-

model proposal. Notice that the marginal distribution for for θ′ and m′ in (7) is the

target distribution of interest p(θ,m|y).

14

The bergmS function implements the auto-RJ exchange algorithm which consists

of two parts: an offline step and an online step. In the first step, samples from the

posterior p(θ|y,m) are gathered from each competing model using the bergm function

and then approximated by normal distributions N (µ̂m, Σ̂m) determined by the first

and second moments from a sample from the model.

The second step (online run) of the algorithm consists of a Gibbs update of m′

followed by a Gibbs update of θ′ which is generated via the independence sampler

w(θ′|m′) ∼ N (µ̂m′ , Σ̂m′). This is followed by a Gibbs update of y′ which is generated

from p(·|θ′,m′). Then a deterministic exchange move from a current state (θ,m) to

the proposed new state (θ′,m′) is accepted with probability:

α = min

{
1,
qθ,m(y′)

qθ,m(y)

qθ′,m′(y)

qθ′,m′(y′)

p(θ′|m′)
p(θ|m)

p(m′)

p(m)

w(θ|µ̂m, Σ̂m)

w(θ′|µ̂m′ , Σ̂m′)

}
. (8)

where qθ,m and qθ′,m′ indicates the unnormalised likelihoods under model m with pa-

rameter θ and under model m′ with parameter θ′ respectively.

The structure of the bergmS function can be described in the following way:

for i = 1, . . . , N

1. generate m′ from h(·|m)

2. generate θ′ ∼ N (µ̂m′ , Σ̂m′)

3. simulate y′ from p(·|θ′,m′)

4. update (θ,m)← (θ′,m′) with probability:

log(α) = min

(
0,θt[sm(y′)− sm(y)] + θt[sm′(y′)− sm′(y)] + log

[
p(θ′)

p(θ)

w(θ|µ̂m, Σ̂m)

w(θ′|µ̂m′ , Σ̂m′)

])
end for

where sm(y) and sm′(y) are the observed vectors of network statistics under model

m and m′ respectively, and sm(y′) and sm′(y′) are the simulated vector of network

statistics under model m and m′ respectively. The reader is referred to Caimo and

Friel (2012) for much details on this algorithm.

15

6.1 Karate club network

Consider the Karate club network, we propose three models to fit the data using a set of

new specification statistics introduced by Snijders et al. (2006): geometrically weighted

edgewise shared partners (gwesp) and geometrically weighted degrees (gwdegree):

gwesp eφv
∑n−2

k=1

{
1−

(
1− e−φv

)k}
EPk(y)

gwdegree eφu
∑n−1

k=1

{
1−

(
1− e−φu

)k}
Dk(y)

where the scale parameters φv = 0.2 and φu = 0.8. Dk(y) is the number of pairs that

have exactly k common neighbours and EPk(y) is the number of connected pairs with

exactly k common neighbours. The specification of these models requires the creation

of a list of formulas:

> formulae <- c(y ~ edges + gwesp(0.2,fixed=TRUE),

+ y ~ edges + gwdegree(0.8,fixed=TRUE),

+ y ~ edges + gwesp(0.2,fixed=TRUE)

+ + gwdegree(0.8,fixed=TRUE))

The bergmS command is then used to carry out the algorithm. To do this we have to

specify several arguments for both the offline and online step.

The offline run consists of running the bergm function for each of the models pro-

posed. Therefore we set some arguments main.iters, burn.ins, gammas which are

vectors containing values for bergm arguments: main.iters, burn.in, gamma for each

competing model.

The argument iters refers to the number of iterations used for the online run.

The number of MCMC steps used for network simulation is specified as usual by the

argument aux.iters and this will be used in both the offline and the online step. The

command below should take around 10 minutes depending on the CPU speed of the

computer.

> mod.sel <- bergmS(formulae,

+ iters=25000,

+ aux.iters=15000,

+ main.iters=rep(700,3),

+ burn.ins=rep(100,3),

+ gammas=c(1,1,0.8))

16

The bergmS.output function produces the MCMC diagnostics for each competing

model explored by the MCMC algorithm. Figure 6 and 7 displays the plots regarding

the posterior model and parameter density estimate respectively.

> best.mod <- bergmS.output(mod.sel)

BEST MODEL

Model 1: y ~ edges + gwesp(0.2, fixed = TRUE)

Posterior parameter estimate:

Post. mean: Post. sd:

theta1 (edges) -3.2574625 0.3278196

theta2 (gwesp.fixed.0.2) 1.1008261 0.2515162

Within-model acceptance rate: 0.26

Model 3: y ~ edges + gwesp(0.2, fixed = TRUE) + gwdegree(0.8, fixed = TRUE)

Posterior parameter estimate:

Post. mean: Post. sd:

theta1 (edges) -3.4916584 0.5146103

theta2 (gwesp.fixed.0.2) 1.1824831 0.2737858

theta3 (gwdegree) 0.4783638 0.5852124

Within-model acceptance rate: 0.14

BF_13 = 13.4508670520231

Between-model acceptance rate: 0.03

In the results above we have the posterior parameter estimates for two of the compet-

ing models (Model 2 has not been visited through the MCMC runs) with respective

17

within-model acceptance rates and an estimate of the Bayes Factor (about 13) for the

comparison between Model 1 and Model 3 which makes clear that there is evidence

that Model 1 is the best model of the set.

After running the command bergmS.output, it is possible to perform a Bayesian

goodness-of-fit tests. In this case, since the observed network is undirected, the set

of high-level statistics include the degree distribution in place of the in-degree and

out-degree distributions.

> bgof(best.mod,

+ aux.iters=30000,

+ n.deg=20,

+ n.dist=10,

+ n.esp=15)

In this example, the observed data appears to be a reasonable fit to the posterior

distribution of the model selected (Model 1), based on the goodness of fit geodesic and

the shared partners statistics displayed in Figure 8.

7 Discussion

The software package Bergm aims to help researchers and practitioners in two ways.

Firstly, it is currently the only package for R that provides a simple and complete

range of tools for conducting Bayesian analysis for exponential random graph models.

Secondly, Bergm makes available a platform that can be easily customised, extended,

and adapted to address different requirements.

The software package is under continual development and it is far from finished.

The main limitation of the software is its computational cost which makes it unsuitable

for managing network graphs larger than hundreds of nodes, however it is perfectly

suited for networks involving up to a hundred nodes. However an important improve-

ment in terms of computational time and efficiency will be done by turning some of

the R functions into C functions integrated with the ergm package. We expect that

will yield further reductions in computional run time.

Future versions of the Bergm package will address several issues including Bayesian

analysis of Curved Exponential Random Graph Models (Hunter and Handcock, 2006)

18

Model 1 Model 2 Model 3

0.
0

0.
2

0.
4

0.
6

0.
8

Iterations

0 5000 15000 25000

M
od

el
 1

M
od

el
 2

M
od

el
 3

MCMC output : posterior model probabilities

Figure 6: MCMC diagnostics: posterior model probabilities.

!1 (edges)

-4.5 -3.5 -2.5

0.
0

0.
4

0.
8

1.
2

0 5000 15000

-4
.0

-3
.5

-3
.0

-2
.5

Iterations

0 20 40 60 80

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

A
ut
oc
or
re
la
tio
n

!2 (gwesp.fixed.0.2)

0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

0 5000 15000

0.
5

1.
0

1.
5

2.
0

Iterations

0 20 40 60 80

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

A
ut
oc
or
re
la
tio
n

MCMC output for Model 1 : posterior parameter probabilities

Figure 7: MCMC diagnostics: posterior parameter probabilities.

19

0.
0

0.
1

0.
2

0.
3

degree

pr
op

or
tio

n
of

 n
od

es

0 2 4 6 8 10 12 14 16 18

Bayesian goodness-of-fit diagnostics

0.
0

0.
2

0.
4

0.
6

0.
8

minimum geodesic distance
pr

op
or

tio
n

of
 d

ya
ds

1 2 3 4 5 6 7 8 9 NR

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

edge-wise shared partners

pr
op

or
tio

n
of

 e
dg

es

0 2 4 6 8 10 12 14

Figure 8: Bayesian goodness-of-fit diagnostics.

and exponential random graph models with missing data.

Acknowledgement Alberto Caimo was supported by an IRCSET Embark Initia-

tive award and Nial Friel’s research was supported by a Science Foundation Ireland

Research Frontiers Program grant, 09/RFP/MTH2199.

References

Caimo, A. and Friel, N. (2011), “Bayesian inference for exponential random graph

models,” Social Networks, 33, 41 – 55.

— (2012), “Bayesian model selection for exponential random graph models,” Tech.

rep., University College Dublin, available in e-print format at http://arxiv.org/

abs/1201.2337.

Green, P. J. (1995), “Reversible jump Markov chain Monte Carlo computation and

Bayesian model determination,” Biometrika, 82, 711–732.

Hunter, D. R., Goodreau, S. M., and Handcock, M. S. (2008a), “Goodness of Fit

of Social Network Models,” Journal of the American Statistical Association, 103,

248–258.

Hunter, D. R. and Handcock, M. S. (2006), “Inference in curved exponential family

20

http://arxiv.org/abs/1201.2337
http://arxiv.org/abs/1201.2337

models for networks,” Journal of Computational and Graphical Statistics, 15, 565–

583.

Hunter, D. R., Handcock, M. S., Butts, C. T., Goodreau, S. M., and Morris, M.

(2008b), “ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Mod-

els for Networks,” Journal of Statistical Software, 24, 1–29.

Kapferer, B. (1972), Strategy and transaction in an African factory: African workers

and Indian management in a Zambian town, no. 10, Manchester University Press.

Koskinen, J. H. (2004), “Bayesian Analysis of Exponential Random Graphs - Estima-

tion of Parameters and Model Selection,” Research Report 2004:2, Department of

Statistics, Stockholm University.

Morris, M., Handcock, M. S., and Hunter, D. R. (2008), “Specification of Exponential-

Family Random Graph Models: Terms and Computational Aspects,” Journal of

Statistical Software, 24.

Plummer, M., Best, N., Cowles, K., and Vines, K. (2006), “CODA: Convergence

Diagnosis and Output Analysis for MCMC,” R News, 6, 7–11.

Robins, G., Pattison, P., Kalish, Y., and Lusher, D. (2007), “An introduction to

exponential random graph models for social networks,” Social Networks, 29, 169–

348.

Snijders, T. A. B., Pattison, P. E., Robins, G. L., and S., H. M. (2006), “New specifica-

tions for exponential random graph models,” Sociological Methodology, 36, 99–153.

Wasserman, S. and Pattison, P. (1996), “Logit models and logistic regression for social

networks: I. An introduction to Markov graphs and p∗,” Psycometrica, 61, 401–425.

Zachary, W. (1977), “An information flow model for conflict and fission in small

groups,” Journal of Anthropological Research, 33, 452–473.

21

	1 Introduction
	2 Getting Bergm
	3 Bayesian exponential random graphs
	4 Bayesian parameter estimation
	4.1 Block-update sampler
	4.2 Parallel adaptive direction sampler
	4.3 Kapferer tailor shop network

	5 Bayesian goodness-of-fit diagnostics
	6 Bayesian model selection
	6.1 Karate club network

	7 Discussion

